共查询到20条相似文献,搜索用时 78 毫秒
1.
松嫩平原农田土壤有机碳变化及固碳潜力估算 总被引:6,自引:0,他引:6
基于1979—1985年全国第二次土壤普查和2015年实地采样数据,利用土壤类型法计算了近35年来松嫩平原及其各县农田表层土壤有机碳密度和土壤碳库储量;并分析了松嫩平原农田土壤有机碳密度的空间分布及变化特征;利用饱和值法对松嫩平原及其各县市农田土壤有机碳量的变化趋势进行拟合,估算其农田土壤的固碳潜力。结果表明:(1)2015年松嫩平原农田表层土壤有机碳密度平均值为1.61 kg/m~2,近35年来约有81.59%的农田土壤有机碳密度呈下降趋势,集中分布在松嫩平原北部、东部和东南部地区,以富裕县东部、依安县中部、肇东县西部、扶余县西部等地区土壤有机碳密度下降幅度最大;(2)2015年松嫩平原农田表层土壤有机碳库总储量为233.63 Tg,比全国第二次土壤普查减少了32.62 Tg;(3)2015年松嫩平原农田表层土壤总固碳潜力为-32.7 TgC,呈现出"碳源"趋势,农田土壤单位面积固碳潜力平均值为-1.793×10~(-3)Tg/km~2。 相似文献
2.
生物炭对土壤有机碳矿化的激发效应及其机理研究进展 总被引:11,自引:0,他引:11
近年来由于生物炭具有碳素稳定性强和孔隙结构发达等特性,其在土壤固碳减排方面的作用研究受到广泛关注.然而当生物炭进入土壤环境后最终是增加土壤碳的储存还是促进土壤碳的排放?目前学术界对该问题仍存在争议.生物炭对土壤有机碳的激发效应及其机理研究有待进一步深入开展.本文在分析生物炭自身碳素组分和稳定性、孔隙结构及表面形态特征的基础上,综述了添加生物炭对土壤本底有机碳矿化产生激发效应的研究进展,分别阐述了产生正激发和负激发效应(即促进和抑制矿化)的机制机理,认为正激发效应主要是基于生物炭促进土壤微生物活性增强、生物炭中易分解组分的优先矿化以及由此引发的土壤微生物的共代谢作用,而负激发效应主要是基于生物炭内部孔隙结构和外表面对土壤有机质的包封作用和吸附保护作用、生物炭促进土壤有机-无机复合体形成的稳定化作用、生物炭对土壤微生物及其酶活性的抑制作用.最后对今后相关研究方向进行了展望,以期为生物炭在土壤固碳减排方面的应用提供理论依据. 相似文献
3.
土壤有机碳(SOC)是生态系统的重要资产,在全球碳平衡中发挥着关键的作用。2015年巴黎气候会议以来,促进SOC在陆地生态系统中的积累受到特别重视,被认为是有效减缓大气CO2浓度上升的最重要地表措施。从服务于这个目标出发,对过去几十年全球在探索SOC形成机制上的历程进行了回顾和总结,从弄清SOC全球分布规律,阐明样地以下尺度的SOC循环过程及其相应的物理、化学与生物机理,到样地及以上尺度的土壤固碳机制,最后给出了成熟森林SOC积累机制的实例。SOC形成机制的探索历程就是寻求为促进土壤固碳提供理论指导的过程。 相似文献
4.
引黄灌区土壤有机碳密度剖面特征及固碳速率 总被引:2,自引:0,他引:2
为揭示灌溉耕作对土壤有机碳密度剖面(0—100 cm)分布产生的影响,通过在宁夏引黄灌区进行实地调查与采样,以无灌溉耕作的自然土壤作为对照,研究不同灌溉耕作时间序列下灌区土壤有机碳密度的剖面分布特征,并估算其平均固碳速率。结果表明:灌区土壤有机碳含量具有随土层深度增加而下降的剖面分布特征,灌溉耕作对增加表层土壤有机碳含量作用最明显;灌区土壤剖面碳密度与灌溉耕作时间和土壤类型均显著相关(P0.01),相关系数分别为0.63和0.74,且因灌溉耕作时间和土壤类型的不同,土壤有机碳密度差异性显著(P0.05);灌溉耕作影响的土层深度及剖面土壤有机碳密度的增加量因灌溉耕作时间长短的不同而异;引黄灌区5类土壤的平均固碳速率为0.53 MgC·hm-2·a-1。引黄灌溉耕作在增加农田土壤固碳中发挥着重要作用。 相似文献
5.
