首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
c-Src is a non-receptor tyrosine kinase that associates with both the plasma membrane and endosomal compartments. In many human cancers, especially breast cancer, c-Src and the EGF receptor (EGFR) are overexpressed. Dual overexpression of c-Src and EGFR correlates with a Src-dependent increase in activation of EGFR, and synergism between these two tyrosine kinases increases the mitogenic activity of EGFR. Despite extensive studies of the functional interaction between c-Src and EGFR, little is known about the interactions in the trafficking pathways for the two proteins and how that influences signaling. Given the synergism between c-Src and EGFR, and the finding that EGFR is internalized and can signal from endosomes, we hypothesized that c-Src and EGFR traffic together through the endocytic pathway. Here we use a regulatable c-SrcGFP fusion protein that is a bona fide marker for c-Src to show that c-Src undergoes constitutive macropinocytosis from the plasma membrane into endocytic compartments. The movement of c-Src was dependent on its tyrosine kinase activity. Stimulation of cells with EGF revealed that c-Src traffics into the cell with activated EGFR and that c-Src expression and kinase activity prolongs EGFR activation. Surprisingly, even in the absence of EGF addition, c-Src expression induced activation of EGFR and of EGFR-mediated downstream signaling targets ERK and Shc. These data suggest that the synergy between c-Src and EGFR also occurs as these two kinases traffic together, and that their co-localization promotes EGFR-mediated signaling.  相似文献   

2.
Cdc42-associated tyrosine kinase 1 (ACK1) is a specific down-stream effector of Cdc42, a Rho family small G-protein. Previous studies have shown that ACK1 interacts with clathrin heavy chain and is involved in clathrin-coated vesicle endocytosis. Here we report that ACK1 interacted with epidermal growth factor receptor (EGFR) upon EGF stimulation via a region at carboxy terminus that is highly homologous to Gene-33/Mig-6/RALT. The interaction of ACK1 with EGFR was dependent on the kinase activity or tyrosine phosphorylation of EGFR. Immunofluorescent staining using anti-EGFR and GFP-ACK1 indicates that ACK1 was colocalized with EGFR on EEA-1 positive vesicles upon EGF stimulation. Suppression of the expression of ACK1 by ACK-RNAi inhibited ligand-induced degradation of EGFR upon EGF stimulation, suggesting that ACK1 plays an important role in regulation of EGFR degradation in cells. Furthermore, we identified ACK1 as an ubiquitin-binding protein. Through an ubiquitin-association (Uba) domain at the carboxy terminus, ACK1 binds to both poly- and mono-ubiquitin. Overexpression of the Uba domain-deletion mutant of ACK1 blocked the ligand-dependent degradation of EGFR, suggesting that ACK1 regulates EGFR degradation via its Uba domain. Taken together, our studies suggest that ACK1 senses signal of EGF and regulates ligand-induced degradation of EGFR.  相似文献   

3.
Activated epidermal growth factor receptor (EGFR) continues to signal in the early endosome, but how this signaling process is regulated is less well understood. Here we describe a protein complex consisting of TIP30, endophilin B1, and acyl-CoA synthetase long chain family member 4 (ACSL4) that interacts with Rab5a and regulates EGFR endocytosis and signaling. These proteins are required for the proper endocytic trafficking of EGF-EGFR. Knockdown of TIP30, ACSL4, endophilin B1, or Rab5a in human liver cancer cells or genetic knock-out of Tip30 in mouse primary hepatocytes results in the trapping of EGF-EGFR complexes in early endosomes, leading to delayed EGFR degradation and prolonged EGFR signaling. Furthermore, we show that Rab5a colocalizes with vacuolar (H(+))-ATPases (V-ATPases) on transport vesicles. The TIP30 complex facilitates trafficking of Rab5a and V-ATPases to EEA1-positive endosomes in response to EGF. Together, these results suggest that this TIP30 complex regulates EGFR endocytosis by facilitating the transport of V-ATPases from trans-Golgi network to early endosomes.  相似文献   

4.
Many different intercellular signaling pathways are known but, for most, it is unclear whether they can generate oscillating cell behaviors. Here we use time-lapse analysis of Drosophila embryogenesis to show that oenocytes delaminate from the ectoderm in discrete bursts of three. This pulsatile process has a 1 hour period, occurs without cell division, and requires a localized EGF receptor (EGFR) response. High-threshold EGFR targets are sequentially activated in rings of three cells, prefiguring the temporal pattern of delamination. Surprisingly, widespread misexpression of the relevant activating ligand, Spitz, is compatible with robust delamination pulses. Moreover, although Spitz ligand becomes limiting after only two pulses, artificially prolonging its secretion generates up to six additional cycles, revealing a rhythmic underlying mechanism. These findings illustrate how intercellular signaling and cell movements can generate multiple cycles of a cell behavior, despite individual cells experiencing only one cycle of receptor activation.  相似文献   

