首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Vermeglio  P. Joliot 《BBA》1984,764(2):226-232
Absorption changes, following a series of actinic flashes, linked to oxidoreduction states of ubiquinone, cytochrome ct together with the carotenoid bandshift, have been measured for intact cells of Rhodopseudomonas sphaeroides under aerobic conditions. Binary oscillations are observed for these different contributions: (1) about one molecule of ubisemiquinone and fully reduced quinone are formed on odd and even flashes, respectively; (2) cytochrome ct re-reduction is faster (t12 ≈ 50 ms) after an even number of flashes than after an odd number; (t12 ≈ 100 ms); (3) a slow-rising phase (t12 ≈ 5 ms, antimycin A-insensitive) of the carotenoid bandshift is observed after each even flash. These results are compared to the respiratory activity of the cells under flash excitation and discussed in relation to a model, in which respiratory and photosynthetic electron chains interact at the level of cytochrome c2 and where the terminal oxidase is supposed to have electrogenic properties.  相似文献   

2.
Mild proteolysis of Rhodopseudomonas capsulata chromatophores results in a parallel loss of the 800 nm bacteriochlorophyll absorption band and a blue shift in the carotenoid absorption bands associated with the B-800–850 light-harvesting complex. Both the light-induced and the salt-induced electrochromic carotenoid band shift disappear in parallel to the loss of the 800 nm bacteriochlorophyll absorption upon pronase treatment of chromatophores. During the time required for the loss of the 800 nm bacteriochlorophyll absorption and the loss of the electrochromic carotenoid band shift photochemistry is not inhibited and the ionic conductance of the membrane remains very low. We conclude that the carotenoid associated with the B-800–850 light-harvesting complex is the one that responds electrochromically to the transmembrane electric field. Analysis of the pigment content of Rps. capsulata chromatophores indicates that all of the carotenoid may be accounted for in the well defined pigment-protein complexes.  相似文献   

3.
N.P.J. Cotton  J.B. Jackson   《BBA》1984,767(3):618-626
(1) The cytoplasmic membrane potential (Δψ) of intact cells of Rhodopseudomonas capsulata, measured either from the uptake of butyltriphenylphosphonium cation or from the electrochromic carotenoid band shift, increased upon illumination (negative on the cytoplasmic side) and then, within the next 20 s, partly declined while the light was still on. In the presence of the F0 inhibitor venturicidin the light-induced Δψ was increased by 30% and the partial decline was abolished. (2) From the ionic current/Δψ curves for the bacterial membranes it was concluded that the slow, partial decline of Δψ after the onset of illumination was the result of an increase in membrane conductance. The conductance increase seen in the ionic current/Δψ curves was blocked by venturicidin suggesting that it was caused by increased proton flux through the ATP synthase. (3) Analysis of the light-induced changes in adenine nucleotide levels in intact bacterial cells showed that the apparent increase in ATP synthase activity was not the result of a decrease in phosphorylation potential. The data were consistent with either an increase in the catalytic activity of the ATP synthase or with an increase in H+ flux through the enzyme without a proportionate increase in the rate of phosphorylation (increased ‘slip’). (4) This slow change in the properties of the ATP synthase, as judged by the venturicidin-sensitive partial decline of Δψ, required a minimum initial value of Δψ. When Δψ was reduced, either by decreasing the actinic light intensity or by adding carbonylcyanide trifluoromethoxyphenylhydrazone the partial decline in Δψ was abolished. (5) The slow change in ATP synthase properties reversed upon darkening the bacterial cell suspension. A second illumination period shortly after the first elicited a smaller initial Δψ and a smaller Δψ decline. The relaxation of the ATP synthase in the dark was measured from the dependence of the initial increase in Δψ after the second illumination period upon the dark-time between the two illumination periods.  相似文献   

