首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using an open air flow system, differences in the yellowing rate of leaves during curing were assessed in relation to ethylene production by shoots of intact seedlings or attached mature leaves of 60 day old tobacco (Nicotiana tabacum L.) plants. The rate of ethylene evolution from the leaves of the fast yellowing cultivars was significantly higher than in the slow yellowing ones. The same differences were obtained with shoots of intact seedlings. The findings suggest that it is possible to use ethylene production by seedlings as a selection criterion in screening for genotypic differences in the rate of yellowing. The ability of carbon dioxide (1%) to enhance ethylene production by attached leaves was significant in a slow, but not in a fast yellowing cultivar. However, similar amounts of ethylene were produced on administration of 1-aminocyclopropane-1-carboxylic acid to a slow and a fast yellowing cultivar. Exposure of attached leaves to exogenous ethylene (0.1 microliter per liter) accelerated the loss of chlorophyll and protein. This treatment was effective only for slightly yellow leaves and not for fully expanded green ones. The significance and possible use of ethylene in the flue-curing process are discussed.  相似文献   

2.
Application of glyphosate (N-[phosphonomethyl] glycine) to exporting leaves of sugar beet (Beta vulgaris, L.) during the day lowered stomatal conductance and carbon fixation. Allocation of newly fixed carbon to foliar starch accumulation was nearly completely inhibited, being decreased by the same amount as net carbon fixation. In contrast, decreasing net carbon fixation in untreated leaves by lowering CO2 concentration caused starch accumulation to decrease, but only in the same proportion as net carbon fixation. Shikimate level increased 50-fold in treated leaves but the elevated rate of carbon accumulation in shikimate was only 4% of the decrease in the rate of starch accumulation. Application of steady state labeling with 14CO2 to exporting leaves confirmed the above changes in carbon metabolism, but revealed no other major daytime differences in the 14C-content of amino acids or other compounds between treated and control leaves. Less 14C accumulated in treated leaves because of decreased fixation, not increased export. The proportion of newly fixed carbon allocated to sucrose increased, maintaining export at the level in control leaves. Returning net carbon exchange to the rate before treatment restored starch accumulation fully and prevented a decrease in export during the subsequent dark period.  相似文献   

3.
Photosynthetic data collected from Pisum sativum L. and Phaseolus vulgaris L. plants at different stages of development were related to symbiotic N2 fixation in the root nodules. The net carbon exchange rate of each leaf varied directly with carboxylation efficiency and inversely with the CO2 compensation point. Net carbon exchange of the lowest leaves reputed to supply fixed carbon to root nodules declined in parallel with H2 evolution from root nodules. The decrease in H2 evolution also coincided with the onset of flowering but preceded the peak in N2 fixation activity measured by acetylene-dependent ethylene production. A result of these changes was that the relative efficiency of N2 fixation in peas increased to 0.7 from an initial value of 0.4. The data reveal that attempts to identify photosynthetic contributions of leaves to root nodules will require careful timing and suggest that the relative efficiency of N2 fixation may be influenced by source-sink relationships.  相似文献   

4.
Treatment of field pennycress (Thlaspi arvense L.) leaves with the herbicide chlorsulfuron resulted in a decrease in the export of assimilate. Twelve hours after a spot application of 1 microgram, assimilate translocation was 70% of that in control leaves. In excised leaves treated with chlorsulfuron the total amounts of sugars and free amino acids were 150 and 170%, respectively, of the amounts in control leaves, 30 hours after herbicide treatment. The amount of sucrose was 247% of that in control leaves. The increase in the concentration of sucrose in the chlorsulfuron-treated leaves, combined with the absence of an effect of chlorsulfuron on carbon dioxide fixation, suggests that the decrease in assimilate transport is not due to an effect on the synthesis of assimilates, but rather to an effect on their movement out of the leaves. Supplying branched-chain amino acids to the field pennycress seedlings prior to the application of chlorsulfuron prevented the occurrence of the effects described.  相似文献   

