首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A cDNA corresponding to the coding region of VP1, the putative RNA-dependent RNA polymerase, of infectious bursal disease virus (IBDV) was cloned and inserted into the genome of a vaccinia virus inducible expression vector. The molecular mass and antigenic reactivity of VP1 expressed in mammalian cells are identical to those of its counterpart expressed in IBDV-infected cells. The results presented here demonstrate that VP1 is efficiently incorporated into IBDV virus-like particles (VLPs) produced in mammalian cells coexpressing the IBDV polyprotein and VP1. Incorporation of VP1 into VLPs requires neither the presence of IBDV RNAs nor that of the nonstructural polypeptide VP5. Immunofluorescence, confocal laser scanning microscopy, and immunoprecipitation analyses conclusively showed that VP1 forms complexes with the structural polypeptide VP3. Formation of VP1-VP3 complexes is likely to be a key step for the morphogenesis of IBDV particles.  相似文献   

2.
Infectious bursal disease virus (IBDV) capsids are formed by a single protein layer containing three polypeptides, pVP2, VP2, and VP3. Here, we show that the VP3 protein synthesized in insect cells, either after expression of the complete polyprotein or from a VP3 gene construct, is proteolytically degraded, leading to the accumulation of product lacking the 13 C-terminal residues. This finding led to identification of the VP3 oligomerization domain within a 24-amino-acid stretch near the C-terminal end of the polypeptide, partially overlapping the VP1 binding domain. Inactivation of the VP3 oligomerization domain, by either proteolysis or deletion of the polyprotein gene, abolishes viruslike particle formation. Formation of VP3-VP1 complexes in cells infected with a dual recombinant baculovirus simultaneously expressing the polyprotein and VP1 prevented VP3 proteolysis and led to efficient virus-like particle formation in insect cells.  相似文献   

3.
Infectious pancreatic necrosis virus (IPNV) is a bisegmented, double-stranded RNA (dsRNA) virus of the Birnaviridae family that causes widespread disease in salmonids. Its two genomic segments are encapsulated together with the viral RNA-dependent RNA polymerase, VP1, and the assumed internal protein, VP3, in a single-shell capsid composed of VP2. Major aspects of the molecular biology of IPNV, such as particle assembly and interference with host macromolecules, are as yet poorly understood. To understand the infection process, analysis of viral protein interactions is of crucial importance. In this study, we focus on the interaction properties of VP3, the suggested key organizer of particle assembly in birnaviruses. By applying the yeast two-hybrid system in combination with coimmunoprecipitation, VP3 was proven to bind to VP1 and to self-associate strongly. In addition, VP3 was shown to specifically bind to dsRNA in a sequence-independent manner by in vitro pull-down experiments. The binding between VP3 and VP1 was not dependent on the presence of dsRNA. Deletion analyses mapped the VP3 self-interaction domain within the 101 N-terminal amino acids and the VP1 interaction domain within the 62 C-terminal amino acids of VP3. The C-terminal end was also crucial but not sufficient for the dsRNA binding capacity of VP3. For VP1, the 90 C-terminal amino acids constituted the only dispensable part for maintaining VP3-binding ability. Kinetic analysis revealed the presence of VP1-VP3 complexes prior to the formation of mature virions in IPNV-infected CHSE-214 cells, which indicates a role in promoting the assembly process.  相似文献   

4.
Infectious bursal disease virus (IBDV) is a nonenveloped virus with an icosahedral capsid composed of two proteins, VP2 and VP3, that derive from the processing of the polyprotein NH(2)-pVP2-VP4-VP3-COOH. The virion contains VP1, the viral polymerase, which is both free and covalently linked to the two double-stranded RNA (dsRNA) genomic segments. In this study, the virus assembly process was studied further with the baculovirus expression system. While expression of the wild-type polyprotein was not found to be self-sufficient to give rise to virus-like particles (VLPs), deletion or replacement of the five C-terminal residues of VP3 was observed to promote capsid assembly. Indeed, the single deletion of the C-terminal glutamic acid was sufficient to induce VLP formation. Moreover, fusion of various peptides or small proteins (a green fluorescent protein or a truncated form of ovalbumin) at the C terminus of VP3 also promoted capsid assembly, suggesting that assembly required screening of the negative charges at the C terminus of VP3. The fused polypeptides mimicked the effect of VP1, which interacts with VP3 to promote VLP assembly. The C-terminal segment of VP3 was found to contain two functional domains. While the very last five residues of VP3 mainly controlled both assembly and capsid architecture, the five preceding residues constituted the VP1 (and possibly the pVP2/VP2) binding domain. Finally, we showed that capsid formation is associated with VP2 maturation, demonstrating that the protease VP4 is involved in the virus assembly process.  相似文献   