4.
Marc Symons  Christine Swysen 《BBA》1983,723(3):454-457
Measurements of pronase-induced shifts of the absorption spectrum and of the isobestic point of the light-induced difference spectrum of the carotenoids show that the pool responsible for the light-induced absorption changes in Rhodopseudomonas capsulata wild type is more sensitive to pronase treatment than the bulk carotenoids. The most likely explanation for this, in the context of the work of Kakitani et al. (Kakitani, T., Honig, B. and Crofts, A.R. (1982) Biophys. J. 39, 57–63), is that the field indicating carotenoids, or at least that part of the molecules which determines their spectral characteristics, are imbedded in the LHC II pigment-protein complexes, close to the membrane surface. The importance of the location of the carotenoids for the measurement of the electrical potential differences is briefly discussed.  相似文献   

5.
1. When cytochrome c2 is available for oxidation by the photosynthetic reaction centre, the decay of the carotenoid absorption band shift generated by a short flash excitation of Rhodopseudomonas capsulata chromatophores is very slow (half-time approximately 10 s). Otherwise the decay is fast (half-time approximately 1 s in the absence and 0.05 s in the presence of 1,10-ortho-phenanthroline) and coincides with the photosynthetic back reaction.2. In each of these situations the carotenoid shift decay, but not electron transport, may be accelerated by ioniophores. The ionophore concentration dependence suggests that in each case the carotenoid response is due to a delocalised membrane potential which may be dissipated either by the electronic back reaction or by electrophoretic ion flux.3. At high redox potentials, where cytochrome c2 is unavailable for photo-oxidation, electron transport is believed to proceed only across part of the membrane dielectric. Under such conditions it is shown that the driving force for carbonyl cyanide trifluoromethoxyphenyl hydrazone-mediated H+ efflux is nevertheless decreased by valinomycin/K+; demonstrating that the [BChl]2 → Q electron transfer generates a delocalised membrane potential.  相似文献   

6.
Shigeru Itoh 《BBA》1984,766(2):464-471
Large blue-shifts of carotenoid absorption bands were induced by dark addition of a hydrophobic anion, tetraphenylborate, in chromatophores and cell membranes of photosynthetic bacteria, Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata. Tetraphenylborate also induced a red-shift of the 850 nm absorption band and a blue-shift and broadening of the 800 nm band of bacteriochlorophyll. From the analysis of the relation between the magnitude and isosbestic wavelength of the absorbance changes the tetraphenylborate-induced carotenoid band shift were assumed to reflect the change of local electrical field close to each carotenoid molecule which exists as a minor pool on the light-harvesting pigment-protein complex II (LHC II). Absorbance changes of carotenoid and chlorophylls were also induced by tetraphenylborate in membranes of spinach chloroplasts.  相似文献   

7.
The amino-terminal sequences have been determined by Edman degradation for the reaction center polypeptides from a carotenoidless mutant of Rhodopseudomonas capsulata. Individual polypeptides were isolated by preparative electrophoresis and electroelution. By comparison with the sequences deduced from the DNA (Youvan, D.C., Alberti, M., Begush, H., Bylina, E.J. and Hearst, J.E. (1984) Proc. Natl. Acad. Sci. USA 81, 189–192) we conclude that the M and L subunits are processed so as to remove the amino-terminal methionine, whereas the H subunit is not processed at the amino-terminus after translation. None of the subunits is synthesized with a significant amino-terminal extension peptide.  相似文献   

