首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoinactivation and photoprotection of photosystem II in nature   总被引:18,自引:0,他引:18  
Photosystem II plays a central role not only in energy transduction, but also in monitoring the molecular redox mechanisms involved in signal transduction for acclimation to environmental stresses. Central to the regulation of photosystem II (PSII) function as a light-driven molecular machine in higher plant leaves, is an inevitable photo-inactivation of one PSII after 106–107 photons have been delivered to the leaf, although the act of photoinactivation per se requires only one photon. PSII function in acclimated pea leaves shows a reciprocity between irradiance and the time of illumination, demonstrating that the photoinactivation of PSII is a light dosage effect, depending on the number of photons absorbed rather than the rate of photon absorption. Hence, PSII photoinactivation will occur at low as well as high irradiance. There is a heterogeneity of PSII functional stability, possibly with less stable PSII monomers being located in grana margins and more stable PSII dimers in appressed granal domains. Matching the inevitable photoinactivation of PSII, green plants have an intrinsic capacity for D1 protein synthesis to restore PSII function which is saturated at very low light. Photoinhibition of PSII in vivo is often a photoprotective strategy rather than a damaging process.  相似文献   

2.
Utilization of absorbed light energy by photosystem (PS) II for O2 evolution depends on the light-harvesting antenna size, but the role of antenna size in the photoinactivation of PSII seems controversial. To address this controversy, pea (Pisum sativum L.) plants were grown in low (50 [mu]mol m-2 s-1) or high (650 [mu]mol m-2 s-1) light. The doubled functional antenna size of PSII in low light allows each PSII to utilize twice as many photons at given flash light energies for O2 evolution. The application of a target theory to depict the photon dose dependency of PSII photoinactivation measured by repetitive-flash O2 yield and the ratio of variable to maximal chlorophyll fluorescence indicates that photoinactivation of PSII is probably a single-hit process in which repair or photoprotective mechanisms are only slightly involved. Furthermore, the exacerbation of photoinactivation of PSII with greater antenna size under anaerobic conditions strongly indicates that photoinactivation of PSII depends on antenna size.  相似文献   

3.
When organisms that perform oxygenic photosynthesis are exposed to strong visible or UV light, inactivation of photosystem II (PSII) occurs. However, such organisms are able rapidly to repair the photoinactivated PSII. The phenomenon of photoinactivation and repair is known as photoinhibition. Under normal laboratory conditions, the rate of repair is similar to or faster than the rate of photoinactivation, preventing the detailed analysis of photoinactivation and repair as separate processes. We report here that, using strong UV-A light from a laser, we were able to analyze separately the photoinactivation and repair of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Very strong UV-A light at 364 nm and a photon flux density of 2600 μmol photons m−2 s−1 inactivated the oxygen-evolving machinery and the photochemical reaction center of PSII within 1 or 2 min before the first step in the repair process, namely, the degradation of the D1 protein, occurred. During subsequent incubation of cells in weak visible light, the activity of PSII recovered fully within 30 min and this process depended on protein synthesis. During subsequent incubation of cells in darkness for 60 min, the D1 protein of the photoinactivated PSII was degraded. Further incubation in weak visible light resulted in the rapid restoration of the activity of PSII. These observations suggest that very strong UV-A light is a useful tool for the analysis of the repair of PSII after photoinactivation.  相似文献   

