首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The hypothalamus plays an important role in the regulation of feeding behavior, energy metabolism and reproduction. A novel peptide containing 60 amino acid peptide and a non-amidated C-terminus is produced in the hypothalamic arcuate nucleus (ARC) and has been named galanin-like peptide (GALP) on the basis of a portion of this peptide being homologous with galanin. It acts in the central nervous system (CNS), where it is involved in the regulation of feeding behavior. GALP-producing neurons make neuronal networks with several feeding related peptide-producing neurons. Since GALP is involved in the control of food intake and energy balance, it is possible that it plays an important role in the development of obesity. Furthermore, GALP regulates plasma lateral hypothalamus (LH) levels via the activation of gonadotropin-releasing hormone (GnRH)-producing neurons, suggesting that GALP is active in the reproductive system. Thus, interesting findings on the roles of GALP have made across a number of physiological systems. This review will attempt to summarize the research carried out to date on these areas. Because GALP may be involved in feeding behavior, energy metabolism and reproduction, further studies on the morphology and function of GALP-containing neurons in the CNS should increase our understanding of the role of GALP in brain function.  相似文献   

2.
Galanin-like peptide (GALP) is a novel orexigenic neuropeptide that is recently isolated from the porcine hypothalamus. GALP-containing neurons predominantly locate in the hypothalamic arcuate nucleus (ARC). The expression of GALP mRNA within the ARC is increased after the administration of leptin. GALP-containing neurons express leptin receptor and contain alpha-melanocyte-stimulating hormone. We have recently reported that neuropeptide Y (NPY)- and orexin-containing axon terminals are in close apposition with GALP-containing neurons in the ARC. In addition, GALP-containing neurons express orexin-1 receptor (OX1-R). Thus, GALP may function under the influence of leptin and orexin. However, the target neurons of GALP have not yet been clarified. To clarify the neuronal interaction between GALP-containing and other feeding regulating neurons, double-immunostaining method using antibodies against GALP- and orexin- or melanin-concentrating hormone (MCH) was performed in the rat lateral hypothalamus (LH). GALP-immunoreactive fibers appeared to project to the LH around the fornix. They were also found from the rostral to the caudal part of the ARC, paraventricular nucleus (PVH), stria terminalis (BST), medial preoptic area (MPA), and lateral septal nucleus (LSV). Moreover, GALP-like immunoreactive nerve fibers were directly contacted with orexin- and melanin-concentrating hormone (MCH)-like immunoreactive neurons in the LH. Our findings strongly suggest that GALP-containing neurons interact with orexin- and/or MCH-containing neurons in the lateral hypothalamus and that it participates in the regulation of feeding behavior in harmony with other feeding-regulating neurons in the hypothalamus.  相似文献   

3.
The hypothalamic neuropeptides modulate physiological activity via G protein-coupled receptors (GPCRs). Galanin-like peptide (GALP) is a 60 amino acid neuropeptide that was originally isolated from porcine hypothalamus using a binding assay for galanin receptors, which belong to the GPCR family. GALP is mainly produced in neurons in the hypothalamic arcuate nucleus. GALP-containing neurons form neuronal networks with several other types of peptide-containing neurons and then regulate feeding behavior and energy metabolism. In rats, the central injection of GALP produces a dichotomous action that involves transient hyperphasia followed by hypophasia and a reduction in body weight, whereas, in mice, it has only one action that reduces both food intake and body weight. In the present minireview, we discuss current evidence regarding the function of GALP, particularly in relation to feeding and energy metabolism. We also examine the effects of GALP activity on food intake, body weight and locomotor activity after intranasal infusion, a clinically viable mode of delivery. We conclude that GALP may be of therapeutic value for obesity and life-style-related diseases in the near future.  相似文献   