8.
Changes in the surface potential, the electrical potential difference between the membrane surface and the bulk aqueous phase were measured with the carotenoid spectral shift which indicates the change of electrical field in the membrane. Chromatophores were prepared from a non-sulfur purple bacterium, Rhodopseudomonas sphaeroides, in a low-salt buffer. Surface potential was changed by addition of salt or by pH jump as predicted by the Gouy-Chapman diffuse double layer theory.When a salt was added at neutral pH, the shift of carotenoid spectrum to shorter wavelength, corresponding to an increase in electrical potential at the outside surface, was observed. The salts of divalent cations (MgSO4, MgCl2, CaCl2) were effective at concentrations lower than those of monovalent cation salts (NaCl, KCl, Na2SO4) by a factor of about 50. Among the salts of monoor divalent cation used, little ionic species-dependent difference was observed in the low-concentration range except that due to the valence of cations. The pH dependence of the salt-induced carotenoid change was explained in terms of the change in surface charge density, which was about 0 at pH 5–5.5 and had negative values at higher pH values. The dependence of the pH jump-induced absorbance change on the salt concentration was also consistent with the change in the charge density. The surface potential change by the salt addition, which was calibrated by H+ diffusion potential, was about 90 mV at the maximum. From the difference between the effective concentrations with salts of mono- and divalent cations at pH 7.8, the surface charge density of (?1.9 ± 0.5) · 10?3 elementary charge per Å2, and the surface potential of about ?100 mV in the presence of about 0.1 mM divalent cation or 5 mM monovalent cation were calculated.  相似文献   

9.
A. Vermeglio  J.M. Carrier 《BBA》1984,764(2):233-238
The inhibition of respiration by continuous or flashing light has been studied in intact cells of different species of photosynthetic bacteria. For Rhodopseudomonas palustris, Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata, the inhibition by short actinic flashes shows a remarkable periodicity of two: each flash induces an inhibition of respiration, but a stimulation is observed after an even number of flashes. On the other hand, no oscillation is observed for Rhodospirillum rubrum and Rhodopseudomonas viridis cells. These different behaviours are explained by a difference in the redox state of the secondary electron acceptor as shown by the effect of ortho-phenanthroline on the amperometric signal. Addition of uncouplers (carbonyl cyanide m-chlorophenylhydrazone) or of an ATPase inhibitor (tri-N-butyl tin), has little effect on the oscillatory pattern induced by flash excitation. However, inhibition of respiration by continuous light is suppressed in the presence of carbonyl cyanide m-chlorophenylhydrazone. In the presence of tri-N-butyl tin the steady-state level is reached more rapidly than in the control experiment for a given light intensity. These results are interpreted as evidence of two modes of light inhibition of respiration in photosynthetic bacteria. A first type of inhibition, clearly shown under flash excitation, is due to interaction between respiratory and photosynthetic chains at the level of electron carriers. After each flash, an electron is diverted from the respiratory chain to the photooxidized reaction center. Because of the gating mechanism at the level of the secondary acceptor, the respiration is stimulated after an even number of flashes. The second mode of inhibition prevails under continuous illumination. Under these conditions, the rate of respiration is controlled essentially by the photoinduced proton electrochemical gradient.  相似文献   

10.
(1) Three analogs of merocyanine dyes added to suspensions of chromatophore vesicles showed absorbance changes responding to the change in surface potential induced by salt addition and to the change in membrane potential induced by illumination. (2) The extent of the light-induced absorbance changes of the dyes was linearly related, in the presence and absence of uncouplers, to that of carotenoid spectral shift which is an intrinsic probe of the intramembrane electric field. (3) Comparison of the merocyanine absorbance changes induced by salt addition with those induced by illumination indicated that the surface potential change in the outer surface of chromatophore membranes during illumination was very small. (4) Judging from the spectra of these absorbance and from the low permeabilities of the dyes to membrane, the absorbance change are attributed to change in distribution of the dyes between the medium and the outer surface region in chromatophore membranes. The extent of the light-induced absorbance changes of merocyanine dyes depended on the salt concentration of the medium. The types of dependence were different among three merocyanine analogs. This is explained by the mechanism mentioned above assuming appropriate parameters. It is suggested that, under continuous illumination, an equilibrium of the electrochemical potential of H+ is reached between the bulk aqueous phase and the outer surface region in the membrane where the merocyanine dyes are distributed.  相似文献   

