首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine or rat brain adenylate cyclase (EC 4.6.1.1) solubilized by Lubrol PX contained an activator which was separated from the enzyme by an anionic exchange resin column. Dissociation of the activator from adenylate cyclase rendered the enzyme less active, and reconstituting with an exogenous activator restored full enzyme activity. A pure protein activator of cyclic 3′:5′-nucleotide phosphodiesterase (EC 3.1.4.17) isolated from bovine brain also stimulated this adenylate cyclase. Stimulation of adenylate cyclase by the activator required Ca++, the effect being immediate and reversible. Although the activator was specific, it lacked tissue specificity; an activator isolated from bovine brain cross-activated effectively adenylate cyclase from rat, and vice versa. These findings indicate that brain adenylate cyclase required an activator for activity and that this activator is functionally identical to the protein activator of phosphodiesterase (J.B.C. 249: 4943–4954, 1974).  相似文献   

2.
The subcellular localization of adenylate cyclase was examined in human skeletal muscle. Three major subcellular membrane fractions, plasmalemma, sarcoplasmic reticulum and mitochondria, were characterized by membrane-marker biochemical studies, by dodecyl sulfate polycrylamide gel electrophoresis and by electron microscopy. About 60% of the adenylate cyclase of the homogenate was found in the plasmalemmal fraction and 10–14% in the sarcoplasmic reticulum and mitochondria. When the plasmalemmal preparation was subjected to discontinuous sucrose gradients, the distribution of adenylate cyclase in different subfractions closely paralleled that of (Na+ + K+)-ATPase. The highest specific activity was found in a fraction which setteled at the 0.6–0.8 M sucrose interface. The electron microscopic study of this fraction revealed the presence of flattened sacs of variable sizes and was devoid of mitochondrial and myofibrillar material. The electron microscopy of each fraction supported the biochemical studies with enzyme markers. The three major membrane fractions also contained a low Km phosphodiesterase activity, the highest specific activity being associated with sarcoplasmic reticulum.The plasmalemmal adenylate cyclase was more sensitive to catecholamine stimulation than that associated with sarcoplasmic reticulum or mitochondria. The catecholamine-sensitive, but not the basal, enzyme was further stimulated by GTP. The plasmalemmal adenylate cyclase had typical Michaelis-Menten kinetics with respect to ATP and the apparent Km for ATP was approx. 0.3. mM. The pH optimum for that enzyme was 7.5. The enzyme required Mg2+, and the concentration to achieve half-maximal stimulation was approx. 3 mM. Higher concentrations of Mg2+ (about 10 mM) were inhibitory. Solubilization of the plasmalemmal membrane fraction with Lubrol-PX resulted in preferential extraction of 106 000- and 40 000-dalton protein components. The solubilized adenylate cyclase lost its sensitivity for catecholamine stimulation, and the extent of fluoride stimulation was reduced to one-sixth of that of the intact membranes. It is concluded that the catalytically active and hormone-sensitive adenylate cyclase is predominantly localized in the surface membranes of the cells within skeletal muscle. (That “plasmalemmal” fraction is considered likely to contain, in addition to plasmalemma of muscle cells, plasmalemma of bloodvessel cells (endothelium, and perhaps smooth muscle) which may be responsible for a certain amount of the adenylate cyclase activity and other propertiesobserved in that fraction.)The method of preparation used in this study provides a convenient material for evaluating the catecholamine-adenylate cyclase interactions in human skeletal muscle.  相似文献   

3.
1. Adenylate cyclase (EC 4.6.1.1) from rat testis mitochondria has been solubilized by treatment with the non-ionic detergent Lubrol PX. The soluble enzyme was further purified by DEAE-cellulose chromatography. 2. The specific activity of the adenylate cyclase eluted from the DEAE-cellulose column was found to be four times higher than that of an intact mitochondrial preparation. At this step the enzyme shows a sedimentation coefficient of 4.2 S and a diffusion coefficient (D) of 3.12 - 10- minus 7 cm-2/sec. 3. Solubilization of the adenylate cyclase resulted in loss of responsiveness to gonadotrophic hormones. Addition of phosphatidylserine to the soluble preparation partially restored the activation of adenylate cyclase by human chorionic gonadotrophin. 4. The results of this study suggest that the activity of the adenylate cyclase may be dependent on the membrane-bound phospholipids and that the enzyme attached to the mitochondrial membranes has some properties which are similar to the adenylate cyclase found to be associated with other membrane systems of the cell.?  相似文献   