4.
To determine the dependence of in vivo photosystem (PS) II function on photon exposure and to assign the relative importance of some photoprotective strategies of PSII against excess light, the maximal photochemical efficiency of PSII (Fv/Fm) and the content of functional PSII complexes (measured by repetitive flash yield of oxygen evolution) were determined in leaves of pea (Pisum satlvum L.) grown in moderate light. The modulation of PSII functionality in vivo was induced by varying either the duration (from 0 to 3 h) of light treatment (fixed at 1200 or 1800 mol photons · m-2 · s-1) or irradiance (from 0 to 3000 mol photons · m-2 · s-1) at a fixed duration (1 h) after infiltration of leaves with water (control), lincomycin (an inhibitor of chloroplast-encoded protein synthesis), nigericin (an uncoupler), or dithiothreitol (an inhibitor of the xanthophyll cycle) through the cut petioles of leaves of 22 to 24-day-old plants. We observed a reciprocity of irradiance and duration of illumination for PSII function, demonstrating that inactivation of functional PSII depends on the total number of photons absorbed, not on the rate of photon absorption. The Fv/Fm ratios from photoinhibitory light-treated leaves, with or without inhibitors, declined pseudo-linearly with photon exposure. The number of functional PSII complexes declined multiphasically with increasing photon exposure, in the following decreasing order of inhibitor effect: lincomycin > nigericin > DTT, indicating the central role of D1 protein turnover. While functional PSII and Fv/Fm ratio showed a linear relationship under high photon exposure conditions, in inhibitor-treated leaves the Fv/Fm ratio failed to reveal the loss of up to 25% of the total functional PSII under low photon exposure. The loss of this 25% of less-stable functional PSII was accompanied by a decrease of excitation-energy trapping capacity at the reaction centre of PSII (revealed by the fluorescence parameter, 1/Fo-1/Fm, where Fo and Fm stand for chlorophyll fluorescence when PSII reaction centres are open and closed, respectively), but not by a loss of excitation energy at the antenna (revealed by the fluorescence parameter, 1/Fm). We conclude that (i) PSII is an intrinsic photon counter under photoinhibitory conditions, (ii) PSII functionality is mainly regulated by D1 protein turnover, and to a lesser extent, by events mediated via the transthylakoid pH gradient, and (iii) peas exhibit PSII heterogeneity in terms of functional stability during photon exposure.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fo chlorophyll fluorescence corresponding to open PSII reaction centres - Fv, Fm variable and maximum fluorescence after dark incubation, respectively - Fs, Fm steady-state and maximum fluorescence during illumination, respectively - P680 reactioncentre chlorophyll and primary electron donor of PSII - PS photosystem Financial support of this work by Department of Employment, Education and Training/Australian Research Council International Research Fellowships Program (Korea) is gratefully acknowledged.  相似文献   

5.
When organisms that perform oxygenic photosynthesis are exposed to strong visible or UV light, inactivation of photosystem II (PSII) occurs. However, such organisms are able rapidly to repair the photoinactivated PSII. The phenomenon of photoinactivation and repair is known as photoinhibition. Under normal laboratory conditions, the rate of repair is similar to or faster than the rate of photoinactivation, preventing the detailed analysis of photoinactivation and repair as separate processes. We report here that, using strong UV-A light from a laser, we were able to analyze separately the photoinactivation and repair of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Very strong UV-A light at 364 nm and a photon flux density of 2600 micromol photons m(-2) s(-1) inactivated the oxygen-evolving machinery and the photochemical reaction center of PSII within 1 or 2 min before the first step in the repair process, namely, the degradation of the D1 protein, occurred. During subsequent incubation of cells in weak visible light, the activity of PSII recovered fully within 30 min and this process depended on protein synthesis. During subsequent incubation of cells in darkness for 60 min, the D1 protein of the photoinactivated PSII was degraded. Further incubation in weak visible light resulted in the rapid restoration of the activity of PSII. These observations suggest that very strong UV-A light is a useful tool for the analysis of the repair of PSII after photoinactivation.  相似文献   