4.
Galanin-like peptide (GALP) is a novel peptide which is isolated from the porcine hypothalamus. GALP-containing neurons are present in the arcuate nucleus (ARC), being particularly densely concentrated in medial posterior regions. To observe the ultrastructure and synaptic relationships of GALP-containing neurons in the ARC, light and immunoelectron microscopy techniques were used. At the light microscope level, GALP-containing neurons were observed distributed rostrocaudally throughout the ARC, with the majority present in the posterior, periventricular zones. At the electron microscope level, many immunopositive dense-cored vesicles were evident in the perikarya, dendrites and axon terminals of the GALP-containing neurons. Furthermore, these neurons received synapses from immunonegative axon terminals that were symmetric in the case of synapses made on perikarya, and both asymmetric and symmetric for synapses made on dendrites. Axon terminals of GALP-containing neurons often made synapses on immunonegative dendrites. Such synapses were all symmetric. Synapses were also found between axon terminals and perikarya as well as dendrites of GALP-containing neurons. These findings suggest that the physiological role of the GALP-containing neurons in the ARC is based on complex synaptic relationships between GALP-containing neurons and either GALP-immunopositive or -immunonegative neurons.  相似文献   

5.
Galanin-like peptide (GALP), commonly known as an appetite-regulating peptide, has been shown to increase plasma luteinizing hormone (LH) through luteinizing hormone-releasing hormone (LHRH). This led us to investigate, using both light and electron microscopy, whether GALP-containing neurons in the rat brain make direct inputs to LHRH-containing neurons. As LHRH-containing neurons are very difficult to demonstrate immunohistochemically with LHRH antiserum without colchicine treatment, we used a transgenic rat in which LHRH tagged with enhanced green fluorescence protein facilitated the precise detection of LHRH-producing neuronal cell bodies and processes. This is the first study to report on synaptic inputs to LHRH-containing neurons at the ultrastructural level using this transgenic model. We also used immunohistochemistry to investigate the neuronal interaction between GALP- and LHRH-containing neurons. The experiments revealed that GALP-containing nerve terminals lie in close apposition with LHRH-containing cell bodies and processes in the medial preoptic area and the bed nucleus of the stria terminalis. At the ultrastructural level, the GALP-positive nerve terminals were found to make axo-somatic and axo-dendritic synaptic contacts with the EGFP-positive neurons in these areas. These results strongly suggest that GALP-containing neurons provide direct input to LHRH-containing neurons and that GALP plays a crucial role in the regulation of LH secretion via LHRH.  相似文献   

6.
Galanin-like peptide (GALP) is expressed in the arcuate nucleus and is implicated in the neuroendocrine regulation of metabolism and reproduction. To investigate the physiological significance of GALP, we generated and characterized a strain of mice with a genetically targeted deletion in the GALP gene [GALP knockout (KO) mice]. We report that GALP KO mice have a subtle, but notable, metabolic phenotype that becomes apparent during adaptation to changes in nutrition. GALP KO mice are indistinguishable from wild-type (WT) controls in virtually all aspects of growth, sexual development, body weight, food and water consumption, and motor behaviors, when they are allowed unlimited access to standard rodent chow. However, GALP KO mice have an altered response to changes in diet. 1) Male GALP KO mice consumed less food during refeeding after a fast than WT controls (P < 0.01). 2) GALP KO mice of both sexes gained less weight on a high-fat diet than WT controls (P < 0.01), despite both genotypes having consumed equal amounts of food. We conclude that although GALP signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, GALP may play a role in readjusting energy balance under changing nutritional circumstances.  相似文献   