4.
Summary We investigated the influence of Mg2+ and Mn2+ on the effects of adenosine and some derivatives on basal adenylate cyclase activity in rat fat cell membranes as well as on enzyme activity stimulated by isoprenaline or sodium fluoride. Adenosine and derivatives modified in the ribose function were inhibitory, irrespective of the stimulant used, both in the presence of MgCl2 or MnCl2. Inhibition of basal and sodium fluoride stimulated adenylate cyclase activity was more pronounced in the presence of MnCl2 than in the presence of MgCl2. N6-substituted adenosine analogs proved to be inhibitory in the presence of 5 MM MgCl2, but in the presence of 1 mM MnCl2 the fluoride stimulated adenylate cyclase activity was potentiated, while basal and isoprenaline stimulated activity were not significantly inhibited. These effects of adenosine and derivatives could not be blocked by theophylline with or without guanyl nucleotides.The potentiating effect of N6-substituted adenosine derivatives on sodium fluoride activated adenylate cyclase is dependent on the structure of the N6-substitutent and consists of an enhancement of Vrnax in combination with a small decrease of the Km for MnATP2–, indicative of an allosteric effect on adenylate cyclase. No potentiation by N6-phenylisopropyladeno sine of sodium fluoride stimulated cyclase was found on digitonin solubilized cyclase, while the inhibitory effect of adenosine was retained. The relevance of these findings is discussed in connection with the current hypothesis concerning the presence of two adenosinesensitive sites on rat fat cell membranes.  相似文献   

5.
The in vitro effects of membrane lipid peroxidation on ATPase-ADPase activities in synaptic plasma membranes from rat forebrain were investigated. Treatment of synaptic plasma membranes with an oxidant generating system (H2O2/Fe2+/ascorbate) resulted in lipid peroxidation and inhibition of the enzyme activity. Besides, trolox as a water soluble vitamin E analogue totally prevented lipid peroxidation and the inhibition of enzyme activity. These results demonstrate the susceptibility of ATPase-ADPase activities of synaptic plasma membranes to free radicals and suggest that the protective effect against lipid peroxidation by trolox prevents the inhibition of enzyme activity. Thus, inhibition of ATPase-ADPase activities of synaptic plasma membranes in cerebral oxidative stress probably is related to lipid peroxidation in the brain.  相似文献   

6.
Bovine or rat brain adenylate cyclase (EC 4.6.1.1) solubilized by Lubrol-PX, a nonionic detergent, requires a Ca2+-binding protein activator for full activity (Cheung et al., 1975, Biochem. Biophys. Res. Commun.66, 1055–1062). We now show that particulate rat brain adenylate cyclase also required the activator for maximum activity. A brain particulate fraction was extracted with a hypertonic NaCl solution containing [ethyl-enebis(oxyethylenenitrilo)] tetraacetic acid. This procedure removed preferentially the activator, making adenylate Cyclase activator deficient and, consequently, dependent on an exogenous activator for maximum activity. The activator increased the V of adenylate cyclase without affecting its apparent Km for ATP. In the presence of the activator, the enzyme was more stable against thermal inactivation, suggesting that the activator probably induced a conformational change to the enzyme. F? and 5′-guanylylimidodi-phosphate [GMP-p(NH)p] greatly stimulated brain adenylate cyclase. Adenylate cyclase activity obtained in the presence of the activator and F? was comparable to the summed activities of the two agents assayed separately, indicating that their effects were additive. Similarly, the effects of the activator and GMP-p(NH)p were additive. These results suggest that the action of the activator is independent of the other two ligands. Since the activator is present in excess over adenylate cyclase, the cellular flux of Ca2+ is believed to be important in modulating the enzyme activity. The role of the Ca2+/ activator is discussed with respect to cyclic AMP metabolism in brain.  相似文献   