6.
The role of electron transport to O2 in mitigating against photoinactivation of Photosystem (PS) II was investigated in leaves of pea (Pisum sativum L.) grown in moderate light (250 mol m–2 s–1). During short-term illumination, the electron flux at PS II and non-radiative dissipation of absorbed quanta, calculated from chlorophyll fluorescence quenching, increased with increasing O2 concentration at each light regime tested. The photoinactivation of PS II in pea leaves was monitored by the oxygen yield per repetitive flash as a function of photon exposure (mol photons m–2). The number of functional PS II complexes decreased nonlinearly with increasing photon exposure, with greater photoinactivation of PS II at a lower O2 concentration. The results suggest that electron transport to O2, via the twin processes of oxygenase photorespiration and the Mehler reaction, mitigates against the photoinactivation of PS II in vivo, through both utilization of photons in electron transport and increased nonradiative dissipation of excitation. Photoprotection via electron transport to O2 in vivo is a useful addition to the large extent of photoprotection mediated by carbon-assimilatory electron transport in 1.1% CO2 alone.Abbreviations Fm, Fo, Fv- maximal, initial (corresponding to open PS II traps) and variable chlorophyll fluorescence yield, respectively - NPQ- non-photochemical quenching - PS- photosystem - QA- primary quinone acceptor - qP- photochemical quenching coefficient  相似文献   

7.
Previous studies have not always found a significant relationshipbetween fast repetition rate fluorometry (FRRF)-derived and14C-based primary production rates. This apparent discrepancymight be related to environmental control of the coupling betweenphotosynthetic electron transport through photosystem II (PSII)and carbon uptake in phytoplankton. In this study, we lookedat this relationship under upwelling conditions favourable forphytoplankton growth. The combination of both techniques allowedthe calculation of the quantum efficiency of carbon fixation,which averaged 0.12 mol C (mol quanta)–1 indicating thatphytoplankton populations were very efficient in convertingabsorbed photons into photosynthetically produced organic carbon.The tight coupling observed between phytoplankton photosyntheticelectron transport through PSII and carbon uptake resulted ina statistically significant linear relationship between FRRF-derivedand 14C-based carbon incorporation rates, with a slope of 1.43.In conclusion, the results of the this study indicate that FRRFcan be a useful tool to derive high spatial and temporal resolutionprimary production estimates under environmental conditionsfavouring the close coupling between PSII electron transportand carbon uptake, such as those characteristic of this coastalupwelling system.  相似文献   

8.
Bioluminescence of the solitary spumellanan radiolanan, Thaiassicollanucltata(Huxley), was investigated with photon-counting radiometryand intensified videography Light emission originated from numerousmicrosouices distributed throughout the extracapsulum and propagatedat a rate of 0 5 cm s1. The central capsule was not asource of bioluminescence A single brief mechanical stimulusproduced a flash with a simple waveform, mean duration of 5s,and maximum photon flux of 7 x 108 photons s1. Totalmechanically stimulable luminescence was 5x109 photons per organism.Maintained mechanical stimulation caused summation of lightemission that persisted for 18 s at a stirring speed of 2000r.p.m. Lower rates of stimulation increased the period overwhich luminescence was expressed. The response to electricalpulses involved minimal excitation during stimulation, a flashwas produced only after the cessation of stimulation and includedadditional flashes superimposed on the decay of luminescenceThe night-time vertical distribution of T nudeata during May1987 in the northern Sargasso Sea had a subsurface maximum ata depth of 45 m.  相似文献   

9.
Target theory and the photoinactivation of Photosystem II   总被引:1,自引:0,他引:1  
Application of target theory to the photoinactivation of Photosystem II in pea leaf discs (Park et al. 1995, 1996a,b) reveals that there is a critical light dosage below which there is complete photoprotection and above which there is photoinactivation (i.e a light-induced loss of oxygen flash yield). The critical dosage is about 3 mol photons m–2 for medium and high light-grown leaves and 0.36 mol photons m–2 for low light-grown leaves. Photoinactivation is a one-hit process with an effective cross-section of 0.045 m2 mol–1 photons which does not vary with growth irradiance, unlike the cross-section for oxygen evolution which increases with decreasing growth irradiance. The cross-section for oxygen evolution increased by about 20% following exposure to 6.8 mol photons m–2 which may be due to energy transfer from photoinactivated units to functional Photosystem II units. We propose that the photoinactivation of PS II begins when a small group of PS II pigment molecules whose structure is uninfluenced by growth irradiance, becomes uncoupled energetically from the rest of the photosynthetic unit and thus no longer transfers excitions to P680. De-excitation of this group of pigment molecules provides the energy which leads to the damage of Photosystem II. Treatment of pea leaves with dithiothreitol, an inhibitor of the xanthophyll cycle, decreases the critical dosage i.e. decreases photoprotection but has no effect on the PS II photoinactivation cross-section. Treatment with 1 M nigericin increased the photoinactivation cross-section of PS II as did exposure to lincomycin which inhibits D1 protein synthesis and thus the repair of PS II reaction centres.Abbreviations DTT- dithiothreitol - PS II- Photosystem II - Fm- maximum fluorescence - Fv- variable fluorescence - LHCIIb- main light harvesting pigment-protein complex of PS II - D1 protein- psbA gene product - P680- reaction centre chlorophyll of Photosystem II - Qa- first quinone electron acceptor of Photosystem II - (o2)- cross-section for oxygen evolution - (pi)- cross-section for photoinactivation  相似文献   