7.
Galanin-like peptide (GALP), discovered in the porcine hypothalamus, is expressed predominantly in the arcuate nucleus (ARC), a feeding-controlling center. Intracerebroventricular injection of GALP has been shown to stimulate food intake in the rats. However, the mechanisms underlying the orexigenic effect of GALP are unknown. The present study aimed to determine the target neurons of GALP in the ARC. We investigated the effects of GALP on cytosolic free Ca2+ concentration ([Ca2+]i) in the neurons isolated from the rat ARC, followed by neurochemical identification of these neurons by immunocytochemistry using antisera against growth hormone-releasing hormone (GHRH), neuropeptide Y (NPY) and proopiomelanocortin (POMC), the peptides localized in the ARC. GALP at 10(-10) M increased [Ca2+]i in 11% of single neurons of the ARC, while ghrelin, an orexigenic and GH-releasing peptide, at 10(-10) M increased [Ca2+]i in 35% of the ARC neurons. Some of these GALP- and/or ghrelin-responsive neurons were proved to contain GHRH. In contrast, NPY- and POMC-containing neurons did not respond to GALP. These results indicate that GALP directly targets GHRH neurons, but not NPY and POMC neurons, and that ghrelin directly targets GHRH neurons in the ARC. The former action may be involved in the orexigenic effect of GALP and the latter in the GH-releasing and/or orexigenic effects ghrelin.  相似文献   

8.
Elevated blood levels of prolactin increase the synthesis, turnover, and release of 3,4-dihydroxyphenylethylamine (dopamine) from the tuberoinfundibular dopaminergic neurons, which project to the median eminence. The present study examined whether hyperprolactinemia also increases local cerebral glucose utilization, as determined by the 2-deoxy-D-[1-14C]glucose method, in the median eminence and other brain structures. Adult male rats were given ovine prolactin (4 mg/kg) subcutaneously every 8 h for 48 h. This treatment exerted an autoregulatory feedback effect on endogenous rat prolactin secretion, as evidenced by decreased circulating levels of rat prolactin. Ovine prolactin treatment also decreased plasma glucose concentrations. However, in both partially immobilized and free-ranging rats, glucose utilization in brain structures containing tuberoinfundibular dopaminergic cell bodies (the arcuate nucleus) and terminals (the median eminence) was not affected by ovine prolactin treatment. Hyperprolactinemia was, however, associated with decreased glucose utilization in the medial forebrain bundle and the CA subfield of the dorsal hippocampus. The lack of a significant effect of prolactin treatment on glucose utilization in the median eminence indicates that the resolution of the deoxyglucose technique, as used here, is not adequate to detect the ovine prolactin-induced increase in tuberoinfundibular dopaminergic neuronal activity, that the median eminence does not utilize glucose as its primary energy substrate, or that ovine prolactin treatment causes a counterbalancing decrease in the activity of other neurons projecting to the median eminence.  相似文献   

9.
J Guy  G Pelletier 《Peptides》1988,9(3):567-570
Several recent studies have suggested interactions between catecholamine (CA) and neuropeptide Y (NPY) neuronal systems in the rat brain. In order to obtain morphological evidence for such CA/NPY interactions in the arcuate nucleus, we have used a double immunostaining procedure using an anti-tyrosine hydroxylase (TH) antiserum as a marker for catecholamine neurons and an anti-NPY antiserum. This double staining, where the first staining is silver-gold intensified, was detectable at both light and electron microscopic levels. In semi-thin sections, a substantial overlap and close proximity of TH-immunopositive neurons and NPY neuronal elements could be seen within the arcuate nucleus. At the electron microscopic level, direct appositions between TH- and NPY-immunoreactive structures could be detected. These appositions were of axosomatic, axodendritic or axoaxonic types without any synaptic membrane differentiation. Moreover, direct appositions between NPY-immunoreactive structures have also been observed. This morphological study showing appositions between TH and NPY neuronal systems suggest direct interactions between these two systems in the arcuate nucleus.  相似文献   