煤矿废弃地生态修复的土壤有机碳效应 总被引:6,自引:0,他引:6
采煤使得植被和土壤遭到损毁破坏,导致原生态系统碳汇功能的急剧退化甚至完全丧失。采煤堆积的煤矸石可发生氧化自燃,是巨大的CO_2排放源。生态修复对减少矿区碳排放及减缓大气温室效应具有重要意义。分析了国内外煤矿废弃地生态修复后的土壤有机碳动态特征,修复模式、修复时间和修复措施对土壤有机碳及其活性组分的影响,总结了土壤固碳的主要影响因子。研究结果表明,土壤有机碳在人工植被修复和有机物添加后增加显著,且与修复时间成正比。煤矿废弃地通过采取适宜的生态修复措施,有很大的土壤固碳潜力。未来应加强团聚体固碳等土壤固碳机理和土壤活性有机碳等科学问题的研究,以期为退化区生态修复进程中土壤固碳功能提升提供参考。 相似文献
6.
新疆焉耆盆地绿洲区农田土壤有机碳储量动态模拟 总被引:3,自引:0,他引:3
以焉耆盆地绿洲区丝路重镇——焉耆回族自治县长期定位监测的数据为基础,实地采集800个土样进行土壤有机碳(SOC)实验室测试,进行点位模拟校验模型,并拓展到区域模拟,采用BCCC-CSM1.1气候模式,研究农田土壤有机碳密度分布特征及有机碳储量空间分布格局,为气候变化条件下,绿洲区耕地SOC储量和SOC密度变化提供数据支持。结果表明:(1) DNDC模型能够较好地模拟研究区农田的SOC及其动态变化,相关系数大于0.96,模拟值与观测值的均方根误差(RMSE)在0.48%—13.08%之间,模拟值与实测值显著相关。(2)点位模拟不同处理间SOC变化显示,不同土壤质地土壤有机碳含量差异明显,5年来SOC增长趋势表现为粉砂质壤土壤土砂质壤土。(3) 2017年焉耆县农田表层土壤有机碳总储量为0.44 Tg C,在未来30年里,在相应农业措施下,研究区农田0—20 cm土层SOC密度和储量呈显著增加趋势,单位面积碳增量增幅为-7%—29%;新增固碳量3.708×10~8—1.978×10~9 t,增幅为-5%—48%,呈现出"碳汇"趋势,这对恢复农田SOC的平衡和绿洲农业的可持续发展至关重要。 相似文献
7.
放牧是影响草地土壤碳固存的重要因素。本研究选取黄土高原水蚀风蚀交错区西部、中部、东部地区及水蚀区,以各区20年以上退耕封禁地为对照,分析3个放牧强度下(羊粪球密度分别为0~10、10~20、>20 ind·m-2)退耕草地0~20 cm土层土壤有机碳储量的分布特征,研究放牧及其强度对退耕草地土壤固碳效应的影响。结果表明: 放牧对交错区西部0~20 cm、东部0~10 cm,水蚀区0~5 cm土层土壤有机碳储量有显著影响,对交错区中部各土层均无显著影响;羊粪球密度0~10、>20 ind·m-2强度的放牧使交错区西部0~20 cm土层土壤有机碳储量显著降低了34.8%~50.9%,而在其他3个区域,放牧对有机碳储量的影响较退耕封禁地差异不显著。在交错区东部,放牧强度是影响退耕草地土壤有机碳储量的主要因素,而其他3个区域有机碳储量主要受土壤理化性质和(或)枯落物生物量的影响。羊粪球密度10~20 ind·m-2强度的放牧对各区域退耕草地0~20 cm土层土壤有机碳储量无显著影响。 相似文献
8.
9.
