首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organogenesis at the shoot meristem requires a delicate balance between stem cell specification and differentiation. In Arabidopsis thaliana, WUSCHEL (WUS) is a key factor promoting stem cell identity, whereas the CLAVATA (CLV1, CLV2, and CLV3) loci appear to promote differentiation by repressing WUS expression. In a screen for mutations modifying clv1 mutants, we have identified a novel regulator of meristem development we term CORONA (CNA). Whereas cna single mutant plants exhibit subtle defects in meristem development, clv cna double mutants develop massively enlarged apices that display early loss of organogenesis, misexpression of WUS and CLV3, and eventual differentiation of the entire apex. The CNA gene was isolated by positional cloning and found to encode a class III homeodomain Leu zipper protein. A missense mutation resulting in the dominant-negative cna-1 allele was identified in a conserved domain of unknown function, and a likely null allele was shown to display a similar but weaker phenotype. CNA is expressed in developing vascular tissue, diffusely through shoot and flower meristems, and within developing stamens and carpels. Our analysis of WUS expression in wild-type, clv, and clv cna plants revealed that, contrary to current models, WUS is neither necessary nor sufficient for stem cell specification and that neither WUS nor CLV3 is a marker for stem cell identity. We propose that CNA functions in parallel to the CLV loci to promote organ formation.  相似文献   

2.
H Huang  H Ma 《The Plant cell》1997,9(2):115-134
A novel gene that regulates floral meristem activity and controls floral organ number was identified in Arabidopsis and is designated FON1 (for FLORAL ORGAN NUMBER1). The fon1 mutants exhibit normal vegetative development and produce normal inflorescence meristems and immature flowers before stage 6. fon1 flowers become visibly different from wild-type flowers at stage 6, when the third-whorl stamen primordia have formed. The fon1 floral meristem functions longer than does that of the wild type: after the outer three-whorl organ primordia have initiated, the remaining central floral meristem continues to produce additional stamen primordia interior to the third whorl. Prolonged fon1 floral meristem activity also results in an increased number of carpels. The clavata (clv) mutations are known to affect floral meristem activity. We have analyzed the clv1 fon1, clv2 fon1, and clv3 fon1 double mutants. These double mutants all have similar phenotypes, with more stamens and carpels than either fon1 or clv single mutants. This indicates that FON1 and CLV genes function in different pathways to control the number of third- and fourth-whorl floral organs. In addition, to test for possible interactions between FON1 and other floral regulatory genes, we have constructed and analyzed the relevant double mutants. Our results suggest that FON1 does not interact with TERMINAL FLOWER1, APETALA1, APETALA2, or UNUSUAL FLORAL ORGAN. In contrast, normal LEAFY function is required for the expression of fon1 phenotypes. In addition, FON1 and AGAMOUS both seem to affect the domain of APETALA3 function, which also affects the formation of stamen-carpel chimera due to fon1 mutations. Finally, genetic analysis suggests that FON1 interacts with SUPERMAN, which also regulates floral meristem activity.  相似文献   

3.
Deyoung BJ  Clark SE 《Genetics》2008,180(2):895-904
The CLAVATA1 (CLV1) receptor kinase regulates stem cell specification at shoot and flower meristems of Arabidopsis. Most clv1 alleles are dominant negative, and clv1 null alleles are weak in phenotype, suggesting additional receptors functioning in parallel. We have identified two such parallel receptors, BAM1 and BAM2. We show that the weak nature of the phenotype of clv1 null alleles is dependent on BAM activity, with bam clv mutants exhibiting severe defects in stem cell specification. Furthermore, BAM activity in the meristem depends on CLV2, which is required in part for CLV1 function. In addition, clv1 mutants enhance many of the Bam organ phenotypes, indicating that, contrary to current understanding, CLV1 function is not specific to the meristem. CLV3 encodes a small, secreted peptide that acts as the ligand for CLV1. Mutations in clv3 lead to increased stem cell accumulation. Surprisingly, bam1 and bam2 mutants suppress the phenotype of clv3 mutants. We speculate that in addition to redundant function in the meristem center, BAM1 and BAM2 act to sequester CLV3-like ligands in the meristem flanks.  相似文献   