10.
近年来,因肥胖症所造成的社会问题和医疗负担越发严重。肥胖主要是由于机体能量的摄入与消耗不平衡所致,而中枢神经系统以及相关神经元在机体能量代谢平衡的调控中发挥着重要作用。下丘脑弓状核含有抑食性阿黑皮素原(Proopiomelanocortin,POMC)神经元和促食性神经肽Y (Neuropeptid Y,NPY)/刺鼠相关蛋白(Agouti-related protein,AgRP)神经元,是调控机体摄食行为的主要神经元。研究显示,高脂饮食会诱导POMC神经元中的Rb蛋白发生磷酸化修饰并失活,导致POMC神经元从静息状态重新进入细胞周期循环,进而迅速转向细胞凋亡。高脂饮食也会引起神经元再生抑制,并诱导炎症发生和神经元损伤,使神经元稳态失衡,引发瘦素抵抗,最终导致肥胖症的发生。文中就神经元稳态失衡以及肥胖症等疾病之间的关系进行了综述,希望能为饮食诱导肥胖症等疾病的治疗和预防提供新的方向和思路。  相似文献   

11.
The study has been carried out to verify the authors’ hypothesis that degeneration of dopaminergic (DA-ergic) neurons of the hypothalamic tuberoinfundibular system and concomitant development of hyperprolactinemia are accompanied by involvement of compensatory synthesis of dopamine (DA) by non-dopaminergic neurons expressing single complementary enzymes of synthesis of this neurotransmitter. Degeneration of DA-ergic neurons was produced by a stereotaxic injection into the brain lateral ventricles of 6-hydroxydopamine (6-HDA)—a specific neurotoxin of DA-ergic neurons. 14 and 45 days after the toxin administration there were determined concentration of prolactine in peripheral blood by methods of immunoenzyme and radioimmunological analyses as well as the DA amount in the arcuate nucleus by the method of highly efficient liquid chromatography with electrochemical detection. In a part of the animals, sections were prepared from the mediobasal hypothalamus (arcuate nucleus and medial eminence) and perfused with Krebs—Ringer medium; then the DA concentration was determined in the sections and in the incubation medium. 14 days after the neurotoxin administration there were revealed an increase of blood prolactine concentration and a decrease of DA concentration in the arcuate nucleus in vivo as well a decrease of the total DA amount in the sections and incubation medium in experiments in vitro. 45 days after the neurotoxin administration, all the above parameters returned to the normal level. Thus, the obtained data indicate that the hyperlactinemia and DA deficit appearing during degeneration of the arcuate nucleus DA-ergic neurons seem to be compensated due to an enhancement of DA synthesis by non-dopaminergic monoenzyme neurons of arcuate nucleus.  相似文献   

12.
The study has been carried out to verify the authors' hypothesis that degeneration of dopaminergic (DA-ergic) neurons of the hypothalamic tuberoinfundibular system and concomitant development of hyperprolactinemia are accompanied by involvement of compensatory synthesis of dopamine (DA) by non-dopaminergic neurons expressing single complementary enzymes of synthesis of this neurotransmitter. Degeneration of DA-ergic neurons was produced by a stereotaxic injection into the brain lateral ventricles of 6-hydroxydopamine (6-OHDA) - a specific neurotoxin of DA-ergic neurons. 14 and 45 days after the toxin administration there were determined concentration of prolactine in peripheral blood by methods of immunoenzyme and radioimmunological analyses as well as the DA amount in the arcuate nucleus by the method of highly efficient liquid chromatography with electrochemical detection. In a part of the animals, slices were prepared from the mediobasal hypothalamus (arcuate nucleus and medial eminence) and perfused with Krebs-Ringer medium; then the DA concentration was determined in the slices and in the incubation medium. 14 days after the neurotoxin administration there were revealed an increase of blood prolactine concentration and a decrease of DA concentration in the arcuate nucleus in vivo as well a decrease of the total DA amount in the slices and incubation medium in experiments in vitro. 45 days after the neurotoxin administration, all the above parameters returned to the normal level. This, the obtained data indicate that the hyperlactinemia and DA deficit appearing during degeneration of the arcuate nucleus DA-ergic neurons seem to be compensated due to an enhancement of DA synthesis by non-dopaminergic monoenzyme neurons of arctuate nucleus.  相似文献   