10.
The effect of photosynthetic photon flux density (PPFD) on carboxylationefficiency, estimated as the initial slope (IS) of net CO2 assimilationrate versus intercellular CO2 partial pressure response curve,as well as on ribulose-1, 5-bisphosphate carboxylase (Rubisco)activation was measured in Trifolium subterraneum L. leavesunder field conditions. The relationship between IS and PPFDfits a logarithmic curve. Rubisco activation accounts for theIS increase only up to a PPFD of 550 µmol photons m-2s-1. Further IS increase, between 550 and 1000 µmol photonsm-2 s-1, could be related to a higher ribulose fcwphosphate(RuBP) availability. The slow, but sustained IS increase above1000 µmol photons m-2 s-1 could be explained by the mesophyllCO2 diffusion barriers associated with the high chlorophylland protein content in field developed leaves. Key words: Photosynthesis, initial slope, ribulose-1, 5-bissphosphate carboxylase activation, light response, Trifolium subterraneum L  相似文献   

11.
Photoinactivation of Photosystem II (PS II), the light-induced loss of ability to evolve oxygen, inevitably occurs under any light environment in nature, counteracted by repair. Under certain conditions, the extent of photoinactivation of PS II depends on the photon exposure (light dosage, x), rather than the irradiance or duration of illumination per se, thus obeying the law of reciprocity of irradiance and duration of illumination, namely, that equal photon exposure produces an equal effect. If the probability of photoinactivation (p) of PS II is directly proportional to an increment in photon exposure (p = kΔx, where k is the probability per unit photon exposure), it can be deduced that the number of active PS II complexes decreases exponentially as a function of photon exposure: N = Noexp(−kx). Further, since a photon exposure is usually achieved by varying the illumination time (t) at constant irradiance (I), N = Noexp(−kI t), i.e., N decreases exponentially with time, with a rate coefficient of photoinactivation kI, where the product kI is obviously directly proportional to I. Given that N = Noexp(−kx), the quantum yield of photoinactivation of PS II can be defined as −dN/dx = kN, which varies with the number of active PS II complexes remaining. Typically, the quantum yield of photoinactivation of PS II is ca. 0.1μmol PS II per mol photons at low photon exposure when repair is inhibited. That is, when about 107 photons have been received by leaf tissue, one PS II complex is inactivated. Some species such as grapevine have a much lower quantum yield of photoinactivation of PS II, even at a chilling temperature. Examination of the longer-term time course of photoinactivation of PS II in capsicum leaves reveals that the decrease in N deviates from a single-exponential decay when the majority of the PS II complexes are inactivated in the absence of repair. This can be attributed to the formation of strong quenchers in severely-photoinactivated PS II complexes, able to dissipate excitation energy efficiently and to protect the remaining active neighbours against damage by light.  相似文献   