7.
《Insect Biochemistry》1989,19(8):775-779
Solubilization of the adenylate cyclase from neural membranes of the dipterous Ceratitis capitata, by using several detergents, and regulatory characteristics of the solubilized enzyme were examined. Triton X-100 is the most effective detergent in solubilizing this enzyme activity. The adenylate cyclase in Triton X-100-solubilized preparations (105,000 g supernatant) does not respond to either guanine nucleotides or fluoride and it apparently seems to be devoid of a functional regulatory component. When this preparation is centrifuged again at 300,000 g for 30 min no enzyme activity is detectable in the supernatant, however only 8% of total activity is recovered in the pellet. The activation pattern for the enzyme in the 300,000 g pellet is similar to that observed for the enzyme in the 105,000 g supernatant. Incorporation of solubilized enzyme into dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC) or cholesterol-enriched DOPC liposomes increases the 300,000 g pellet adenylate cyclase activity in a similar extension; thus, this increase in enzyme activity appears to be independent not only on the phospholipid composition but also on the liposome fluidity.  相似文献   

8.
Particulate adenylate cyclase (AC) and guanylate cyclase (GC) activities localized in the ciliary membrane from Paramecium were solubilized by a two-step procedure using the detergents Brij 56 and Lubrol PX. The enzymes remained in the supernatant after a 100 000 × g centrifugation. Upon gel chromatography, AC and GC were almost completely separated proving that each enzyme is a distinct molecular entity. Solubilization of GC was achieved with the calmodulin subunit remaining firmly attached to the catalytic part. Antibodies against calmodulin inhibited the enzyme as did La3+ and EGTA. AC activity appeared to be regulated specifically by K+, enzyme activity being enhanced up to 100% by 15 mM K+. Na+ and Li+ were inactive.  相似文献   

9.
Adenylate cyclase was measured in skeletal muscle plasma membranes incubated with subtilisin. Under specific conditions the protease preferentially inactivated flouride and guanylnucleotide sensitivity. Following protease treatment, membranes were solubilized with Lubrol 12A9 and subjected to ion-exchange chromatography. Adenylate cyclase was eluted with 200 mM NaCl; the enzyme recovered was completely unresponsive to either NaF or guanylyl imidodiphosphate. Responsiveness to the two ligands was restored by adding a heart fraction in which basal activity had been destroyed by heating at 40°C or by adding a soluble skeletal muscle fraction in which basal activity had been largely destroyed by N-ethylmaleimide. The solubilized subtilisin-treated skeletal muscle preparation may serve as a source of catalytic activity for the study and purification of regulatory factors for adenylate cyclase.  相似文献   

10.
The specific activity of adenylate cyclase in membrane preparations obtained from Rous Sarcoma virus-transformed chicken embryo fibroblasts is two to four times lower than that found in untransformed membranes. Adenylate cyclase was solubilized from normal and transformed membranes in order to evaluate the influence of the membrane phase on the properties of the enzyme. Adenylate cyclase in normal and transformed membranes differed in specific activity, V for ATP, activation entropies, sensitivity to Ca2+, and stability at 37 degrees C. Solubilization with Brij 96 abolished or greatly reduced these differences. These data suggest that the differences between adenylate cyclase activities in normal and transformed chicken embryo fibroblasts are due either to differential modulation of enzyme activity by an effector which requires intact membranes for its effects, or indirect effects due to altered membrane properties.  相似文献   

11.
The isoproterenol- and glucagon-stimulated adenylate cyclase activities in the myocardial membranes of hypertensive rat were consistantly lower as compared with normal controls. Addition of cytosolic fraction (100,000 xg supernatant) to the particulate preparation had an additive effect for glucagon and Gpp(NH)p stimulated enzyme activity and a synergistic effect for isoproterenol stimulation. Cytosolic fraction of normal control animals did not bring the adenylate cyclase activity in SHR equivalent to the control values. The basal and F?-stimulated enzyme activity of solubilized adenylate cyclase was reduced by about 30% in SHR as compared with WKY, which could be due to a decrease in the actual amount of adenylate cyclase in the myocardium of SHR.  相似文献   