鼎湖山自然保护区土壤有机碳贮量和分配特征 总被引:59,自引:4,他引:59
基于61个土壤剖面的数据,分析了鼎湖山自然保护区4种自然植被类型(沟谷雨林、季风常绿阔叶林、山地常绿阔叶林和山地灌木草丛)和4种次生植被类型(马尾松针叶林、针阔混交林、次生季风常绿阔叶林和常绿灌丛)的土壤有机碳贮量及其分配特征.结果如下(1)各植被类型土壤有机碳含量随深度增加而减少,但植被类型不同其减少程度不同.除 >40cm土层外,自然植被类型的土壤有机碳含量明显高于次生植被类型.(2)土壤碳密度和土壤有机碳含量一样随深度增加而减少.两大植被类型间比较,除山地灌木草丛 >40cm土层外,自然植被类型各个土层土壤碳密度都高于所有的次生植被类型对应的碳密度.对于整个土层而言,各植被类型土壤碳密度在30.9~127.9 t/hm2间,总平均为73.9 t/hm2.(3)各植被类型的土壤厚度平均为36.7~73.3cm,总平均为56.4cm.除了山地常绿阔叶林外,土壤厚度基本上沿海拔高度增加而减少.(4)保护区各植被类型总面积为1028.4 hm2,土壤总碳贮量为72287.0 t,其中0~10、10~20、20~40cm和 >40cm四个土层分别占32.0%、20.6%、25.8%和21.6%.自然植被土壤碳贮量在表层(0~20cm)的比重比次生植被的高.所有的植被类型中,混交林碳贮量贡献最大,季风常绿阔叶林次之.自然植被类型土壤在碳贮存方面发挥积极的作用.(5)通过比较,鼎湖山保护区土壤碳密度整体较低,表层土壤碳贮量贡献较大.分析表明人为干扰是制约土壤碳贮存量大小的重要因素. 相似文献
10.
黄土丘陵区土壤有机碳固存对退耕还林草的时空响应 总被引:8,自引:0,他引:8
研究了黄土丘陵区土壤有机碳固存对退耕还林草的时空响应特征,分析了退耕还林草对土壤有机碳的近期影响和长期效应。结果表明,1)从黄土丘陵区退耕还林草的土壤固碳效应整体而言,相对于坡耕地,退耕还林和退耕撂荒具有显著的土壤碳增汇效应,而退耕还草、退耕还果没有明显土壤碳增汇效应。以天然草地土壤有机碳密度为目标,撂荒地表层土壤有机碳增汇潜力可达8.3 t/hm2。2)以10a为界,退耕还林草的近期土壤碳增汇效应不明显,而10a后土壤碳增汇效应逐渐明显,退耕还林、还灌、撂荒和坡耕地的固碳效应差异显著。3)在评估黄土丘陵区退耕还林草的土壤固碳效应时应当注重长期固碳效应。4)退耕还林草的土壤固碳效应主要受还林草方式及年限的影响,二者分别可解释55.6%和24.1%的有机碳变异性;地形因子可解释8.5%的有机碳变异性。在评估该区退耕还林的土壤固碳效应时应当充分考虑退耕年限和地形因子的影响。5)人工刺槐林地、人工柠条林地以及撂荒地深层土壤(100—200 cm)有机碳密度占2 m土体有机碳密度的35%—40%,而且随着植被恢复深层土壤有机碳密度显著增加。6)在估算黄土丘陵区退耕还林土壤固碳效应时应该考虑深层碳累积。如果按1 m土层的土壤有机碳密度计算,会严重低估退耕还林草的土壤固碳量。 相似文献
11.
Losses of soil organic carbon under wind erosion in China 总被引:7,自引:0,他引:7
Hao Yan Shaoqiang Wang† Changyao Wang‡ Guoping Zhang Nilanchal Patel§ 《Global Change Biology》2005,11(5):828-840
Soil organic carbon (SOC) storage generally represents the long‐term net balance of photosynthesis and total respiration in terrestrial ecosystems. However, soil erosion can affect SOC content by direct removal of soil and reduction of the surface soil depth; it also affects plant growth and soil biological activity, soil air CO2 concentration, water regimes, soil temperature, soil respiration, carbon flux to the atmosphere, and carbon deposition in soil. In arid and semi‐arid region of northern China, wind erosion caused soil degradation and desert expansion. This paper estimated the SOC loss of the surface horizon at eroded regions based on soil property and wind erosion intensity data. The SOC loss in China because of wind erosion was about 75 Tg C yr?1 in 1990s. The spatial pattern of SOC loss indicates that SOC loss of the surface horizon increases significantly with the increase of soil wind erosion intensity. The comparison of SOC loss and annual net primary productivity (NPP) of terrestrial ecosystem was discussed in wind erosion regions of China. We found that NPP is also low in the eroded regions and heavy SOC loss often occurs in regions where NPP is very small. However, there is potential to improve our study to resolve uncertainty on the soil organic matter oxidation and soil deposition processes in eroded and deposited sites. 相似文献
12.