13.
Jong-Woo Sohn 《BMB reports》2015,48(4):229-233
The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS. [BMB Reports 2015; 48(4): 229-233]  相似文献   

14.
The cellular effects of estrogens on neuroendocrine tissues   总被引:2,自引:0,他引:2  
Estrogen action on sensitive neurons in the rat diencephalon has been studied by morphologic techniques; evidence of estrogen action at every level is presented, including tracts, cells, circuitry and subcellular organelles. The demonstration in the arcuate nucleus of estrogen-induced synaptic remodelling, estrogen-induced postsynaptic membrane phenotypes, changes in intracellular membranes and rapid estrogen actions on neuronal endo-exocytosis indicates that cellular estrogen actions may underlie the neuronal control of reproduction.  相似文献   

15.
Serotonin 2C receptors (5-HT(2C)Rs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT(2C)Rs have not yet been identified. In the present study, we found the putative transient receptor potential C (TRPC) channels mediate the activation of a subpopulation of POMC neurons by mCPP (a?5-HT(2C)R agonist). Interestingly, mCPP-activated POMC neurons were found to be a distinct population from those activated by leptin. Together, our data suggest that 5-HT(2C)R and leptin receptors are expressed by distinct subpopulations of arcuate POMC neurons and that both 5-HT and leptin exert their actions in POMC neurons via TRPC channels. VIDEO ABSTRACT:  相似文献   

16.
During periods of metabolic stress, animals must channel energy toward survival and away from processes such as reproduction. The reproductive axis, therefore, has the capacity to respond to changing levels of metabolic cues. The cellular and molecular mechanisms that link energy balance and reproduction, as well as the brain sites mediating this function, are still not well understood. This review focuses on the best characterized of the adiposity signals: leptin and insulin. We examine their reproductive role acting on the classic metabolic pathways of the arcuate nucleus, NPY/AgRP and POMC/CART neurons, and the newly identified kisspeptin network. In addition, other hypothalamic nuclei that may play a role in linking metabolic state and reproductive function are discussed. The nature of the interplay between these elements of the metabolic and reproductive systems presents a fascinating puzzle, whose pieces are just beginning to fall into place.  相似文献   

17.
Various studies have attempted to unravel the physiological role of metastin/kisspeptin in the control of gonadotropin-releasing hormone (GnRH) release. A number of evidences suggested that the population of metastin/kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) is involved in generating a GnRH surge to induce ovulation in rodents, and thus the target of estrogen positive feedback. Females have an obvious metastin/kisspeptin neuronal population in the AVPV, but males have only a few cell bodies in the nucleus, suggesting that the absence of the surge-generating mechanism or positive feedback action in males is due to the limited AVPV metastin/kisspeptin neuronal population. On the other hand, the arcuate nucleus (ARC) metastin/kisspeptin neuronal population is considered to be involved in the regulation of tonic GnRH release. The ARC metastin/kisspeptin neurons show no sex difference in their expression, which is suppressed by gonadal steroids in both sexes. Thus, the ARC population of metastin/kisspeptin neurons is a target of estrogen negative feedback action on tonic GnRH release. The lactating rat model provided further evidence indicating that ARC metastin/kisspeptin neurons are involved in GnRH pulse generation, because pulsatile release of luteinizing hormone (LH) is profoundly suppressed by suckling stimulus and the LH pulse suppression is well associated with the suppression of ARC metastin/kisspeptin and KiSS-1 gene expression in lactating rats.  相似文献   