5.
6.
Auxin treatment results in hyponastic curvature of the primary leaves of Phaseolus vulgaris L. var pinto. Ethylene production by hyponastic leaves is detected within 1 hr after treatment with IAA in concentrations at or above 1 μm. The amount of ethylene detected is proportional to the concentration of auxin applied. Untreated control leaves and leaves treated with 2,3,5-tri-iodobenzoic acid or gibberellic acid did not produce ethylene detectable by our equipment. The hyponastic curvature induced by auxin treatment can be inhibited by exogenous application of ethylene or ethylene-generating compounds, and these treatments produce epinasty in auxin-treated leaves. Treatment with inhibitors of ethylene synthesis or action, such as aminoethoxy-vinylglycine, carbon dioxide, or heat treatment, prolong hyponasty. The planar form, therefore, appears to be affected by both hyponastic auxin effect and an epinastic ethylene effect.  相似文献   

7.
The succulent Kalanchoe blossfeldiana v. Poel. var Tom Thumb was treated on long and short photoperiods for 6 weeks during which short day plants developed thicker leaves, flowered prolifically, and exhibited extensive net dark fixation of carbon dioxide. In contrast, long day plants remained vegetative and did not develop thicker leaves or exhibit net carbon dioxide dark fixation. When examined after the photoperiodic state described, long day plants showed approximately three times more water loss over a 10-day period than short day plants. Water loss is similar during light and dark periods for short day plants but long day plants exhibited two times more water loss during the day than at night. The latter plants also lost three and one-half times more water during the light period than short day plants. The water conservation by short day plants is correlated with conditions of high carbon dioxide dark fixation and effects of its related Crassulacean acid metabolism on stomatal behavior.  相似文献   

8.
Huber SC 《Plant physiology》1984,76(2):424-430
The effects of K-deficiency on carbon exchange rates (CER), photosynthate partitioning, export rate, and activities of key enzymes involved in sucrose metabolism were studied in soybean (Glycine max [L.] Merr.) leaves. The different parameters were monitored in mature leaves that had expanded prior to, or during, imposition of a complete K-deficiency (plants received K-free nutrition solution). In general, recently expanded leaves had the highest concentration of K, and imposition of K-stress at any stage of leaf expansion resulted in decreased K concentrations relative to control plants (10 millimolar K). A reduction in CER, relative to control plants, was only observed in leaves that expanded during the K-stress. Stomatal conductance also declined, but this was not the primary cause of the decrease in carbon fixation because internal CO2 concentration was unaffected by K-stress. Assimilate export rate from K-deficient leaves was reduced but relative export, calculated as a percentage of CER, was similar to control leaves. Over all the data, export rate was correlated positively with both CER and activity of sucrose phosphate synthase in leaf extracts. K-deficient leaves had higher concentrations of sucrose and hexose sugars. Accumulation of hexose sugars was associated with increased activities of acid invertase. Neutral invertase activity was low and unaffected by K-nutrition. It is concluded that decreased rates of assimilate export are associated with decreased activities of sucrose phosphate synthase, a key enzyme involved in sucrose formation, and that accumulation of hexose sugars may occur because of increased hydrolysis of sucrose in K-deficient leaves.  相似文献   

9.
Coronatine is a chlorosis-inducing toxin produced by the plant pathogen Pseudomonas syringae pv atropurpurea. This bacterium is the causal agent of chocolate spot disease, in which brown lesions with chlorotic margins develop on the leaves of Lolium multiflorum Lam. Among the many physiological changes to plants caused by coronatine is the stimulation of ethylene production from bean leaves. The ethyl-substituted side chain of coronatine is an analog of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). We have examined the question of whether part or all of the released ethylene comes from the breakdown of coronatine itself. The rate of ethylene release from leaves of Nicotiana tabacum was proportional to the concentration of coronatine applied to the leaf surface. The lowest effective concentration of coronatine, applied to leaves at 15 pmol cm−2 of leaf area, resulted in the production of 44 pmol of ethylene cm−2 over a period of 4 h. The maximum rate of ethylene production occurred 28 to 32 h after application of coronatine. The specific activity of ethylene produced by discs cut from coronatine-treated Nicotiana tabacum leaves floating on a solution containing 10 mm [U-14C]methionine was consistent with its exclusive origin from methionine. ACC accumulated in the coronatine-treated tissue. ACC synthase activity increased in Phaseolus aureus hypocotyls during a 6-h treatment with coronatine. Thus, coronatine induces the synthesis of ethylene from methionine.  相似文献   