12.
Various photon doses (net number of photons per unit area perday), provided by varying both photon flux density and photoperiod,were applied to imbibing seeds of seven lots of four speciesof Compositae in various germination test regimes. In all fourspecies germination was dependent upon photon dose, the productof photon flux density and daily duration of exposure. The responsewas quantified by linear relations between the probit of percentagegermination and the logarithm of photon dose. In general, photonflux density and photoperiod only influenced the stimulationof germination by the low energy reaction indirectly (as factorsof daily photon dose), whereas there was a tendency for photoperiodto have a direct influence on the inhibition of germinationby the high irradiance reaction. Reducing the germination testtemperature from 25?C to 20?C and 15?C not only increased thedark germination of L. sativa L., but also broadened the photondose range at which full germination occurred by reducing theminimum value necessary for the germination of the most dormantseeds, and increasing the maximum value which failed to inhibitthe germination of any seeds. Differences between L. sativaand L. serriola L. in the response of germination to white lightwere only quantitative, rather than qualitative. The singlemost promotory dose for all four species was 3 ? 10–3mol m–2 d–1, although the inhibitory action of dosesup to 10– mol m– d– was generally only slight. Key words: Light, seed germination, seed dormancy, Compositae  相似文献   

13.
Changes in the PSII fluorescence upon shift of light qualitywere studied with the red alga Porphyridium cruentum IAM R-1and supplementarily with P. cruentum ATCC 50161, the cyanophytesSynechocystis spp. PCC6714 and PCC6803 and Synechococcus sp.NIBB1071. When Porphyridium cruentum grown under a weak redlight (PSI light) preferentially absorbed by Chl a was illuminatedwith a weak orange light (PSII light) mainly absorbed by phycobilisomes(PBS), a change of PSII fluorescence at room temperature wasinduced. The ratio of Fvm (Fm— Fo) to Fm was reduced rapidlyaccompanying the increase in Fo (T1/2 ca. 3 min). The effectsof DCMU and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinoneindicated that the fluorescence change is induced when plastoquinonepool is highly reduced. The fluorescence change after a shortPSII light illumination was reversible; it rapidly recoveredin the dark (T 1/2 ca. 3 min). The reversibility was graduallyreduced and disappeared after 40 h under PSII light accompanyingdecrease in PSII activity per PBS down to almost 50%. Sincethe pattern of the fluorescence change resembles that observablewhen PSII is photoinactivated, PSII light probably induces thephotoinactivation of PSII, possibly reversibly at first andirreversibly after prolonged illumination. Such a rapid fluorescencechange was insignificant in Synechocystis sp. either PCC6714or PCC6803. Only a slow and small decrease in Fvm/Fm level appearedafter prolonged PSII light illumination (the reduction of PSIIactivity per PBS was around 20%). In Porphyridium, shift fromPSII light to PSI light caused a rapid and chloramphenicol-sensitiveFvm/Fm elevation during the first 10 h while the increase inPSH activity per PBS was only 10% of that before the light shift.Then, a gradual elevation followed up to the level at the steadystate under PSI light. A similar rapid increase in Fvm/Fm wasobserved with Synechocystis PCC6714, in which the synthesisof PSII is not regulated, suggesting that a rapid increase inFvm/Fm does not reflect the acceleration of the synthesis ofPSII. Results were interpreted as that (1) PSII light causesphotoinactivation of PSII. Such a photoinactivation is markedin Prophyridium cells grown under PSI light. (2) In Porphyridium,changes in the abundance of PSII upon shift of light qualityare largely attributed to the photoinactivation of this type. (Received February 19, 1999; Accepted June 14, 1999)  相似文献   