Soil organic carbon dynamics jointly controlled by climate,carbon inputs,soil properties and soil carbon fractions 总被引:6,自引:0,他引:6 下载免费PDF全文
Zhongkui Luo Wenting Feng Yiqi Luo Jeff Baldock Enli Wang 《Global Change Biology》2017,23(10):4430-4439
Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (rC, Mg C ha?1 yr?1). Among these variables, we found that the most influential variables on rC were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on rC, followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining rC. The direct correlation of rC with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process‐based SOC models. 相似文献
13.
Quantifying carbon sequestration as a result of soil erosion and deposition: retrospective assessment using caesium-137 and carbon inventories 总被引:2,自引:0,他引:2
The role of soil erosion in the global carbon cycle remains a contested subject. A new approach to the retrospective derivation of erosion‐induced quantitative fluxes of carbon between soil and atmosphere is presented and applied. The approach is based on the premise that soil redistribution perturbs the carbon cycle by driving disequilibrium between soil carbon content and input. This perturbation is examined by establishing the difference between measured carbon inventories and the inventories that would be found if input and content were in dynamic equilibrium. The carbon inventory of a profile in dynamic equilibrium is simulated by allowing lateral and vertical redistribution of carbon but treating all other profile inputs as equal to outputs. Caesium‐137 is used to derive rates of vertical and lateral soil redistribution. Both point and field‐scale estimates of carbon exchange with the atmosphere are derived using the approach for a field subject to mechanized agricultural in the United Kingdom. Sensitivity analysis is undertaken and demonstrates that the approach is robust. The results indicate that, despite a 15% decline in the carbon content of the cultivation layer of the eroded part of the field, this area has acted as a net sink of 11 ± 2 g C m?2 yr?1 over the last half century and that in the field as a whole, soil redistribution has driven a sink of 7 ± 2 g C m?2 yr?1 (6 ± 2 g C m?2 yr?1 if all eroded carbon transported beyond the field boundary is lost to the atmosphere) over the same period. This is the first empirical evidence for, and quantification of, dynamic replacement of eroded carbon. The relatively modest field‐scale net sink is more consistent with the identification of erosion and deposition as a carbon sink than a carbon source. There is a clear need to assemble larger databases with which to evaluate critically the carbon sequestration potential of erosion and deposition in a variety of conditions of agricultural management, climate, relief, and soil type. In any case, this study demonstrated that the operation of erosion and deposition processes within the boundaries of agricultural fields must be understood as a key driver of the net carbon cycle consequences of cultivating land. 相似文献
14.
农田土壤有机碳固定潜力研究进展 总被引:41,自引:5,他引:41
土壤有机碳的贮存和损失的研究是目前国际上前沿研究领域之一。研究农田土壤有机碳固定过程 ,对于了解农业生产过程和生态过程的关系具有十分重要的意义。在农田土壤中 ,发生变化的有机碳主要是年轻或轻组有机碳 ,而且土壤有机碳的损失或固定都是在土壤表层和有限的时间内发生 ,且数量巨大。传统的耕作体系是造成土壤有机碳损失的主要原因。为了增加农田土壤有机碳的保有量 ,农业管理措施应该从增加有机碳的输入量 (如草田轮作、保留残茬以及施用肥料等 )和减少土壤有机碳的矿化 (少、免耕等 )两方面入手 相似文献
15.
The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15–50% slower when an erosion rate of 15 t soil ha?1 yr?1 was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3–1.0 t CO2 ha?1 yr?1. This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities. 相似文献
16.
农田生态系统土壤有机碳库及其影响因子 总被引:35,自引:2,他引:35
土壤有机碳(SOC)的数量和质量在很大程度上与维持和提高土壤肥力密切相关。农田生态系统土壤碳库研究一直是农业、生态和环境领域的一个主要方向。土地利用、耕作、作物类型、种植密度、灌溉、施肥以及其他人为活动等,对农田生态系统土壤有机碳库的变化均能产生影响。本文综合评述了农田生态系统土壤有机碳库及其影响因子,土壤碳截获潜力,维持和提高土壤有机碳库的措施,以及农田土壤碳截获在温室气体减排及气候变化中的潜在作用等,最后提出了农田生态系统土壤有机碳库研究的主要方向。 相似文献
17.