5.
Genome replication is a critical step in virus life cycles. Here, we analyzed the role of the infectious bursal disease virus (IBDV) VP3, a major component of IBDV ribonucleoprotein complexes, on the regulation of VP1, the virus-encoded RNA-dependent RNA polymerase (RdRp). Data show that VP3, as well as a peptide mimicking its C-terminal domain, efficiently stimulates the ability of VP1 to replicate synthetic single-stranded RNA templates containing the 3′ untranslated regions (UTRs) from the IBDV genome segments.  相似文献   

6.
Infectious bursal disease virus (IBDV), a double-stranded RNA virus, causes immunosuppression and high mortality in 3–6-week-old chickens. Innate immune defense is a physical barrier to restrict viral replication. After viral infection, the host shows crucial defense responses, such as stimulation of antiviral effectors to restrict viral replication. Here, we conducted RNA-seq in avian cells infected by IBDV and identified TRIM25 as a host restriction factor. Specifically, TRIM25 deficiency dramatically increased viral yields, whereas overexpression of TRIM25 significantly inhibited IBDV replication. Immunoprecipitation assays indicated that TRIM25 only interacted with VP3 among all viral proteins, mediating its K27-linked polyubiquitination and subsequent proteasomal degradation. Moreover, the Lys854 residue of VP3 was identified as the key target site for the ubiquitination catalyzed by TRIM25. The ubiquitination site destroyed enhanced the replication ability of IBDV in vitro and in vivo. These findings demonstrated that TRIM25 inhibited IBDV replication by specifically ubiquitinating and degrading the structural protein VP3.  相似文献   

7.
Infectious bursal disease virus (IBDV), a double-stranded RNA virus belonging to the Birnaviridae family, causes immunosuppression in chickens. In this study, we defined the localization of IBDV replication complexes based on colocalization analysis of VP3, the major protein component of IBDV ribonucleoproteins (RNPs). Our results indicate that VP3 localizes to vesicular structures bearing features of early and late endocytic compartments located in the juxtanuclear region. Interfering with the endocytic pathway with a dominant negative version of Rab5 after the internalization step leads to a reduction in virus titer. Triple-immunostaining studies between VP3, the viral RNA-dependent RNA polymerase VP1, and viral double-stranded RNA (dsRNA) showed a well-defined colocalization, indicating that the three critical components of the RNPs colocalize in the same structure, likely representing replication complexes. Interestingly, recombinant expressed VP3 also localizes to endosomes. Employing Golgi markers, we found that VP3-containing vesicles were closely associated with this organelle. Depolymerization of microtubules with nocodazole caused a profound change in VP3 localization, showing a punctate distribution scattered throughout the cytoplasm. However, these VP3-positive structures remained associated with Golgi ministacks. Similarly, brefeldin A (BFA) treatment led to a punctate distribution of VP3, scattered throughout the cytoplasm of infected cells. In addition, analysis of intra- and extracellular viral infective particles after BFA treatment of avian cells suggested a role for the Golgi complex in viral assembly. These results constitute the first study elucidating the localization of IBDV replication complexes (i.e., in endocytic compartments) and establishing a role for the Golgi apparatus in the assembly step of a birnavirus.  相似文献   

8.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, encodes in its bisegmented double-stranded RNA genome four structural virion proteins, VP1, VP2, VP3, and VP4, as well as a nonstructural protein, VP5. Recently, the establishment of an infectious cRNA system for IBDV has been described (E. Mundt and V. N. Vakharia, Proc. Natl. Acad. Sci. USA 93:11131-11136, 1996). Here, we report the isolation of a VP5- IBDV mutant constructed by site-directed mutagenesis of the methionine start codon of VP5, followed by cRNA transfection. The resulting virus mutant was replication competent in cell culture, which indicates that VP5 is not required for productive replication of IBDV. Absence of VP5 expression was verified by lack of reactivity with newly established anti-VP5 monoclonal antibodies and polyclonal sera. VP5- IBDV exhibited a delay in replication in chicken embryo cells compared to the VP5+ parental virus. However, final yields were similar. Our results thus show that VP5 is nonessential for IBDV replication, which makes it a prime candidate for the construction of deleted, marked vaccines.  相似文献   