14.
To investigate whether the in-vivo photoinhibition of photosystem II (PSII) function by excess light is an intrinsic property of PSII, the maximal photochemical efficiency of PSII (Fv/Fm) and the content of functional PSII (measured by repetitive flash yield of oxygen evolution) were determined in leaves of pea (Pisum sativum L.), grown in 50 (low light), 250 (medium light), and 650 (high light) mol photons·m–2·s–1. The modulation of PSII functionality in vivo was induced in 1.1% CO2 by varying either (i) the duration (0–2 h) of light treatment (fixed at 1800 mol photons· m–2·s–1) or (ii) irradiance (0–3200 mol photons·m–2·s–1) at a fixed duration (1 h), after infiltration of leaves with water (control), lincomycin (an inhibitor of chloroplast-encoded protein synthesis), or a combination of lincomycin with nigericin (an uncoupler), through the cut petioles of leaves of 22-to 24-d-old plants. The reciprocity law of irradiance and duration of illumination for PSII function in vivo (Park et al. 1995, Planta 196: 401–411) holds in all differently light-grown peas, demonstrating that inactivation of functional PSII depends on photon exposure (mol photons·m–2), not on the rate of photon absorption. In vivo, PSII acts as an intrinsic photon counter and at higher photon exposures is inactivated following absorption of about 3 × 107 photons. There is a functional heterogeneity of PSII in vivo with 25% less-stable PSIIs that are inactivated at low photon exposure, compared to 75% more-stable PSIIs regardless of modulation of the photosynthetic apparatus. We suggest that the less-stable PSIIs represent monomers located in the nonappressed granal margins, while the more-stable PSIIs are dimers located in the appressed grana membrane cores. The capacity for D1-protein synthesis was the same in all the light-acclimated peas and saturated at low light, indicating that D1-protein repair is also an intrinsic property of PSII. This accounts for the low intensity required for recovery of photoinhibition in sun and shade plants which is independent of light-harvesting antennae size or PSII/PSI stoichiometries.Abbreviations D1-protein psbA gene product - D2 protein psbD gene product - Fo chlorophyll fluorescence corresponding to open PSII reaction centres - Fv, Fm variable and maximum fluorescence after dark incubation, respectively - PS photosystem - QB secondary quinone electron acceptor Financial support for this research by the Department of Employment, Education and Training/Australian Research Council International Research Fellowships Program (Korea) is gratefully acknowledged.  相似文献   

15.
Effects of Nitrogen Nutrition on Photosynthesis in Cd-treated Sunflower Plants   总被引:10,自引:0,他引:10  
Increased nitrogen supply stimulates plant growth and photosynthesis.Since it was shown that heavy metals may cause deficienciesof essential nutrients in plants the potential reversal of cadmiumtoxicity by increased N nutrition was investigated. The effectson photosynthesis of low Cd (0, 0.5, 2 or 5 mmol m-3) combinedwith three N treatments (2, 7.5 or 10 mol m-3) were examinedin young sunflower plants. Chlorophyll fluorescence quenchingparameters were determined at ambient CO2and at 100 or 800 µmolquanta m-2 s-1. The vitality index (Rfd) decreased approx. three-timesin response to 5 mmol m-3Cd, at 2 and 10 mol m-3N. The maximumphotochemical efficiency of PSII reaction centres (Fv/ Fm) wasnot influenced by Cd or N treatment. The highest Cd concentrationdecreased quantum efficiency of PSII electron transport (II)by 30%, at 2 and 10 mol m-3N, mostly due to increased closureof PSII reaction centres (qP). Photosynthetic oxygen evolutionrates at saturating CO2were decreased in plants treated with5 mmol m-3Cd, at all N concentrations. The results indicatethat Cd treatment affected the ribulose-1,5-bisphosphate (RuBP)regeneration capacity of the Calvin cycle more than other processes.At the same time, the amounts of soluble and ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco) protein increased with Cd treatment.Decreased photosynthesis, but substantially increased Rubiscocontent, in sunflower leaves under Cd stress indicate that asignificant amount of Rubisco protein is not active in photosynthesisand could have another function. It is shown that optimal nitrogennutrition decreases the inhibitory effects of Cd in young sunflowerplants. Copyright 2000 Annals of Botany Company Helianthus annuus L., cadmium, nitrogen, photosynthesis, Rubisco, sunflower  相似文献   