4.
Mutations at the CLAVATA loci (CLV1, CLV2 and CLV3) result in the accumulation of undifferentiated cells at the shoot and floral meristems. We have isolated three mutant alleles of a novel locus, POLTERGEIST (POL), as suppressors of clv1, clv2 and clv3 phenotypes. All pol mutants were nearly indistinguishable from wild-type plants; however, pol mutations provided recessive, partial suppression of meristem defects in strong clv1 and clv3 mutants, and nearly complete suppression of weak clv1 mutants. pol mutations partially suppressed clv2 floral and pedicel defects in a dominant fashion, and almost completely suppressed clv2 phenotypes in a recessive manner. These observations, along with dominant interactions observed between the pol and wuschel (wus) mutations, indicate that POL functions as a critical regulator of meristem development downstream of the CLV loci and redundantly with WUS. Consistent with this, pol mutations do not suppress clv3 phenotypes by altering CLV1 receptor activation.  相似文献   

5.
The shoot apical meristem (SAM) is the fundamental structure that is located at the growing tip and gives rise to all aerial parts of plant tissues and organs, such as leaves, stems and flowers. In Arabidopsis thaliana, the CLAVATA3 (CLV3) pathway regulates the stem cell pool in the SAM, in which a small peptide ligand derived from CLV3 is perceived by two major receptor complexes, CLV1 and CLV2-CORYNE (CRN)/SUPPRESSOR OF LLP1 2 (SOL2), to restrict WUSCHEL (WUS) expression. In this study, we used the functional, synthetic CLV3 peptide (MCLV3) to isolate CLV3-insensitive mutants and revealed that a receptor-like kinase, RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), also known as TOADSTOOL 2 (TOAD2), is another key regulator of meristem maintenance. Mutations in the RPK2 gene result in stem cell expansion and increased number of floral organs, as seen in the other clv mutants. These phenotypes are additive with both clv1 and clv2 mutations. Moreover, our biochemical analyses using Nicotiana benthamiana revealed that RPK2 forms homo-oligomers but does not associate with CLV1 or CLV2. These genetic and biochemical findings suggest that three major receptor complexes, RPK2 homomers, CLV1 homomers and CLV2-CRN/SOL2 heteromers, are likely to mediate three signalling pathways, mainly in parallel but with potential crosstalk, to regulate the SAM homeostasis.  相似文献   

6.
Cellular parameters of the shoot apical meristem in Arabidopsis.   总被引:9,自引:3,他引:6       下载免费PDF全文
P Laufs  O Grandjean  C Jonak  K Kiêu    J Traas 《The Plant cell》1998,10(8):1375-1390
The shoot apical meristem (SAM) is a small group of dividing cells that generate all of the aerial parts of the plant. With the goal of providing a framework for the analysis of Arabidopsis meristems at the cellular level, we performed a detailed morphometric study of actively growing inflorescence apices of the Landsberg erecta and Wassilewskija ecotypes. For this purpose, cell size, spatial distribution of mitotic cells, and the mitotic index were determined in a series of optical sections made with a confocal laser scanning microscope. The results allowed us to identify zones within the inflorescence SAM with different cell proliferation rates. In particular, we were able to define a central area that was four to six cells wide and had a low mitotic index. We used this technique to compare the meristem of the wild type with the enlarged meristems of two mutants, clavata3-1 (clv3-1) and mgoun2 (mgo2). One of the proposed functions of the CLV genes is to limit cell division rates in the center of the meristem. Our data allowed us to reject this hypothesis, because the mitotic index was reduced in the inflorescence meristem of the clv3-1 mutant. We also observed a large zone of slowly dividing cells in meristems of clv3-1 seedlings. This zone was not detectable in the wild type. These results suggest that the central area is increased in size in the mutant meristem, which is in line with the hypothesis that the CLV3 gene is necessary for the transition of cells from the central to the peripheral zone. Genetic and microscopic analyses suggest that mgo2 is impaired in the production of primordia, and we previously proposed that the increased size of the mgo2 meristem could be due to an accumulation of cells at the periphery. Our morphometric analysis showed that mgo2 meristems, in contrast to those of clv3-1, have an enlarged periphery with high cell proliferation rates. This confirms that clv3-1 and mgo2 lead to meristem overgrowth by affecting different aspects of meristem function.  相似文献   