12.
Liver plasma membranes isolated from hypophysectomized rats were treated with 0.1 M Lubrol-PX, a nonionic detergent, and centrifuged at 165,000 × g for 1 hour. Adenylate cyclase activity remaining in the supernate had a specific activity that was at least equal to that of the particulate enzyme. The activity of the solubilized, non-sedimentable adenylate cyclase, as well as the membrane bound enzyme, was increased by GTP, ITP, and GMP-PCP at 10?4 M. The activity of the solubilized, non-sedimentable enzyme increased linearly with GTP from 10?6 to 10?4 M but there was no further increase in the activity of the solubilized enzyme with 10?3 M GTP. In contrast, the particulate liver membrane enzyme activity increased exponentially with GTP from 10?6 to 10?4 M and was further increased by 10?3 M GTP. These data indicate that GTP, ITP or GMP-PCP have direct effects on solubilized adenylate cyclase. This effect is in addition to a role of nucleotides in modifying membrane structure (16).  相似文献   

13.
The subcellular localization of adenylate cyclase was examined in human skeletal muscle. Three major subcellular membrane fractions, plasmalemma, sarcoplasmic reticulum and mitochondria, were characterized by membrane-marker biochemical studies, by dodecyl sulfate polycrylamide gel electrophoresis and by electron microscopy. About 60% of the adenylate cyclase of the homogenate was found in the plasmalemmal fraction and 10–14% in the sarcoplasmic reticulum and mitochondria. When the plasmalemmal preparation was subjected to discontinuous sucrose gradients, the distribution of adenylate cyclase in different subfractions closely paralleled that of (Na+ + K+)-ATPase. The highest specific activity was found in a fraction which setteled at the 0.6–0.8 M sucrose interface. The electron microscopic study of this fraction revealed the presence of flattened sacs of variable sizes and was devoid of mitochondrial and myofibrillar material. The electron microscopy of each fraction supported the biochemical studies with enzyme markers. The three major membrane fractions also contained a low Km phosphodiesterase activity, the highest specific activity being associated with sarcoplasmic reticulum.The plasmalemmal adenylate cyclase was more sensitive to catecholamine stimulation than that associated with sarcoplasmic reticulum or mitochondria. The catecholamine-sensitive, but not the basal, enzyme was further stimulated by GTP. The plasmalemmal adenylate cyclase had typical Michaelis-Menten kinetics with respect to ATP and the apparent Km for ATP was approx. 0.3. mM. The pH optimum for that enzyme was 7.5. The enzyme required Mg2+, and the concentration to achieve half-maximal stimulation was approx. 3 mM. Higher concentrations of Mg2+ (about 10 mM) were inhibitory. Solubilization of the plasmalemmal membrane fraction with Lubrol-PX resulted in preferential extraction of 106 000- and 40 000-dalton protein components. The solubilized adenylate cyclase lost its sensitivity for catecholamine stimulation, and the extent of fluoride stimulation was reduced to one-sixth of that of the intact membranes. It is concluded that the catalytically active and hormone-sensitive adenylate cyclase is predominantly localized in the surface membranes of the cells within skeletal muscle. (That “plasmalemmal” fraction is considered likely to contain, in addition to plasmalemma of muscle cells, plasmalemma of bloodvessel cells (endothelium, and perhaps smooth muscle) which may be responsible for a certain amount of the adenylate cyclase activity and other propertiesobserved in that fraction.)The method of preparation used in this study provides a convenient material for evaluating the catecholamine-adenylate cyclase interactions in human skeletal muscle.  相似文献   

14.
Studies on the reaction kinetics and chromatographic properties of detergent-dispersed adenylate cyclase are described. Detergent-dispersed enzyme was prepared from whole rat cerebellum and from partially purified plasma membranes from rat liver. Data were simulated to fit kinetic models for which an inhibitor is added in constant proportion to the variable substrate. Models were chosen to distinguish whether the adenylate cyclase reaction may be controlled by an inhibitory action of free ATP?4 (or HATP?3) or by a stimulatory action of free divalent cations. The various kinetic models were then tested with the dispersed brain adenylate cyclase with both Mg++ and Mn++ and in two different buffer systems. The experimental data indicate that this enzyme has a distinct cation binding site, but exhibits no significant inhibition by HATP?3 or ATP?4. The detergent-dispersed adenylate cyclase both from liver plasma membranes and from brain have been chromatographed on anion exchange material and have been chromatographed on anion exchange material and have been subjected to gel filtration. The presence of detergent was required for elution of cyclase activity from DEAE-Sephadex but was not required when DEAE-agarose was used. Dispersed brain cyclase was also chromatographed on agarose-NH(CH2)3 NH(CH2)3-NH2 which exhibits both ionic and hydrophobic properties. Fifty percent of the applied activity was recovered with a fivefold increase in specific activity. The data suggest that the relative effectiveness of a given chromatographic procedure for detergent-dispersed adenylate cyclase may reflect the in fluence of both hydrophobic and ionic factors.  相似文献   