11.
Helwig Reidl  Jochen R. Golecki  Gerhart Drews   《BBA》1983,725(3):455-463
Cells of Rhodopseudomonas capsulata were grown in a turbido-stat and adapted to high (1400 W/m2) or low (40 W/m2) light intensities. In high-light-grown cells the specific BChl content was about 10-times lower, the number of intracytoplasmatic membrane vesicles smaller by a factor of about 20, the photosynthetic unit smaller by a factor of 1.9 and the reaction center content about 5-times lower than in low-light-grown cells. However, the photophosphorylation rate per reaction center under saturating light was higher in high-light-grown cells by a factor of 7.7, apparently compensating the lower amount of reaction centers. Adaptation of the cells to different irradiances not only seems to comprise a variation of the size and composition of the antennae, but also a change in the affinity of the photosynthetic system to light, as concluded from saturation curves obtained from the two adaptation stages of cells.  相似文献   

12.
A.J. Clark  N.P.J. Cotton  J.B. Jackson 《BBA》1983,723(3):440-453
(1) Under conditions in which membrane potential (Δψ) was the sole contributor to the proton-motive force, the steady-state rate of ATP synthesis in chromatophores increased disproportionately when Δψ was increased: the rate had an approximately sixth-power dependence on Δψ. (2) Simultaneous measurements showed that the dissipative ionic current (JDIS) across the chromatophore membrane had a related dependence on Δψ, i.e., the membrane conductance increased markedly as Δψ increased. (3) For comparable Δψ values, JDIS was greater in phosphorylating than in non-phosphorylating chromatophores. For comparable actinic light intensities, Δψ was smaller in phosphorylating than in non-phosphorylating chromatophores. (4) At either low pH or in the presence of venturicidin, oligomycin or dicyclohexylcarbodiimide to inhibit ATP synthesis, JDIS was substantially depressed, particularly at high Δψ. Even under these conditions the membrane conductance was dependent on Δψ. (5) Also in intact cells, JDIS was depressed in the presence of venturicidin. Points 1–5 are interpreted in terms of a Δψ -driven H+ flux through the F0 channel of the ATPase synthase. The high-power dependence of the F0 conductance on Δψ determines the dependence of the rate of ATP synthesis on Δψ. The Δψ -dependent conductance of F0 dominates the electrical properties of the membrane. In chromatophores the ionic current accompanying ATP synthesis was more than 50% of the total membrane ionic current at maximal Δψ. (6) The rate of cyclic electron transport was calculated from JDIS. This led to an estimate of 0.77 ± 0.22 for the ATP2e? ratio and of 3.5 ± 1.3 for the H+ATP ratio. (7) Severe inhibition of the electron-transport rate by decreasing the light intensity led to an almost proportionate decrease in the rate of ATP synthesis. The chromatophores were able to maintain proportionality by confining electron-transport phosphorylation to a narrow range of Δψ. This is a consequence of the remarkable conductance properties of the membrane.  相似文献   

13.
The carotenoid-less reaction centers isolated from Rhodopseudomonas sphaeroides (strain R 26) bind pure all-trans spheroidene as well as spheroidenone in a nearly 1:1 molar ratio with respect to P-870. Neither β-carotene nor spirilloxanthin, both absent from wild-type Rps. sphaeroides, could be bound in appreciable amounts. Resonance Raman spectra of the carotenoidreaction center complex indicate that the carotenoid is bound as a cis isomer, its conformation being very close, although probably not identical, to that assumed by the carotenoid in the wild-type reaction centers. The electronic absorption spectra of the carotenoid-reaction center complexes are in good agreement with such a interpretation. When bound to the R 26 reaction centers, spheroidene displays light-induced absorbance changes identical in peak wavelengths and comparable in amplitudes to those observed in the wild-type reaction centers. Thus the binding of the carotenoid to the R 26 reaction centers most likely occurs at the same proteic site as in the wild-type reaction centers. This site shows selectivity towards the nature of carotenoids, and has the same sterical requirement as in the wild type, leading to the observed all-trans to cis isomerisation.  相似文献   

