首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fanconi anaemia (FA) is an autosomal recessive disease characterised by genetic heterogeneity, with at least five complementation groups (FA-A to FA-E). The FAC gene has been cloned and localised to 9q22.3. The most frequent defective gene, FAA, was recently mapped to chromosome 16q24.3, in a region of 10 cM between D16S498 and the telomere. Eleven FA-A and 16 unclassified Italian families were analysed by microsatellite markers. To define the localisation of the FAA locus further, microsatellites were analysed at 16q24. All the families were consistent with linkage, the highest lod score being observed with D16S1320. Evidence for common haplotypes was obtained in two genetic isolates from the Brenta basin and the Naples region. Autozygosity mapping and haplotype analysis suggest that the FAA locus is distal to D16S305. Received: 29 July 1996  相似文献   

2.
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A-H). Two of the FA genes (FAA and FAC) have been cloned, and mutations in these genes account for approximately 80% of FA patients. Subtyping of FA patients is an important first step toward identifying candidates for FA gene therapy. In the current study, we analyzed a reference group of 26 FA patients of known subtype. Most of the patients (18/26) were confirmed as either type A or type C by immunoblot analysis with anti-FAA and anti-FAC antisera. In order to resolve the subtype of the remaining patients, we generated retroviral constructs expressing FAA and FAC for transduction of FA cell lines (pMMP-FAA and pMMP-FAC). The pMMP-FAA construct specifically complemented the abnormal phenotype of cell lines from FA-A patients, while pMMP-FAC complemented FA-C cells. In summary, the combination of immunoblot analysis and retroviral-mediated phenotypic correction of FA cells allows a rapid method of FA subtyping.  相似文献   

3.
The regions of the large subunit ribosomal protein L25 from Saccharomyces cerevisiae responsible for nuclear localization of the protein were identified by constructing fusion genes encoding various segments of L25 linked to the amino terminus of beta-galactosidase. Indirect immunofluorescence of yeast cells expressing the fusions demonstrated that amino acid residues 1 to 17 as well as 18 to 41 of L25 promote import of the reporter protein into the nucleus. Both nuclear localization signal (NLS) sequences appear to consist of two distinct functional parts: one showed relatively weak nuclear targeting activity, whereas the other considerably enhances this activity but does not promote nuclear import by itself. Microinjection of in vitro prepared intact and N-terminally truncated L25 into Xenopus laevis oocytes demonstrated that the region containing the two NLS sequences is indeed required for efficient nuclear localization of the ribosomal protein. This conclusion was confirmed by complementation experiments using a yeast strain that conditionally expresses wild-type L25. The latter experiments also indicated that amino acid residues 1 to 41 of L25 are required for full functional activity of yeast 60 S ribosomal subunits. Yeast cells expressing forms of L25 that lack this region are viable, but show impaired growth and a highly abnormal cell morphology.  相似文献   

4.
5.
Although insulin-like growth factor-binding protein (IGFBP)-3 and IGFBP-5 are known to modulate cell growth by reversibly sequestering extracellular insulin-like growth factors, several reports have suggested that IGFBP-3, and possibly also IGFBP-5, have important insulin-like growth factor-independent effects on cell growth. These effects may be related to the putative nuclear actions of IGFBP-3 and IGFBP-5, which we have recently shown are transported to the nuclei of T47D breast cancer cells. We now describe the mechanism for nuclear import of IGFBP-3 and IGFBP-5. In digitonin-permeabilized cells, where the nuclear envelope remained intact, nuclear translocation of wild-type IGFBP-3 appears to occur by a nuclear localization sequence (NLS)-dependent pathway mediated principally by the importin beta nuclear transport factor and requiring both ATP and GTP hydrolysis. Under identical conditions, an NLS mutant form of IGFBP-3, IGFBP-3[(228)KGRKR --> MDGEA], was unable to translocate to the nucleus. In cells where both the plasma membrane and nuclear envelope were permeabilized, wild-type IGFBP-3, but not the mutant form, accumulated in the nucleus, implying that the NLS was also involved in mediating binding to nuclear components. By fusing wild-type and mutant forms of NLS sequences (IGFBP-3 [215-232] and IGFBP-5 [201-218]) to the green fluorescent protein, we identified the critical residues of the NLS necessary and sufficient for nuclear accumulation. Using a Western ligand binding assay, wild-type IGFBP-3 and IGFBP-5, but not an NLS mutant form of IGFBP-3, were shown to be recognized by importin beta and the alpha/beta heterodimer but only poorly by importin alpha. Together these results suggest that the NLSs within the C-terminal domain of IGFBP-3 and IGFBP-5 are required for importin-beta-dependent nuclear uptake and probably also accumulation through mediating binding to nuclear components.  相似文献   