15.
Liver plasma membranes of hypophysectomized rats were purified, treated with 0.1 m Lubrol-PX and centrifuged at 165,000g for 1 h. The detergent solubilized 50% of the membrane protein; adenylate cyclase activity was present in the supernatant fraction. Optimal substrate concentration of the soluble enzyme was 0.32 mm ATP. Basal activity of 25 preparations of the solubilized enzyme ranged from 124 to 39 pmol cyclic AMP/mg protein/10 min. The solubilized enzyme retained the same sensitivity to activation by guanyl nucleotides as was present in the membrane preparation from which it was derived. Relative sensitivity of the solubilized enzyme with 0.1 mm nucleotides or -side was GDP > GTP > GMP > guanosine; GMP-PNP = GMP-PCP > ITP > GTP. GTP, GMP-PCP, GMP-PNP and other nucleotides were hydrolyzed by phosphohydrolases present in liver membranes that were solubilized with Lubrol-PX along with adenylate cyclase. The presence of the ATP regenerating system in the adenylate cyclase assay also aided in maintaining guanyl nucleotide concentrations. The degree of adenylate cyclase activation by guanyl nucleotides was not related to the sparing effects of nucleotides on substrate ATP hydrolysis. These findings demonstrate that activation of adenylate cyclase by nucleotides is a consequence of a nucleotide-enzyme interaction that is independent of membrane integrity.  相似文献   

16.
Adenylate cyclase activity measured by the formation of cyclic AMP in rat brain membranes was inhibited by a shellfish toxin, domoic acid (DOM). The inhibition of enzyme was dependent on DOM concentration, but about 50% of enzyme activity was resistant to DOM-induced inhibition. Rat brain supernatant resulting from 105,000×g centrifugation for 60 min, stimulated adenylate cyclase activity in membranes. Domoic acid abolished the supernatant-stimulated adenylate cyclase activity. The brain supernatant contains factors which modulate adenylate cyclase activity in membranes. The stimulatory factors include calcium, calmodulin, and GTP. In view of these findings, we examined the role of calcium and calmodulin in DOM-induced inhibition of adenylate cyclase in brain membranes. Calcium stimulated adenylate cyclase activity in membranes, and further addition of calmodulin potentiated calcium-stimulated enzyme activity in a concentration dependent manner. Calmodulin also stimulated adenylate cyclase activity, but further addition of calcium did not potentiate calmodulin-stimulated enzyme activity. These results show that the rat brain membranes contain endogenous calcium and calmodulin which stimulate adenylate cyclase activity. However, calmodulin appears to be present in membranes in sub-optimal concentration for adenylate cyclase activation, whereas calcium is present at saturating concentration. Adenylate cyclase activity diminished as DOM concentration was increased, reaching a nadir at about 1 mM. Addition of calcium restored DOM-inhibited adenylate cyclase activity to the control level. Similarly, EGTA also inhibited adenylate cyclase activity in brain membranes in a concentration dependent manner, and addition of calcium restored EGTA-inhibited enzyme activity to above control level. The fact that EGTA is a specific chelator of calcium, and that DOM mimicked adenylate cyclase inhibition by EGTA, indicate that calcium mediates DOM-induced inhibition of adenylate cyclase activity in brain membranes. While DOM completely abolished the supernatant-, and Gpp (NH)p-stimulated adenylate cyclase activity, it partly blocked calmodulin-, and forskolin-stimulated adenylate cyclase activity in brain membranes. These results indicate that DOM may interact with guanine nucleotide-binding (G) protein and/or the catalytic subunit of adenylate cyclase to produce inhibition of enzyme in rat brain membranes.  相似文献   