5.
Wu W  Sun Z  Wu J  Peng X  Gan H  Zhang C  Ji L  Xie J  Zhu H  Ren S  Gu J  Zhang S 《PloS one》2012,7(1):e29920
c-Src activates Ras-MAPK/ERK signaling pathway and regulates cell migration, while trihydrophobin 1 (TH1) inhibits MAPK/ERK activation and cell migration through interaction with A-Raf and PAK1 and inhibiting their kinase activities. Here we show that c-Src interacts with TH1 by GST-pull down assay, coimmunoprecipitation and confocal microscopy assay. The interaction leads to phosphorylation of TH1 at Tyr-6 in vivo and in vitro. Phosphorylation of TH1 decreases its association with A-Raf and PAK1. Further study reveals that Tyr-6 phosphorylation of TH1 reduces its inhibition on MAPK/ERK signaling, enhances c-Src mediated cell migration. Moreover, induced tyrosine phosphorylation of TH1 has been found by EGF and estrogen treatments. Taken together, our findings demonstrate a novel mechanism for the comprehensive regulation of Ras/Raf/MEK/ERK signaling and cell migration involving tyrosine phosphorylation of TH1 by c-Src.  相似文献   

6.
The recently identified vascular endothelial growth factor C (VEGF-C) belongs to the platelet-derived growth factor (PDGF)/VEGF family of growth factors and is a ligand for the endothelial-specific receptor tyrosine kinases VEGFR-3 and VEGFR-2. The VEGF homology domain spans only about one-third of the cysteine-rich VEGF-C precursor. Here we have analysed the role of post-translational processing in VEGF-C secretion and function, as well as the structure of the mature VEGF-C. The stepwise proteolytic processing of VEGF-C generated several VEGF-C forms with increased activity towards VEGFR-3, but only the fully processed VEGF-C could activate VEGFR-2. Recombinant 'mature' VEGF-C made in yeast bound VEGFR-3 (K[D] = 135 pM) and VEGFR-2 (K[D] = 410 pM) and activated these receptors. Like VEGF, mature VEGF-C increased vascular permeability, as well as the migration and proliferation of endothelial cells. Unlike other members of the PDGF/VEGF family, mature VEGF-C formed mostly non-covalent homodimers. These data implicate proteolytic processing as a regulator of VEGF-C activity, and reveal novel structure-function relationships in the PDGF/VEGF family.  相似文献   

7.
8.
Activation of peroxisome proliferator-activated receptor alpha (PPARalpha) leads to hepatocellular proliferation and liver carcinomas. The early events mediating these effects are unknown. A novel mechanism by which PPARalpha regulates gene expression and hepatocellular proliferation was uncovered. MicroRNA (miRNA) expression profiling demonstrated that activated PPARalpha was a major regulator of hepatic miRNA expression. Of particular interest, let-7C, an miRNA important in cell growth, was inhibited following 4-h treatment and 2-week and 11-month sustained treatment with the potent PPARalpha agonist Wy-14,643 in wild-type mice. let-7C was shown to target c-myc via direct interaction with the 3' untranslated region of c-myc. The PPARalpha-mediated induction of c-myc via let-7C subsequently increased expression of the oncogenic mir-17-92 cluster; these events did not occur in Pparalpha-null mice. Overexpression of let-7C decreased c-myc and mir-17 and suppressed the growth of Hepa-1 cells. Furthermore, using the human PPARalpha-expressing mouse model, which is responsive to Wy-14,643 effects on beta-oxidation and serum triglycerides but resistant to hepatocellular proliferation and tumorigenesis, we demonstrated a critical role for let-7C in liver oncogenesis. Wy-14,643 treatment did not inhibit let-7C or induce c-myc and mir-17 expression. These observations reveal a let-7C signaling cascade critical for PPARalpha agonist-induced liver proliferation and tumorigenesis.  相似文献   

9.
The activation state of the EGF receptor (EGF-R) is tightly controlled in the cell so as to prevent excessive signalling, with the dangerous consequences that this would have on cell growth and proliferation. This control occurs at different levels, with a key level being the trafficking and degradation of the EGF-R itself. Multiple guanosine triphosphatases belonging to the Arf, Rab and Rho families and their accessory proteins have key roles in these processes. In this study, we have identified ARAP1, a multidomain protein with both Arf GTPase-activating protein (GAP) and Rho GAP activities, as a novel component of the machinery that controls the trafficking and signalling of the EGF-R. We show that ARAP1 localizes to multiple cell compartments, including the Golgi complex, as previously reported, and endosomal compartments, where it is enriched in the internal membranes of multivesicular bodies. ARAP1 distribution is controlled by its phosphorylation and by its interactions with the 3- and 4-phosphorylated phosphoinositides through its five PH domains. We provide evidence that ARAP1 controls the late steps of the endocytic trafficking of the EGF-R, with ARAP1 knockdown leading to EGF-R accumulation in a sorting/late endosomal compartment and to the inhibition of EGF-R degradation that is accompanied by prolonged signalling.  相似文献   