9.
Rotavirus is a nonenveloped virus with a three-layered capsid. The inner layer, made of VP2, encloses the genomic RNA and two minor proteins, VP1 and VP3, with which it forms the viral core. Core assembly is coupled with RNA viral replication and takes place in definite cellular structures termed viroplasms. Replication and encapsidation mechanisms are still not fully understood, and little information is available about the intermolecular interactions that may exist among the viroplasmic proteins. NSP2 and NSP5 are two nonstructural viroplasmic proteins that have been shown to interact with each other. They have also been found to be associated with precore replication intermediates that are precursors of the viral core. In this study, we show that NSP5 interacts with VP2 in infected cells. This interaction was demonstrated with recombinant proteins expressed from baculovirus recombinants or in bacterial systems. NSP5-VP2 interaction also affects the stability of VP6 bound to VP2 assemblies. The data presented showed evidence, for the first time, of an interaction between VP2 and a nonstructural rotavirus protein. Published data and the interaction demonstrated here suggest a possible role for NSP5 as an adapter between NSP2 and the replication complex VP2-VP1-VP3 in core assembly and RNA encapsidation, modulating the role of NSP2 as a molecular motor involved in the packaging of viral mRNA.  相似文献   

10.
Recent biochemical and genetic studies have demonstrated that an essential step of the herpes simplex virus type 1 capsid assembly pathway involves the interaction of the major capsid protein (VP5) with either the C terminus of the scaffolding protein (VP22a, ICP35) or that of the protease (Pra, product of UL26). To better understand the nature of the interaction and to further map the sequence motif, we expressed the C-terminal 30-amino-acid peptide of ICP35 in Escherichia coli as a glutathione S-transferase fusion protein (GST/CT). Purified GST/CT fusion proteins were then incubated with 35S-labeled herpes simplex virus type 1-infected cell lysates containing VP5. The interaction between GST/CT and VP5 was determined by coprecipitation of the two proteins with glutathione Sepharose beads. Our results revealed that the GST/CT fusion protein specifically interacts with VP5, suggesting that the C-terminal domain alone is sufficient for interaction with VP5. Deletion analysis of the GST/CT binding domain mapped the interaction to a minimal 12-amino-acid motif. Substitution mutations further revealed that the replacement of hydrophobic residues with charged residues in the core region of the motif abolished the interaction, suggesting that the interaction is a hydrophobic one. A chaotropic detergent, 0.1% Nonidet P-40, also abolished the interaction, further supporting the hydrophobic nature of the interaction. Computer analysis predicted that the minimal binding motif could form a strong alpha-helix structure. Most interestingly, the alpha-helix model maximizes the hydropathicity of the minimal domain so that all of the hydrophobic residues are centered around a Phe residue on one side of the alpha-helix. Mutation analysis revealed that the Phe residue is absolutely critical for the binding, since changes to Ala, Tyr, or Trp abrogated the interaction. Finally, in a peptide competition experiment, the C-terminal 25-amino-acid peptide, as well as a minimal peptide derived from the binding motif, competed with GST/CT for interaction with VP5. In addition, a cyclic analog of the minimal peptide which is designed to stabilize an alpha-helical structure competed more efficiently than the minimal peptide. The evidence suggests that the C-terminal end of ICP35 forms an alpha-helical secondary structure, which may bind specifically to a hydrophobic pocket in VP5.  相似文献   

11.
Intracellular interference of infectious bursal disease virus   总被引:2,自引:0,他引:2       下载免费PDF全文
A search for dominant-negative mutant polypeptides hampering infectious bursal disease virus (IBDV) replication has been undertaken. We have found that expression of a mutant version of the VP3 structural polypeptide known as VP3/M3, partially lacking the domain responsible for the interaction with the virus-encoded RNA polymerase, efficiently interferes with the IBDV replication cycle. Transformed cells stably expressing VP3/M3 show a significant reduction (up to 96%) in their ability to support IBDV growth. Our findings provide a new tool for the characterization of the IBDV replication cycle and might facilitate the generation of genetically modified chicken lines with a reduced susceptibility to IBDV infection.  相似文献   