7.
Flowers of an alloplasmic male-sterile tobacco line, comprised of the nuclear genome of Nicotiana tabacum and the cytoplasm of Nicotiana repanda, develop short, poorly-pigmented petals and abnormal sterile stamens that often are fused with the carpel wall. The development of flower organ primordia and establishment of boundaries between the different zones in the floral meristem were investigated by performing expression analysis of the tobacco orthologs of the organ identity genes GLO, AG and DEF. These studies support the conclusion that boundary formation was impaired between the organs produced in whorls 3 and 4 resulting in partial fusions between anthers and carpels. According to the investigations cell divisions and floral meristem size in the alloplasmic line were drastically reduced in comparison with the male-fertile tobacco line. The reduction in cell divisions leads to a discrepancy between cell number and cell determination at the stage when petal and stamen primordia should be initiated. At the same stage expression of the homeotic genes was delayed in comparison with the male-fertile line. However, the abnormal organ development was not due to a failure in the spatial expression of the organ identity genes. Instead the aberrant development in the floral organs of whorls 2, 3 and 4 appears to be caused by deficient floral meristem development at an earlier stage. Furthermore, defects in cell proliferation in the floral meristem of the alloplasmic male-sterile line correlates with presence of morphologically modified mitochondria. The putative causes of reduced cell number in the floral meristem and the consequences for floral development are discussed.  相似文献   

8.
9.
Jeong S  Clark SE 《Genetics》2005,169(2):907-915
Photoperiod has been known to regulate flowering time in many plant species. In Arabidopsis, genes in the long day (LD) pathway detect photoperiod and promote flowering under LD. It was previously reported that clavata2 (clv2) mutants grown under short day (SD) conditions showed suppression of the flower meristem defects, namely the accumulation of stem cells and the resulting production of extra floral organs. Detailed analysis of this phenomenon presented here demonstrates that the suppression is a true photoperiodic response mediated by the inactivation of the LD pathway under SD. Inactivation of the LD pathway was sufficient to suppress the clv2 defects under LD, and activation of the LD pathway under SD conditions restored clv2 phenotypes. These results reveal a novel role of photoperiod in flower meristem development in Arabidopsis. Flower meristem defects of clv1 and clv3 mutants are also suppressed under SD, and 35S:CO enhanced the defects of clv3, indicating that the LD pathway works independently from the CLV genes. A model is proposed to explain the interactions between photoperiod and the CLV genes.  相似文献   

10.
11.
12.
13.
The two main tasks of a meristem, self-perpetuation and organ initiation, are separated spatially. Slowly dividing cells in the meristem center act as pluripotent stem cells, and only their derivatives in the meristem periphery specify new organs. Meristem integrity and cellular proliferation are controlled in part by regulatory interactions between genes that are expressed in specific subdomains of the meristem. Using transposon-mediated activation tagging, we have identified Dornr?schen (drn-D) mutants of Arabidopsis that prematurely arrest shoot meristem activity with the formation of radialized lateral organs. The mutated gene (DRN/ESR1), which encodes an AP2/ERF protein, is expressed in a subdomain of meristem stem cells, in lateral organ anlagen, and transiently in the distal domain of organ primordia. During the development of drn-D mutants, expression of the homeobox gene SHOOTMERISTEMLESS is downregulated and later reactivated in an altered domain. In addition, we found increased expression of CLAVATA3 and WUSCHEL, two genes that antagonistically regulate stem cell fate in meristems. These findings suggest that the DRN/ESR1 gene product is involved in the regulation of gene expression patterns in meristems. Furthermore, specific misexpression of DRN in meristem stem cells affects organ polarity and outgrowth in the meristem periphery, indicating that DRN/ESR1 itself, or a process regulated by DRN/ESR1, can act non-cell-autonomously. We elaborate on the role of DRN/ESR1 in meristem and organ development and discuss its possible role in the process of shoot regeneration.  相似文献   