10.
Differing spatial scales of signaling cascades are critical for cell orientation during chemotactic responses. We used biotin EGF bound to streptavidin-coupled magnetic beads to locally stimulate cells overexpressing the EGF receptor. We have found that EGF-induced actin polymerization remains localized even under conditions of receptor overexpression. Conversely, EGF-induced ERK activation spreads throughout the cell body after EGF bead stimulation. The localized actin polymerization is independent of PI3-kinase and rho protein activity and requires Arp2/3 complex and cofilin function. Thus, we find differing spatial scales of signaling from the EGF receptor, supporting models of chemotaxis that integrate short- and long-range signaling.  相似文献   

11.
12.
The ERK signaling cascade is a central MAPK pathway that plays a role in the regulation of various cellular processes such as proliferation, differentiation, development, learning, survival and, under some conditions, also apoptosis. The ability of this cascade to regulate so many distinct, and even opposing, cellular processes, raises the question of signaling specificity determination by this cascade. Here we describe mechanisms that cooperate to direct MEK-ERK signals to their appropriate downstream destinations. These include duration and strength of the signals, interaction with specific scaffolds, changes in subcellular localization, crosstalk with other signaling pathways, and presence of multiple components with distinct functions in each tier of the cascade. Since many of the mechanisms do not function properly in cancer cells, understanding them may shed light not only on the regulation of normal cell proliferation, but also on mechanisms of oncogenic transformation.  相似文献   

13.
Cell surface tyrosine kinase receptors are subject to a rapid activation by their ligand, which is followed by secondary regulatory processes. The IHE2 cell line is a unique model system to study the regulation of EGF binding to EGF receptors after activation of the EGF receptor kinase. IHE2 cells express both a chimeric insulin-EGF receptor kinase (IER) and a kinase-deficient EGF receptor (HER K721A). We have previously reported that IER is an insulin-responsive EGF receptor tyrosine kinase that activates one or several serine/threonine kinases, which in turn phosphorylate(s) the unoccupied HER K721A. In this article we show that insulin through IER activation induces a decrease in 125I-EGF binding to IHE2 cells. Scatchard analysis indicates that, as for TPA, the effect of insulin can be accounted for by a loss of the high affinity binding of EGF to HER K721A. Since this receptor transmodulation persists in protein kinase C downregulated IHE2 cells, it is likely to be due to a mechanism independent of protein kinase C activation. Using an in vitro system of 125I-EGF binding to transmodulated IHE2 membranes, we illustrate that the inhibition of EGF binding induced by IER activation is related to the phosphorylation state of HER K721A. Further, studies with phosphatase 2A, or at a temperature (4 degrees C) where only IER is functional, strongly suggest that the loss of high affinity EGF binding is related to the serine/threonine phosphorylation of HER K721A after IER activation. Our results provide evidence for a "homologous desensitization" of EGF receptor binding after activation of the EGF receptor kinase of the IER receptor.  相似文献   

14.
Recent years have witnessed tremendous growth in the epidermal growth factor (EGF) family of peptide growth factors and the ErbB family of tyrosine kinases, the receptors for these factors. Accompanying this growth has been an increased appreciation for the roles these molecules play in tumorigenesis and in regulating cell proliferation and differentiation during development. Consequently, a significant question has been how diverse biological responses are specified by these hormones and receptors. Here we discuss several characteristics of hormone-receptor interactions and receptor coupling that contribute to specificity: 1) a single EGF family hormone can bind multiple receptors; 2) a single ErbB family receptor can bind multiple hormones; 3) there are three distinct functional groups of EGF family hormones; 4) EGF family hormones can activate receptors in trans, and this heterodimerization diversifies biological responses; 5) ErbB3 requires a receptor partner for signaling; and 6) ErbB family receptors differentially couple to signaling pathways and biological responses. BioEssays 20:41–48, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