12.
The capsid of infectious bursal disease virus (IBDV), with a size of 60-65 nm, is formed by an initial processing of polyprotein (pVP2-VP4-VP3) by VP4, subsequent assemblage of pVP2 and VP3, and the maturation of VP2. In Sf9 cells, the processing of polyprotein expressed was restrained in the stage of VP2 maturation, leading to a limited production of capsid, i.e., IBDV-like particles (VLPs). In the present study, another insect cell line, High-Five (Hi-5) cells, was demonstrated to efficiently produce VLPs. Meanwhile, in this system, polyprotein was processed to pVP2 and VP3 protein and pVP2 was further processed to the matured form of VP2. Consequently, Hi-5 cells are better in terms of polyprotein processing and formation of VLPs than Sf9. In addition to the processing of pVP2, VP3 was also degraded. With insufficient intact VP3 protein present for the formation of VLPs, the excessive VP2 form subviral particles (SVPs) with a size of about 25 nm. The ratio of VLPs to SVPs is dependent on the multiplicity of infections (MOIs) used, and an optimal MOI is found for the production of both particles. VLPs were separated from SVPs with a combination of ultracentrifugation and gel-filtration chromatography, and a large number of purified particles of both were obtained. In conclusion, the insect cell lines and MOIs were optimized for the production of VLPs, and pure VLPs with morphology similar to that of the wild-type viruses can be effectively prepared. The efficient production and purification of VLPs benefits not only the development of an antiviral vaccine against IBDV but also the understanding of the structure of this avian virus that is economically important.  相似文献   

13.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a major avian pathogen responsible for an immunosuppressive disease affecting juvenile chickens. The IBDV genome is formed by two dsRNA segments. The largest one harbors two partially overlapping open reading frames encoding a non-structural polypeptide, known as VP5, and a large polyprotein, respectively. VP5 is non-essential for virus replication. However, it plays a major role in IBDV pathogenesis. VP5 accumulates at the plasma membrane (PM) of IBDV-infected cells. We have analyzed the mechanism underlying the VP5 PM targeting. Updated topological prediction algorithm servers fail to identify a transmembrane domain within the VP5 sequence. However, the VP5 polycationic C-terminal region, harboring three closely spaced patches formed by two or three consecutive basic amino acid residues (lysine or arginine), might account for its PM tropism. We have found that mutations, either C-terminal VP5 deletions or replacement of basic amino acids by alanine residues, that reduce the electropositive charge of the VP5 C-terminus abolish PM targeting. Lipid overlay assays performed with an affinity-purified Flag-tagged VP5 (FVP5) protein version show that this polypeptide binds several phosphoinositides (PIP), exhibiting a clear preference for monophosphate species. Experiments performed with FVP5 mutant proteins lacking the polycationic domain demonstrate that this region is essential for PIP binding. Data gathered with IBDV mutants expressing C-terminal deleted VP5 polypeptides generated by reverse genetics demonstrate that the VP5-PIP binding domain is required both for its PM targeting in infected cells, and for efficient virus dissemination. Data presented here lead us to hypothesize that IBDV might use a non-lytic VP5-dependent cell-to-cell spreading mechanism.  相似文献   

14.
15.
Interactions among the major and minor coat proteins of polyomavirus.   总被引:12,自引:8,他引:4       下载免费PDF全文
Murine polyomavirus contains two related minor coat proteins, VP2 and VP3, in addition to the major coat protein, VP1. The sequence of VP3 is identical to that of the carboxy-terminal two-thirds of VP2. VP2 may serve a role in uncoating of the virus, and both minor coat proteins may be important for viral assembly. In this study, we show that VP3 and a series of deletion mutants of VP3 can be expressed in Escherichia coli as fusion proteins to glutathione S-transferase and partially solubilized with a mild detergent. Using an in vitro binding assay, we demonstrate that a 42-amino-acid fragment near the carboxy terminus of VP3 (residues 140 to 181) is sufficient for binding to purified VP1 pentamers. This binding interaction is rapid, saturable, and specific for the common carboxy terminus of VP2 and VP3. The VP1-VP3 complex can be coimmunoprecipitated with an antibody specific to VP1, and a purified VP3 fragment can selectively extract VP1 from a crude cell lysate. The stoichiometry of the binding reaction suggests that each VP1 pentamer in the virus binds either one VP2 or one VP3, with the VP1-VP2/3 complex stabilized by hydrophobic interactions. These results, taken together with studies from other laboratories on the expression of polyomavirus capsid proteins in mouse and insect cells (S. E. Delos, L. Montross, R. B. Moreland, and R. L. Garcea, Virology, 194:393-398, 1993; J. Forstova, N. Krauzewicz, S. Wallace, A. J. Street, S. M. Dilworth, S. Beard, and B. E. Griffin, J. Virol. 67:1405-1413, 1993), support the idea that a VP1-VP2/3 complex forms in the cytoplasm and, after translocation into the nucleus, acts as the unit for viral assembly.  相似文献   