水土流失治理措施对小流域土壤有机碳和全氮的影响 总被引:4,自引:0,他引:4
明确综合治理条件下小流域土壤有机碳(Soil organic carbon,SOC)和全氮(Total nitrogen,TN)的空间分布特征及其影响因素,对科学评价水土流失区土壤固碳潜力具有重要意义。以黄土高原丘陵沟壑区典型小流域(砖窑沟流域)为对象,基于流域内3种典型地貌类型(梁峁坡、沟坡、沟谷)和3种典型水土流失治理措施(水平梯田、林地和草地措施,坡耕地为对照),采集土壤样品737个,研究地貌类型和水土流失治理措施对小流域SOC和TN变化的影响。结果表明,同一地貌类型上,水平梯田、林地和草地措施的SOC和TN(0—10 cm土层)含量均显著高于坡耕地(P<0.1)。梁峁坡上,水平梯田、林地和草地措施条件下的SOC和TN含量较坡耕地依次提高了18%和24%、70%和59%、25%和21%;沟坡上,林地和草地措施的SOC和TN较坡耕地依次提高了76%和54%、25%和27%。同一治理措施在不同地貌类型间对0—10 cm土层SOC和TN的影响存在显著差异(P<0.1)。水平梯田条件下,沟谷的SOC和TN含量比峁坡提高了46%和43%;林地措施条件下,沟坡的SOC和TN含量比峁坡提高了18%和6%;草地措施条件下,沟坡的SOC和TN含量比峁坡提高了14%和18%。0—100 cm土层的SOC或TN在不同地貌类型或不同治理措施间的差异与土壤水分含量(Soil moisture,SM)的变化趋势基本一致,并且SOC或TN与SM呈指数关系y=aebx(y为SOC或TN,x为SM)。 相似文献
18.
19.
《植物生态学报》2015,39(10):1012
What would be the impact of external nitrogen additions on soil carbon, an issue still under debating, as reported experimental results were either positive, negtive or neutral. Several factors may be related to these seemingly controversial results: differences in ecosystem types and soil properties, soil carbon detection methods, soil depths, and contents of soil labile and recalcitrant carbon that affect the responses to nitrogen additions, all could cause discrepancies and variations in carbon sequestration. The several processes that contribute to enhance soil organic carbon storage include increasing litter input, decresing soil carbon output, particularly, by supressed decomposition of recalcitrant carbon, promoting soil humifiction and formation of recalcitrant carbon storage. However, there are still many uncertainties associated with these issues. To improve our understanding, the research about carbon in deep soil layers, dissolved organic carbon leaching and accumulation, and the effect of labile and recalcitrant soil C ratios on N addition responses, should be further investigated in the future studies. 相似文献
20.
土壤有机碳库是陆地生态系统碳库的重要组成, 在全球碳循环中发挥着重要的作用。受元素化学计量平衡调控作用, 氮输入的增加将会对土壤有机碳库产生重要影响。然而, 目前关于陆地生态系统碳库对氮添加的响应主要集中在植被碳库, 对土壤碳库研究较少, 且研究结论争议较大, 尤其对其响应机制缺少系统梳理。该文作者通过对已有文献进行梳理, 认为生态系统类型、土壤碳变化的检测方法、土壤深度, 以及土壤稳定性碳和易变碳含量的差异可能是造成当前研究土壤碳汇增量(每克氮输入所增加的碳)差异的重要原因。氮添加条件下土壤有机碳的积累机制可能包括3个方面: 1)氮添加增加了凋落物输入, 促进了碳积累; 2)氮添加减少土壤碳输出, 尤其是抑制了稳定性碳的分解; 3)促进土壤腐殖质及稳定性碳的形成。此外, 该文结合当前研究中存在的不足, 提出今后需加强对深层土壤碳、土壤可溶性有机碳的淋溶及吸附, 以及不同土壤碳组分对氮添加的响应研究, 并通过改进检测方法减少氮添加条件下碳储量的测量误差。 相似文献