17.
Epinephrine, histamine and prostaglandin E1 stimulated adenylate cyclase activity in lung membranes and their stimulation of the enzyme activity was completely blocked by propranolol, metiamide and indomethacin, respectively. A partially-purified activator from the adult rat lung also enhanced adenylate cyclase activity in membranes. However, stimulation of adenylate cyclase by the rat lung activator was not abolished by the above receptor antagonists. Further, epinephrine, NaF and Gpp(NH)p stimulated adenylate cyclase activity rather readily, whereas stimulation of the enzyme activity by the lung activator was evident after an initial lag phase of 10 min. Also, the lung activator produced additive activation of adenylate cyclase with epinephrine, NaF and Gpp(NH)p. These results indicate that the lung activator potentiates adenylate cyclase activity in membranes by a mechanism independent from those known for epinephrine, NaF and Gpp(NH)p. Incubation of lung membranes for 30 min at 40°C resulted in a loss of adenylate cyclase activation by NaF and Gpp(NH)p. Addition of the released proteins to the heat-treated membranes did not restore the enzyme response to these agonists. However, heat treatment of lung membranes in the presence of 2-mercaptoethanol or dithiothreitol prevented the loss of adenylate cyclase response to NaF and Gpp (NH)p. N-ethylmaleimide abolished adenylate cyclase activation by epinephrine, NaF, Gpp(NH)p and the lung activator. These results indicate that the sulfhydryl groups are important for adenylate cyclase function in rat lung membranes.Abbreviations Gpp(NH)p 5-Guanylimidodiphosphate  相似文献   

18.
A comparison was made between the activation of membrane-bound adenylate cyclase from rat fat cell membranes and the enzyme solubilized with digitonin. The isoprenaline stimulation of the particulate enzyme was enhanced by GTP, both in the presence of Mg2+ and Mn2+, but no effect of the metal ion nor of GTP was found on the Ka of isoprenaline. The Ka of sodium fluoride for enzyme stimulation was shifted to 3-fold higher concentrations when Mg2+ was replaced by Mn2+, whereas V decreased. GTP did not influence the Ka of sodium fluoride but reduced V, irrespective of the metal ion. After digitonin solubilization the enzyme was no longer responsive to isoprenaline or GTP; however, V of the sodium fluoride activation was higher in the presence of Mn2+ than in the presence of Mg2+, and the Ka was found at 15-fold higher concentrations. Both the solubilized and the particulate adenylate cyclase were inhibited by adenosine; this inhibition was also seen with the fluoride stimulated enzyme. We conclude that solubilization with digitonin did not result in an enzyme preparation which preferentially turns over MnATP2+, although the fat cell adenylate cyclase possesses a metal ion regulatory site with a higher affinity for Mn2+ than for Mg2+. The data suggest that the guanyl nucleotide regulatory site and the sodium fluoride-sensitive site are located on different subunits while there is an interaction between the metal ion regulatory site and the fluoride-sensitive site.  相似文献   

19.
Hormonally sensitive adenylate cyclase has been solubilized from rat liver plasma membranes using Triton X-305 in Tris buffers containing mercaptoethanol and MgCl2. The solubilized enzyme was stimulated 5 fold by NaF, 7 fold by glucagon and 20 fold by epinephrine. Criteria for solubilization included lack of sedimentation at 100,000 × g for one hour, the absence of particulate material in the 100,000 × g supernatant when examined by electron microscopy, and inclusion of hormonally sensitive adenylate cyclase activity in Sephadex G 200 gels. The molecular weight of the solubilized, hormonally sensitive enzyme was approximately 200,000 in the presence of Triton X-305.  相似文献   

20.
In the presence of EGTA (ethyleneglycol-bis-(β-aminoethyl-ether) N,N′-tetraacetic acid), a Lubrol-PX solubilized rat brain adenylate cyclase (E.C. 4.4.1.1) and its protein activator were separated from each other in a Sephadex G-200 column. No activator was associated with the eluted enzyme, which required an exogenous activator for maximum activity. On the other hand, in the presence of Ca++, some of the activator was eluted with the enzyme, which was independent of an exogenous activator for maximum activity. Because neither Ca++ nor EGTA affected the elution profile of the activator in the filtration column, these results suggest that the formation of the enzyme-activator complex is dependent on Ca++. Separate experiments indicated that the effect of Ca++ on the formation of the enzyme-activator complex was immediate and reversible. Because the activator appears to be in excess of the enzyme, adenylate cyclase activityin vivo could be modulated by the cellular flux of Ca++.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号