16.
Shunichi Takahashi 《BBA》2005,1708(3):352-361
In photosynthetic organisms, impairment of the activities of enzymes in the Calvin cycle enhances the extent of photoinactivation of Photosystem II (PSII). We investigated the molecular mechanism responsible for this phenomenon in the unicellular green alga Chlamydomonas reinhardtii. When the Calvin cycle was interrupted by glycolaldehyde, which is known to inhibit phosphoribulokinase, the extent of photoinactivation of PSII was enhanced. The effect of glycolaldehyde was very similar to that of chloramphenicol, which inhibits protein synthesis de novo in chloroplasts. The interruption of the Calvin cycle by the introduction of a missense mutation into the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) also enhanced the extent of photoinactivation of PSII. In such mutant 10-6C cells, neither glycolaldehyde nor chloramphenicol has any additional effect on photoinactivation. When wild-type cells were incubated under weak light after photodamage to PSII, the activity of PSII recovered gradually and reached a level close to the initial level. However, recovery was inhibited in wild-type cells by glycolaldehyde and was also inhibited in 10-6C cells. Radioactive labelling and Northern blotting demonstrated that the interruption of the Calvin cycle suppressed the synthesis de novo of chloroplast proteins, such as the D1 and D2 proteins, but did not affect the levels of psbA and psbD mRNAs. Our results suggest that the photoinactivation of PSII that is associated with the interruption of the Calvin cycle is attributable primarily to the inhibition of the protein synthesis-dependent repair of PSII at the level of translation in chloroplasts.  相似文献   

17.
The response of the germination of seeds of Barbarea vema (Mill.)Aschers, Brassica chinensis L., Brassica juncea (L.) Czern.& Coss., Brassica oleracea L. var. gongylodes L., Camelinasaliva (L.) Crantz, Eruca saliva Mill., Lepidium sativum L.,Nasturtium officinale R. Br., and Rorippa palustris (L.) Besserto white fluorescent light of different photon flux densitiesapplied for different daily durations in a diurnal alternatingtemperature regime of 20 °C/30 °C (16 h/8 h) was quantifiedby linear relations between probit percentage germination andthe logarithm of photon dose, the product of photon flux densityand duration. The low energy reaction, in which increasing dosepromotes germination, was detected in all the seed populationsbut in Barbarea vema and Brassica Juncea the lowest photon doseapplied (10–5–2 and 10–5 7 mol m–2 d–1,respectively) was sufficient to saturate the response. Comparisons,where possible, between photoperiods demonstrated reciprocity,i.e. germination was proportional to photon dose irrespectiveof photoperiod, for the low energy reaction in Brassica oleracea(1 min d–1 to 1 h d–1), Camelina saliva (1 min d–1to 8 h d–1), Eruca saliva (1 min d–1 to 24 h d–1),Lepidium sativum (I min d–1 to 8 h d–1) and Rorippapalustris (1 min d–1 to 8 h d–1), but not in Brassicachinensis and Nasturtium officinale. The high irradiance reaction,in which increasing dose inhibits germination, was detectedin Barbarea vema, Brassica chinensis, Brassica juncea, Brassicaoleracea, and Camelina saliva. The minimum dose at which inhibitionwas detected was lO–0–3 mol m–2 d–1.These results are discussed in the context of devising optimallight regimes for laboratory tests intended to maximize germination The response of germination to photon dose was also quantifiedwith 3 x 10–4 M GA2, co-applied (Brassica chinensis, Camelinasaliva, and Lepidium sativum) and with 2 x 10–2 M potassiumnitrate co-applied (Brassica chinensis). In the latter casepotassium nitrate had no effect in the dark and inhibited germinationin the light, but GA2, promoted germination substantially inall three species. Variation amongst seeds in the minimum photondose required to stimulate germination was not affected by co-applicationof GA2, in Brassica chinensis and Camelina saliva, whereas seedsof Lepidium salivum showed a narrower distribution of sensitivitiesto the low energy reaction in the presence of GA2 Barbarea vema (Mill.) Aschers, Brassica chinensis L., Brassica juncea (L.) Czern. & Coss., Brassica oleracea L. var. gongylodes L., Camelina saliva (L.) Crantz, Eruca saliva Mill., Lepidium satiaum L., Nasturtium officinale R. Br., Rorippa palustris (L.) Besser, Cruciferae, light, gibberellic acid, seed germination, seed dormancy  相似文献   