10.
Three-week-old sugar beet (Beta vulgaris L.) seedlings were grown for an additional four weeks under controlled conditions: in river sand watered with a modified Knop mixture containing one half-fold (0.5N), standard (1N), and or threefold (3N) nitrate amount, at the irradiance of 90 W/m2 PAR, and at the carbon dioxide concentrations of 0.035% (1C treatment) or 0.07% (2C treatment). The increase in the carbon dioxide concentration and in the nitrogen dose resulted in an increase in the leaf area and the leaf and root dry weight per plant. With the increase in the nitrogen dose, morphological indices characterizing leaf growth increased more noticeably in 1C plants than in 2C plants. And vice versa, the effects of increased CO2 concentration were reduced with the increase in the nitrogen dose. Roots responded to the changes in the CO2 and nitrate concentrations otherwise than leaves. At a standard nitrate dose (1N), the contents of proteins and nonstructural carbohydrates (sucrose and starch) in leaves depended little on the CO2 concentration. At a double CO2 concentration, the content of chlorophyll somewhat decreased, and the net photosynthesis rate (P n) calculated per leaf area unit increased. An increase in the nitrogen dose did not affect the leaf carbohydrate content of the 1C and 2C plants except the leaves of the 2C-3N plants, where the carbohydrate content decreased. In 1C and 2C plants, an increase in the nitrogen dose caused an increase in the protein and chlorophyll content. Specific P n values somewhat decreased in 1C-0.5N plants and had hardly any dependence on the nitrate dose in the 2C plants. The carbohydrate content in roots did not depend on the CO2 concentration, and the content was the highest at 0.5N. Characteristic nitrogen dose-independent acclimation of photosynthesis to an increased carbon dioxide concentration, which was postulated previously [1], was not observed in our experiments with sugar beet grown at doubled carbon dioxide concentration.  相似文献   

11.
Gas phase composition effects on suspension cultures of Taxus cuspidata   总被引:2,自引:0,他引:2  
The effect of different concentrations and combinations of oxygen, carbon dioxide, and ethylene on cell growth and taxol production in suspension cultures of Taxus cuspidata was investigated using several factorial design experiments. Low head space oxygen concentration (10% v/v) promoted early production oftaxol. High carbon dioxide concentration (10% v/v) inhibited taxol production. The most effective gas mixture composition in terms of taxol production was 10% (v/v) oxygen, 0.5% (v/v) carbon dioxide, and 5 ppm ethylene. Cultures grown underambient concentration of oxygen had a delayed uptake of glucose and fructose compared to cultures grown under 10% (v/v) oxygen. Average calcium uptake rates into the cultured cells decreased and average phosphate uptake rates increased as ethylene was increased from 0 to 10 ppm. These results may indicate that gas composition alters partitioning of nutrients, which in turn affects secondary metabolite production. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
This paper describes the physiological effects of abscisic acid (ABA) and 100 mM NaCl on citrus plants. Water potential, leaf abscission, ethylene production, photosynthetic rate, stomatal conductance, and chloride accumulation in roots and leaves were measured in plants of Salustiana scion [Citrus sinensis (L) Osbeck] grafted onto Carrizo citrange (Citrus sinensis [L.] Osbeck × Poncirus trifoliata [L.] Raf) rootstock. Plants under salt stress accumulated high amounts of chloride, increased ethylene production, and induced leaf abscission. Stomatal conductance and photosynthetic rates rapidly dropped after salinization. The addition of 10 mM ABA to the nutrient solution 10 days before the exposure to salt stress reduced ethylene release and leaf abscission. These effects were probably due to a decrease in the accumulation of toxic Cl- ions in leaves. In non-salinized plants, ABA reduced stomatal conductance and CO2 assimilation, whereas in salinized plants the treatment slightly increased these two parameters. The results suggest a protective role for ABA in citrus under salinity.  相似文献   

13.
Effects of drought on nitrogen fixation in soybean root nodules   总被引:3,自引:0,他引:3  
Soybean plants [Glycine max (L.) Merr.] were grown in silica sand and were drought stressed for a 4 week period during reproductive development and without any mineral N supply in order to maximize demand for fixed nitrogen. A strain of Bradyrhizobium japonicum that forms large quantities of polysaccharide in nodules was used to determine whether or not the supply of reduced carbon to bacteroids limits nitrogenase activity. A depression of 30–40% in nitrogen content in leaves and pods of stressed plants indicated a marked decline in nitrogen fixation activity during the drought period. A 50% increase in the accumulation of bacterial polysaccharide in nodules accompanied this major decrease in nitrogen fixation activity and this result indicates that the negative impact of drought on nodules was not due to a depression of carbon supply to bacteroids. The drought treatment resulted in a statistically significant increase in N concentration in leaves and pods. Because N concentration and chlorophyll concentration in leaves were not depressed, there was no evidence of nitrogen deficiency in drought‐stressed plants, and this result indicates that the negative impact of drought on nodule function was not the cause of the depression of shoot growth. At the end of the drought period, the concentration of carbohydrates, amino nitrogen, and ureides was significantly increased in nodules on drought‐stressed plants. The overall results support the view that, under drought conditions, nitrogen fixation activity in nodules was depressed because demand for fixed N to support growth was lower.  相似文献   