15.
16.
17.
18.
Li X  Huang Y  Jiang J  Frank SJ 《Cellular signalling》2008,20(11):2145-2155
Epidermal growth factor (EGF) signaling is critical in normal and aberrant cellular behavior. Extracellular signal-regulated kinase (ERK) mediates important downstream aspects of EGF signaling. Additionally, EGFR undergoes MEK1-dependent ERK consensus site phosphorylation in response to EGF or cytokines such as growth hormone (GH) and prolactin (PRL). GH- or PRL-induced EGFR phosphorylation alters subsequent EGF-induced EGFR downregulation and signal characteristics in an ERK-dependent fashion. We now use reconstitution to study mutation of the sole EGFR ERK phosphorylation consensus residue, (669)T. CHO-GHR cells, which lack EGFR and express GHR, were stably transfected to express human wild-type or T669A ((669)T changed to alanine) EGFRs at similar abundance. Treatment of cells with GH or EGF caused phosphorylation of WT, but not T669A EGFR, in an ERK activity-dependent fashion that was detected with an antibody that recognizes phosphorylation of ERK consensus sites, indicating that (669)T is required for this phosphorylation. Notably, EGF-induced downregulation of EGFR abundance was much more rapid in cells expressing EGFR T669A vs. WT EGFR. Further, pretreatment with the MEK1/ERK inhibitor PD98059 enhanced EGF-induced EGFR loss in cells expressing WT EGFR, but not EGFR T669A, suggesting that the ERK-dependent effects on EGFR downregulation required phosphorylation of (669)T. In signaling experiments, EGFR T669A displayed enhanced acute (15 min) EGFR tyrosine phosphorylation (reflecting EGFR kinase activity) compared to WT EGFR. Further, acute EGF-induced ubiquitination of WT EGFR was markedly enhanced by PD98059 pretreatment and was increased in EGFR T669A-expressing cells independent of PD98059. These signaling data suggest that ERK-mediated (669)T phosphorylation negatively modulates EGF-induced EGFR kinase activity. We furthered these investigations using a human fibrosarcoma cell line that endogenously expresses EGFR and ErbB-2 and also harbors an activating Ras mutation. In these cells, EGFR was constitutively detected with the ERK consensus site phosphorylation-specific antibody and EGF-induced EGFR downregulation was modest, but was substantially enhanced by pretreatment with MEK1/ERK inhibitor. Collectively, these data indicate that ERK activity, by phosphorylation of a threonine residue in the EGFR juxtamembrane cytoplasmic domain, modulates EGFR trafficking and signaling.  相似文献   

19.
Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor cells through stages of increasing differentiation are poorly understood, and their elucidation will provide key insights into normal and dysregulated nephrogenesis, as well as into regenerative processes that follow kidney injury. In this study, we found that the mouse CITED1(+) progenitor compartment is maintained in response to receptor tyrosine kinase (RTK) ligands that activate both FGF and EGF receptors. This RTK signaling function is dependent on RAS and PI3K signaling but not ERK. In vivo, RAS inactivation by expression of sprouty 1 (Spry1) in CITED1(+) nephron progenitors results in loss of characteristic molecular marker expression and in increased death of progenitor cells. Lineage tracing shows that surviving Spry1-expressing progenitor cells are impaired in their subsequent epithelial differentiation, infrequently contributing to epithelial structures. These findings demonstrate that the survival and developmental potential of cells in the earliest embryonic nephron progenitor cell compartment are dependent on FGF/EGF signaling through RAS.  相似文献   

20.
Alpha-synuclein (α-Syn) is a major component of Lewy bodies, a pathological feature of Parkinson's and other neurodegenerative diseases collectively known as synucleinopathies. Among the possible mechanisms of α-Syn-mediated neurotoxicity is interference with cytoprotective pathways such as insulin signaling. Insulin receptor substrate (IRS)-1 is a docking protein linking IRs to downstream signaling pathways such as phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (S6K)1; the latter exerts negative feedback control on insulin signaling, which is impaired in Alzheimer's disease. Our previous study found that α-Syn overexpression can inhibit protein phosphatase (PP)2A activity, which is involved in the protective mechanism of insulin signaling. In this study, we found an increase in IRS-1 phosphorylation at Ser636 and decrease in tyrosine phosphorylation, which accelerated IRS-1 turnover and reduced insulin-Akt signaling in α-Syn-overexpressing SK-N-SH cells and transgenic mice. The mTOR complex (C)1/S6K1 blocker rapamycin inhibited the phosphorylation of IRS-1 at Ser636 in cells overexpressing α-Syn, suggesting that mTORC1/S6K1 activation by α-Syn causes feedback inhibition of insulin signaling via suppression of IRS-1 function. α-Syn overexpression also inhibited PP2A activity, while the PP2A agonist C2 ceramide suppressed both S6K1 activation and IRS-1 Ser636 phosphorylation upon α-Syn overexpression. Thus, α-Syn overexpression negatively regulated IRS-1 via mTORC1/S6K1 signaling while activation of PP2A reverses this process. These results provide evidence for a link between α-Syn and IRS-1 that may represent a novel mechanism for α-Syn-associated pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号