14.
Arabidopsis sol2 mutants showed CLV3 peptide resistance. Twenty-six synthetic CLE peptides were examined in the clv1, clv2 and sol2 mutants. sol2 showed different levels of resistance to the various peptides, and the spectrum of peptide resistance was quite similar to that of clv2. SOL2 encoded a receptor-like kinase protein which is identical to CORYNE (CRN). GeneChip analysis revealed that the expression of several genes was altered in the sol2 root tip. Here, we suggest that SOL2, together with CLV2, plays an important role in the regulation of root meristem development through the CLE signaling pathway.  相似文献   

15.
CLAVATA3 (CLV3), CLV3/ESR19 (CLE19), and CLE40 belong to a family of 26 genes in Arabidopsis thaliana that encode putative peptide ligands with unknown identity. It has been shown previously that ectopic expression of any of these three genes leads to a consumption of the root meristem. Here, we show that in vitro application of synthetic 14-amino acid peptides, CLV3p, CLE19p, and CLE40p, corresponding to the conserved CLE motif, mimics the overexpression phenotype. The same result was observed when CLE19 protein was applied externally. Interestingly, clv2 failed to respond to the peptide treatment, suggesting that CLV2 is involved in the CLE peptide signaling. Crossing of the CLE19 overexpression line with clv mutants confirms the involvement of CLV2. Analyses using tissue-specific marker lines revealed that the peptide treatments led to a premature differentiation of the ground tissue daughter cells and misspecification of cell identity in the pericycle and endodermis layers. We propose that these 14-amino acid peptides represent the major active domain of the corresponding CLE proteins, which interact with or saturate an unknown cell identity-maintaining CLV2 receptor complex in roots, leading to consumption of the root meristem.  相似文献   

16.
The RABBIT EARS (RBE) gene has been identified as a regulator of petal development in Arabidopsis thaliana. We find that second-whorl petals in rbe mutants can be replaced with staminoid organs, stamens or filaments and that some rbe flowers have increased numbers of sepals and exhibit fusion of sepals. We show that these rbe defects are due to AGAMOUS (AG) misexpression in the second whorl. Consistent with its role in maintaining the spatial boundary of AG expression, rbe enhanced the second-whorl defects present in ap2-1, lug-1 and clf-2 mutants. In the development of second-whorl organs, RBE acts in the same pathway and downstream of UNUSUAL FLORAL ORGANS (UFO). Enhanced first-whorl organ fusion in ap2-2 rbe-3, ant-4 rbe-3 and cuc2-1 rbe-3 double mutants supports an additional role for RBE in organ separation. RBE thus acts to maintain two different types of spatial boundaries in young flowers: boundaries between organ primordia within a whorl and boundaries of homeotic gene expression between whorls.  相似文献   

17.
18.
19.
20.
? The CUP-SHAPED COTYLEDON (CUC)/NO APICAL MERISTEM (NAM) family of genes control boundary formation and lateral organ separation, which is critical for proper leaf and flower patterning. However, most downstream targets of CUC/NAM genes remain unclear. ? In a forward screen of the tobacco retrotransposon1 (Tnt1) insertion population in Medicago truncatula, we isolated a weak allele of the no-apical-meristem mutant mtnam-2. Meanwhile, we regenerated a mature plant from the null allele mtnam-1. These materials allowed us to extensively characterize the function of MtNAM and its downstream genes. ? MtNAM is highly expressed in vegetative shoot buds and inflorescence apices, specifically at boundaries between the shoot apical meristem and leaf/flower primordia. Mature plants of the regenerated null allele and the weak allele display remarkable floral phenotypes: floral whorls and organ numbers are reduced and the floral organ identity is compromised. Microarray and quantitative RT-PCR analyses revealed that all classes of floral homeotic genes are down-regulated in mtnam mutants. Mutations in MtNAM also lead to fused cotyledons and leaflets of the compound leaf as well as a defective shoot apical meristem. ? Our results revealed that MtNAM shares the role of CUC/NAM family genes in lateral organ separation and compound leaf development, and is also required for floral organ identity and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号