14.
Accumulation and ethylene-dependent translocation of free polyamines was studied in various organs, the phloem and xylem exudates of common ice plants (Mesembryanthemum crystallinum L.). Under normal conditions (23–25°C), spermidine predominated among polyamines. Cadaverine was found in old leaves, stems, and, in large quantities, in roots. The heat shock treatment (HS; 47°C, 2 h) of intact plant shoots induced intense evolution of ethylene from leaves but reduced the leaf content of polyamines. Under these conditions, the concentration of polyamines in roots, particularly of cadaverine, increased many times. The HS treatment of roots (40°C, 2 h) induced translocation of cadaverine to stems and putrescine to leaves. An enhanced polyamine content after HS treatment was also found in the xylem and phloem exudates. The exposure of detached leaves to ethylene led to a reduction in their putrescine and spermidine and accumulation of cadaverine, which implies the ethylene-dependent formation of cadaverine and a possible relation between the HS-induced translocation of this diamine to roots and the transient ethylene evolution by leaves. To validate this hypothesis, we compared the ethylene evolution rate and interorgan partitioning of cadaverine and other polyamines for two lines of Arabidopsis thaliana: the wild type (Col-0) and ein4 mutant with impaired ethylene reception. In plants grown in light at 20–21°C, the rate of ethylene evolution by rosetted leaves was higher in the mutant than in the wild type. The content of putrescine and spermidine was reduced in mutant leaves, whereas cadaverine concentration increased almost threefold compared with the wild type. In roots, cadaverine was found only in the wild type and not in the mutant line. Our data indicate the ethylene-dependent formation of cadaverine in leaves and possible involvement of cadaverine and ethylene in the long-distance translocation of stress (HS) signal in plants.  相似文献   

15.
The combined effects of carbon dioxide (CO2) enrichment and water deficits on nodulation and N2 fixation were analysed in soybean [Glycine max (L.) Merr.]. Two short-term experiments were conducted in greenhouses with plants subjected to soil drying, while exposed to CO2 atmospheres of either 360 or 700 μmol CO2 mol–1. Under drought-stressed conditions, elevated [CO2] resulted in a delay in the decrease in N2 fixation rates associated with drying of the soil used in these experiments. The elevated [CO2] also allowed the plants under drought to sustain significant increases in nodule number and mass relative to those under ambient [CO2]. The total non-structural carbohydrate (TNC) concentration was lower in the shoots of the plants exposed to drought; however, plants under elevated CO2 had much higher TNC levels than those under ambient CO2. For both [CO2] treatments, drought stress induced a substantial accumulation of TNC in the nodules that paralleled N2 fixation decline, which indicates that nodule activity under drought may not be carbon limited. Under drought stress, ureide concentration increased in all plant tissues. However, exposure to elevated [CO2] resulted in substantially less drought-induced ureide accumulation in leaf and petiole tissues. A strong negative correlation was found between ureide accumulation and TNC levels in the leaves. This relationship, together with the large effect of elevated [CO2] on the decrease of ureide accumulation in the leaves, indicated the importance of ureide breakdown in the response of N2 fixation to drought and of feedback inhibition by ureides on nodule activity. It is concluded that an important effect of CO2 enrichment on soybean under drought conditions is an enhancement of photoassimilation, an increased partitioning of carbon to nodules and a decrease of leaf ureide levels, which is associated with sustained nodule growth and N2 rates under soil water deficits. We suggest that future [CO2] increases are likely to benefit soybean production by increasing the drought tolerance of N2 fixation.  相似文献   