14.
The changes in carotenoid absorbance induced by illumination or by a diffusion potential were larger in chromatophores from cells cultured under low light intensity than those in chromatophores from high-light culture in a photosynthetic bacterium, Rhodopseudomonas sphaeroides. The carotenoid molecules which are associated with the pigment-protein complex (with the infrared bacteriochlorophyll peaks at 800 and 850 nm) (complex II) probably respond to the electrical field changes in the chromatophore membrane.  相似文献   

15.
A soluble ferredoxin was purified from the photosynthetic bacterium Rhodopseudomonas capsulata and characterized. Unlike Rhodospirillum rubrum, where two soluble ferredoxins have been found, only a single species was found in Rps. capsulata. The amino acid composition, ultraviolet-visible spectral properties, molecular weight (12000) and biological activity were determined. The ultraviolet-visible spectrum is similar to that of other bacterial ferredoxins, with a maximum when oxidized at 380 nm (? = 26.1 · 103 M-1 · cm-1). The possible roles of this ferredoxin in the cellular metabolism are discussed.  相似文献   

16.
The time-course of fluorescence from reaction centers isolated from Rhodopseudomonas sphaeroides was measured using single-photon counting techniques. When electron transfer is blocked by the reduction of the electron-accepting quinones, reaction centers exhibit a relatively long-lived (delayed) fluorescence due to back reactions that regenerate the excited state (P*) from the transient radical-pair state, PF. The delayed fluorescence can be resolved into three components, with lifetimes of 0.7, 3.2 and 11 ns at 295 K. The slowest component decays with the same time-constant as the absorbance changes due to PF, and it depends on both temperature and magnetic fields in the same way that the absorbance changes do. The time-constants for the two faster components of delayed fluorescence are essentially independent of temperature and magnetic fields. The fluorescence also includes a very fast (prompt) component that is similar in amplitude to that obtained from unreduced reaction centers. The prompt fluorescence presumably is emitted mainly during the period before the initial charge-transfer reaction creates PF from P*. From the amplitudes of the prompt and delayed fluorescence, we calculate an initial standard free-energy difference between P* and PF of about 0.16 eV at 295 K, and 0.05 eV at 80 K, depending somewhat on the properties of the solvent. The multiphasic decay of the delayed fluorescence is interpreted in terms of relaxations in the free energy of PF with time, totalling about 0.05 eV at 295 K, possibly resulting from nuclear movements in the electron-carriers or the protein.  相似文献   

17.
Optical and structural properties of the B875 light-harvesting complex of purple bacteria were examined by measurements of low-temperature circular dichroism (CD) and excitation spectra of fluorescence polarization. In the B875 complex isolated from wild-type Rhodopseudomonas sphaeroides, fluorescence polarization increased steeply across the long-wavelength Qy bacteriochlorophyll a (BChl) absorption band at both 4 and approx. 300 K. With the native complex in the photosynthetic membranes of Rhodospirillum rubrum and Rps. sphaeroides wild-type and R26-carotenoidless strains, this significant increase in polarization from 0.12 to 0.40 was only observed at low temperature. A polarization of ?0.2 was observed upon excitation in the Qx BChl band. The results indicate that about 15% of the BChl molecules in the complex absorb at wavelengths about 12 nm longer than the other BChls. All BChls have approximately the same orientation with their Qy transition dipoles essentially parallel and their Qx transitions perpendicular to the plane of the membrane. At low temperature, energy transfer to the long-wavelength BChls is irreversible, yielding a high degree of polarization upon direct excitation, whereas at room temperature a partial depolarization of fluorescence by energy transfer between different subunits occurs in the membrane, but not in the isolated complex. CD spectra appear to reflect the two spectral forms of B875 BChl in Rps. sphaeroides membranes. They also reveal structural differences between the complexes of Rps. sphaeroides and Rhs. rubrum, in both BChl and carotenoid regions. The CD spectrum of isolated B875 indicates that the interactions between the BChls but not the carotenoids are altered upon isolation.  相似文献   