18.
A major paradigm in the field of obesity research is the existence of an adipose tissue-brain endocrine axis for the regulation of body weight. Leptin, the peptide mediator of this axis, is secreted by adipose cells. It lowers food intake and body weight by acting in the hypothalamus, a region expressing an abundance of leptin receptors and a variety of neuropeptides that influence food intake and energy balance. Among the most promising candidates for leptin-sensitive cells in the hypothalamus are arcuate nucleus neurons that co-express the anabolic neuropeptides, neuropeptide Y (NPY) and agouti-related peptide (AGRP), and those that express proopiomelanocortin (POMC), the precursor of the catabolic peptide, alphaMSH. These cell types contain mRNA encoding leptin receptors and show changes in neuropeptide gene expression in response to changes in food intake and circulating leptin levels. Decreased leptin signaling in the arcuate nucleus is hypothesized to increase the expression of NPY and AGRP. Levels of leptin receptor mRNA and leptin binding are increased in the arcuate nucleus during fasting, principally in NPY/AGRP neurons. These findings suggest that changes in leptin receptor expression in the arcuate nucleus are inversely associated with changes in leptin signaling, and that the arcuate nucleus is an important target of leptin action in the brain.  相似文献   

19.
We examined the developmental change of GALP mRNA in male and female rat hypothalamus during postnatal day 1 to 60, using in situ hybridization histochemistry. Neuropeptide Y (NPY) and proopiomelanocortin (POMC) mRNA in the hypothalamus were also examined because they are important in the regulation of food intake. GALP mRNA was first detected in the arcuate nucleus (ARC) on day 8. GALP mRNA was gradually increased between day 8 and 14 and markedly increased between day 14 and 40, which is the weaning and pubertal period in rats. After day 40, there were no significant differences in GALP mRNA. In contrast to GALP, NPY and POMC mRNAs were detected in the ARC from day 1 and lasted to day 60. There was no sexual dimorphism in GALP, NPY and POMC mRNAs during postnatal development. Next, we examined the effect of the milk deprivation for 24 h on GALP, NPY and POMC mRNA in pups. GALP mRNA did not change by milk deprivation on day 9 and 15, while milk deprivation had a significant effect on NPY and POMC mRNA on day 15. These results suggest that the development of GALP may be associated with developmental changes such as weaning, feeding and maturation of reproductive functions. The regulatory mechanism of GALP mRNA is different from that of the NPY and POMC genes during postnatal development.  相似文献   

20.
Reduced leptin (Ob protein) signaling is proposed to be a stimulus for the activation of neuropeptide Y (NPY) gene activity and increased expression of mRNA for the long form of the leptin receptor (Ob-Rb) in the hypothalamic arcuate nucleus. To determine if Ob-Rb protein is expressed in arcuate nucleus NPY neurons, we developed an affinity-purified polyclonal antibody against amino acids 956-1102 of human Ob-Rb. This antibody specifically recognizes the cytoplasmic tail of Ob-Rb and does not react with shorter leptin-receptor variants. Western immunoblots of Ob-Rb-transfected COS cells showed a single 150-kD band, and immunofluorescence revealed intense perinuclear staining in the cytoplasm. A 150-kD band was also present in Western immunoblots of hypothalamus. Immunocytochemical staining of brain slices revealed immunoreactive Ob-Rb protein concentrated in many neuronal cell bodies in the same regions of the forebrain that also express Ob-Rb mRNA. In the hypothalamus, Ob-Rb-positive cell bodies were abundant in the arcuate nucleus and ventromedial nucleus, with lesser numbers in the dorsomedial nucleus and paraventricular nucleus. Immunostaining was also detected in cell bodies of pyramidal cell neurons of the pyriform cortex and cerebral cortex, in neurons of the thalamus, and on the surface of ependymal cells lining the third ventricle. The choroid plexus, which expresses the short Ob-Ra form, was negative. Combined immunocytochemistry for Ob-Rb protein and fluorescence in situ hybridization for NPY mRNA identified arcuate nucleus neurons containing both NPY mRNA and Ob-Rb protein. The present finding of Ob-Rb protein in neurons that express NPY mRNA supports the hypothesis that arcuate nucleus NPY neurons are direct targets of leptin and play an important role in regulation of food intake and body weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号