18.
The site of photoinhibition at low temperatures in leaves ofa chilling-sensitive plant, cucumber, is photosystem I [Terashimaet al. (1994) Planta 193: 300]. As described herein, selectivephotoinhibition of PSI can also be induced in isolated thylakoidmembranes in vitro. Inhibition was observed both at chillingtemperatures and at 25°C, and not only in the thylakoidmembranes isolated from cucumber, but also in those isolatedfrom a chilling-tolerant plant, spinach. Comparison of theseobservations in vitro to the earlier results in vivo indicatesthat (1) photoinhibition of PSI is a universal phenomenon; (2)a mechanism exists to protect PSI in vivo; and (3) the protectivemechanism is chilling-sensitive in cucumber. The chilling-sensitivecomponent seems to be lost during the isolation of thylakoidmembranes. Very weak light (10–20µmol m-2 s-1) wassufficient to cause the inhibition of PSI. About 80% of theoxygen-evolving activity by PSII was maintained even after theactivity of PSI had decreased by more than 70%. This is thefirst report of the selective photoinhibition of PSI in vitro. (Received March 1, 1995; Accepted April 26, 1995)  相似文献   

19.
When Porphyridium cruentum cells were illuminated with high fluence rate between 1900 and 4800 mol photons m-2s-1, a decrease in the photosynthetic activity of the cells was observed. Within the time frame of 20 min, and under the fluence rates studied, the sum of photons to be absorbed by cells (mg of chlorophyll (Chl), sufficient to initiate photoinhibition was calculated to be 9235.8 mol. The minimal specific light absorption rate to initiate photoinhibition in P. cruentum ranges between 2.29 and 4.26 mol photons s-1 mg-1 chl.a. There was a linear relationship between the specific rate of photoinhibition and the specific light absorption rate. A photon number of 2.56×104 mol mg-1 chl.a photoinhibited photosynthesis instantaneously. At 15°C, no photoinhibitory effect was observed at 2300 mol photons m-2 s-1 even after 45 min of illumination. At the other extreme of 35°C, 84% inhibition of photosynthetic activity was observed within 10 min of exposure to 2300 mol photons m-2 s-1. Between 20 and 30°C, the photoinhibitory effect was comparable. Photoinhibited P. cruentum cells recovered readily when transferred to low light (90 mol photons m-2 s-1) and darkness, and the specific rate of recovery was independent of the light intensity to which the cells were exposed, during the photoinhibitory treatment.Abbreviations Chlorophyll QL, specific light absorption rate Publication No. 28 of the Microalgal Biotechnology Laboratory  相似文献   

20.
The activation of ribulose–1, 5-bisphosphate carb-oxylase/oxygenase(Rubisco, EC 4.1.1.39 [EC] ) from the floating angiosperm Spirodelapolyrhiza (L.) Schleid. (giant duckweed) grown at a photon irradianceof 200 or 400 mol photons m–2 s–1 was consistentlylow, in the range of 56–62%. Similarly low values wereobserved with four other emergent aquatic species growing underfull sun irradiance. Transference of Spirodela plants for short(minutes) or long (days) periods to the higher or lower irradianceincreased or decreased, respectively, the activation by onlyabout 15%. Activation was not greatly altered by exposure ofthe plants to full sun irradiance of >2000 mol photons m–2s–1 or CO2 concentrations in air of 0 and 1170 mol mor–1but darkness caused a slow decline to 20% activation. Transientoscillations were observed following a change in irradianceor CO2 concentration indicating that Rubisco was responsiveto environmental perturbations. The low Rubisco activation wasnot due to the tight binding of inhibitors such as carboxyarabinitol-1-phosphate.It is concluded that a substantial proportion of the Rubiscoprotein in these naturally-occurring species may not be usedfor CO2-fixation at any given moment. Key words: Rubisco  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号