16.
The physiological effects of foliar boron application (FB) on nitrogen metabolism and seed composition have not been well established in soybean [(Glycine max(L.)Merr.)]. Therefore, the effect of FB on nitrogen metabolism and seed composition was investigated. Nitrate assimilation was evaluated by measuring nitrate reductase activity (NRA) and nitrogen fixation was evaluated by measuring nitrogenase activity and natural abundance of 15N/14N. NRA were significantly (P?≤?0.05) higher in plants that received FB than the control plants. Higher rate of FB (One application of four times of commercial rate) inhibited nitrogen fixation as measured by natural abundance of 15N/14N ratio, but increased NRA. The higher activities of NR and nitrogenase by FB were accompanied with a higher B concentration in leaves. The significant (P?<?0.0001) enrichment of 15N/14N, accompanied with a higher rate of FB, suggested a possible mechanism where nitrate assimilation may compensate for the decrease in nitrogen fixation. FB increased seed protein by 13.7% and oleic acid by 30.9% compared to the control plants. This alteration was accompanied by a higher B concentration in leaves and seed. The results suggest that FB affects nitrogen metabolism and alters seed compositions, especially protein and unsaturated fatty acids.  相似文献   

17.
A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport.  相似文献   

18.
The effects of ethylene evolved from ethephon on leaf and whole plant photosynthesis in Xanthium strumarium L. were examined. Ethylene-induced epinasty reduced light interception by the leaves of ethephon treated plants by up to 60%. Gas exchange values of individual, attached leaves under identical assay conditions were not inhibited even after 36 hours of ethylene exposure, although treated leaves required a longer induction period to achieve steady state photosynthesis. The speed of translocation of recently fixed 11C-assimilate movement was not seriously impaired following ethephon treatment; however, a greater proportion of the assimilate was partitioned downward toward the roots. Within 24 hours of ethephon treatment, the whole plant net carbon exchange rate expressed on a per plant basis or a leaf area basis had dropped by 35%. The apparent inhibition of net carbon exchange rate was reversed by physically repositioning the leaves with respect to the light source. Ethylene exposure also inhibited expansion of young leaves which was partially reversed when the leaves were repositioned. The data indicated that ethylene indirectly affected net C gain and plant growth through modification of light interception and altered sink demand without directly inhibiting leaf photosynthesis.  相似文献   

19.
Participation of ethylene in common purslane response to dicamba   总被引:1,自引:1,他引:0       下载免费PDF全文
The responses of common purslane (Portulaca oleracea L.) plants to 2-methoxy-3,6-dichlorobenzoic acid (dicamba) were found to be similar in many respects to ethylene fumigation effects. Dicamba and ethylene increased the permeability of cell membranes in purslane tissues. An increased efflux of electrolytes was observed in the bending region of the stems of dicamba-treated plants. Epinastic leaves after dicamba (10 micrograms) and ethylene (microliter per liter) treatments showed an increased efflux of rubidium. The permeability effects were observable within 1 day after dicamba or ethylene application. Protein metabolism in purslane leaves was not influenced by dicamba until 2 days after treatment, as indicated by reduced nitrate reductase activity. Inhibition of phenylalanine-U-14C incorporation into protein was observed 3 days after treatment. Ethylene reduced both phenylalanine-U-14C incorporation into protein and nitrate reductase activity within 1 day. Dicamba caused a rapid increase in ethylene production in purslane plants to levels many times greater than those observed in untreated plants. It was concluded that the dicamba-enhanced production of ethylene is responsible for many of the observed effects of the herbicide.  相似文献   

20.
Chloroplasts in living cells of detached and sectioned leaves of Pisum sativum had a thickness of 2.68 ± 0.04 μ in the dark as determined from photographs made using a phase contrast microscope. Upon illumination with 4000 lux for 10 min, the chloroplasts flattened to 2.15 ± 0.04 μ. There was a short lag period of about 11 sec at 1000 lux and 2 sec at 4000 lux before appreciable light-induced flattening occurred. Both ATP and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in detached pea leaves increased upon illumination and then fell during the initial 60 sec. The maximum ATP level was attained in 16 sec at 1000 lux and 10 sec at 4000 lux, while NADPH required about twice as long to reach a maximum. A sustained rate of carbon dioxide fixation occurred after a lag period coinciding in time with the drop in the NADPH level. ATP appeared to be involved not only with carbon dioxide fixation, but also with some reaction beginning sooner, perhaps the light-induced chloroplast flattening. Considering the initial photophosphorylation and the sustained CO2 fixation rates, the ATP formation rate in vivo apparently increased after the leaves had been in the light for a few min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号