16.
Zheng X  Hong L  Li Y  Guo J  Zhang G  Zhou J 《DNA and cell biology》2006,25(11):646-653
VP1, the RNA-dependent RNA polymerase of infectious bursal disease virus (IBDV), has been suggested to play an essential role in the replication and translation of viral RNAs. In this study, we first expressed the complete VP1 protein gene in Escherichia coli (E. coli), and then the produced polyclonal antibody and four monoclonal antibodies (mAbs) to recombinant VP1 protein (rVP1) were shown to bind the IBDV particles in chicken embryo fibroblast and Vero cells. The epitopic analysis showed that mAbs 1D4 and 3C7 recognized respectively two distinct antigenic epitopes on the rVP1 protein, but two pair of mAbs 1A2/2A12 and 1E1/1H3 potentially recognized another two topologically related epitopes. Immunocytochemical stainings showed that VP1 protein formed irregularly shaped particles in the cytoplasm of the IBDV-infected cells. These results demonstrated that the mAbs to rVP1 protein could bind the epitopes of IBDV particles, indicating that the rVP1 protein expressed in E. coli was suitable for producing the mAb to VP1 protein of IBDV, and that the cytoplasm could be the crucial site for viral genome replication of IBDV.  相似文献   

17.
18.
Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.  相似文献   

19.
Infectious bursal disease virus (IBDV) is a nonenveloped avian virus with a two-segment double-stranded RNA genome. Its T=13 icosahedral capsid is most probably assembled with 780 subunits of VP2 and 600 copies of VP3 and has a diameter of about 60 nm. VP1, the RNA-dependent RNA polymerase, resides inside the viral particle. Using a baculovirus expression system, we first observed that expression of the pVP2-VP4-VP3 polyprotein encoded by the genomic segment IBDA results mainly in the formation of tubules with a diameter of about 50 nm and composed of pVP2, the precursor of VP2. Very few virus-like particles (VLPs) and VP4 tubules with a diameter of about 25 nm were also identified. The inefficiency of VLP assembly was further investigated by expression of additional IBDA-derived constructs. Expression of pVP2 without any other polyprotein components results in the formation of isometric particles with a diameter of about 30 nm. VLPs were observed mainly when a large exogeneous polypeptide sequence (the green fluorescent protein sequence) was fused to the VP3 C-terminal domain. Large numbers of VLPs were visualized by electron microscopy, and single particles were shown to be fluorescent by standard and confocal microscopy analysis. Moreover, the final maturation process converting pVP2 into the VP2 mature form was observed on generated VLPs. We therefore conclude that the correct scaffolding of the VP3 can be artificially induced to promote the formation of VLPs and that the final processing of pVP2 to VP2 is controlled by this particular assembly. To our knowledge, this is the first report of the engineering of a morphogenesis switch to control a particular type of capsid protein assembly.  相似文献   

20.
Birnavirus-encoded viral protein 4 (VP4) utilizes a Ser/Lys catalytic dyad mechanism to process polyprotein. Here three phosphorylated amino acid residues Ser538, Tyr611 and Thr674 within the VP4 protein of the infectious bursal disease virus (IBDV), a member of the genus Avibirnavirus of the family Birnaviridae, were identified by mass spectrometry. Anti-VP4 monoclonal antibodies finely mapping to phosphorylated (p)Ser538 and the epitope motif 530PVVDGIL536 were generated and verified. Proteomic analysis showed that in IBDV-infected cells the VP4 was distributed mainly in the cytoskeletal fraction and existed with different isoelectric points and several phosphorylation modifications. Phosphorylation of VP4 did not influence the aggregation of VP4 molecules. The proteolytic activity analysis verified that the pTyr611 and pThr674 sites within VP4 are involved in the cleavage of viral intermediate precursor VP4-VP3. This study demonstrates that IBDV-encoded VP4 protein is a unique phosphoprotein and that phosphorylation of Tyr611 and Thr674 of VP4 affects its serine-protease activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号