18.
H.-J. Apell  M. Snozzi  R. Bachofen 《BBA》1983,724(2):258-277
(1) Reaction center-lipid complexes were extracted into octane solutions. Different methods for generating an assymetric membrane distribution of reaction centers are discussed, which allow the measurement of electrical signals upon illumination. (2) The dichroism of the chromophoric groups in the reaction centers was investigated in planar lipid bilayers and the angle β between each transition moment and the normal to the membrane could be determined to be β(757 nm) = 29.5 ± 1.2, β(801 nm) = 34 ± 1.0 and β(860 nm) = 41.3 ± 0.9°. (3) The kinetics of the reaction centers from Rhodopseudomonas sphaeroides were analysed by electrical measurements and the relevant rate constants could be determined. In addition, the interaction between reaction centers and the intramembrane, ubiquinone-containing pool was investigated and described in a kinetic model. (4) The interaction between the electron-donating ferrocytochromes exhibited two distinguishable sources, a fast accessible, membrane-bound pool, which is limited by diffusion, and a pool consisting of an aqueous solution of ferrocytochrome c, which is accessible with a slower rate constant.  相似文献   

19.
Carotenoid biosynthesis in many purple photosynthetic bacteria of the Rhodospirillaceae is inhibited by nicotine, and biosynthetic intermediates accumulate. If the inhibitor is removed and the bacteria are then incubated in buffered 99.6% deuterium oxide, deuterium is incorporated specifically into the C-2 position in both cyclic and acyclic carotenoids that are then formed from the previously accumulated hydrocarbon precursors. The deuterated molecular species can be detected and assayed by mass spectrometry. By use of this procedure, direct proof has been obtained for the conversion of lycopene into β-carotene and rhodopin in Rhodomicrobium vannielii, of neurosporene into spheroidene in Rhodopseudomonas sphaeroides and of spheroidene into hydroxyspheroidene in Rps. gelatinosa. The results confirm the operation of the biosynthetic pathways postulated for these organisms, and prove that formation of the acyclic 1-hydroxy-1,2-dihydro end-group characteristic of the carotenoids of photosynthetic bacteria occurs by addition of water to the C-1,2 double band.  相似文献   

20.
Bacterial photosynthetic reaction centers from Rhodopseudomonas sphaeroides have been spread on an air/aqueous interface, compressed, and transferred quantitatively to either glass or transparent, tin oxide-coated slides. These assemblies permit the concomitant measurement of both optical and electrical activities to be made on protein films under voltage-clamp conditions. Optical spectra of the monolayer-coated slides reveal characteristic reaction center absorptions. Linear dichroism spectra of the monolayers indicate that the reaction center is aligned on the air/aqueous interface with an angle of inclination which is essentially the same as it is with respect to the membrane plane in vivo. The kinetics of the light-induced absorbance changes of the reaction center in the deposited films are essentially unaltered from those in solution; however, there is some loss in the extent of photochemical activity. Measurement of the light-induced electrical transients shows capacitative charging and discharging currents, which can be readily associated with the reaction center bacteriochlorophyll dimer to ubiquinone electron transfer. The extent of the photochemical activity detected by the voltage-clamp is at best only 10–12% of that measured by optical assay. This suggests that on the air/aqueous interface, the reaction centers must be predominately oriented with opposing directions of electron transfer, having only a slight, variable tendency to align with the ubiquinone directed toward the aqueous phase. In spite of the present shortcomings, these assemblies appear to be uniquely useful to study the effect of clamped potentials on the kinetics and mechanisms of electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号