6.
7.
Fanconi anemia (FA) is an autosomal recessive chromosomal breakage disorder with diverse clinical symptoms including progressive bone marrow failure and increased cancer risk. FA cells are hypersensitive to crosslinking agents, which has been exploited to assess genetic heterogeneity through complementation analysis. Five complementation groups (FA-A through FA-E) have so far been distinguished among the first 20 FA patients analyzed. Complementation groups in FA are likely to represent distinct disease genes, two of which (FAC and FAA) have been cloned. Following the identification of the first FA-E patient, additional patients were identified whose cell lines complemented groups A-D. To assess their possible assignment to the E group, we introduced selection markers into the original FA-E cell line and analyzed fusion hybrids with three cell lines classified as non-ABCD. All hybrids were complemented for cross-linker sensitivity, indicating nonidentity with group E. We then marked the three non-ABCDE cell lines and examined all possible hybrid combinations for complementation, which indicated that each individual cell line represented a separate complementation group. These results thus define three new groups, FA-F, FA-G, and FA-H, providing evidence for a minimum of eight distinct FA genes.  相似文献   

8.
Orphan receptor Nurr1 participates in the acquisition and maintenance of the dopaminergic cell phenotype, modulation of inflammation, and cytoprotection, but little is known about its regulation. In this study, we report that Nurr1 contains a bipartite nuclear localization signal (NLS) within its DNA binding domain and two leucine-rich nuclear export signals (NES) in its ligand binding domain. Together, these signals regulate Nurr1 shuttling in and out of the nucleus. Immunofluorescence and immunoblot analysis revealed that Nurr1 is mostly nuclear. A Nurr1 mutant lacking the NLS failed to enter the nucleus. The Nurr1 NLS sequence, when fused to green fluorescent protein, led to nuclear accumulation of this chimeric protein, indicating that this sequence was sufficient to direct nuclear localization of Nurr1. Furthermore, two NES were characterized in the ligand binding domain, whose deletion caused Nurr1 to accumulate predominantly in the nucleus. The Nurr1 NES was sensitive to CRM1 and could function as an independent export signal when fused to green fluorescent protein. Sodium arsenite, an agent that induces oxidative stress, promoted nuclear export of ectopically expressed Nurr1 in HEK293T cells, and the antioxidant N-acetylcysteine rescued from this effect. Similarly, in dopaminergic MN9D cells, arsenite induced the export of endogenous Nurr1, resulting in the loss of expression of Nurr1-dependent genes. This study illustrates that Nurr1 shuttling between the cytosol and nucleus is controlled by specific nuclear import and export signals and that oxidative stress can unbalance the distribution of Nurr1 to favor its cytosolic accumulation.  相似文献   

9.
The atypical protein kinase C (PKC) isoenzymes, lambda/iota- and zetaPKC, play important roles in cellular signaling pathways regulating proliferation, differentiation, and cell survival. By using green fluorescent protein (GFP) fusion proteins, we found that wild-type lambdaPKC localized predominantly to the cytoplasm, whereas both a kinase-defective mutant and an activation loop mutant accumulated in the nucleus. We have mapped a functional nuclear localization signal (NLS) to the N-terminal part of the zinc finger domain of lambdaPKC. Leptomycin B treatment induced rapid nuclear accumulation of GFP-lambda as well as endogenous lambdaPKC suggesting the existence of a CRM1-dependent nuclear export signal (NES). Consequently, we identified a functional leucine-rich NES in the linker region between the zinc finger and the catalytic domain of lambdaPKC. The presence of both the NLS and NES enables a continuous shuttling of lambdaPKC between the cytoplasm and nucleus. Our results suggest that the exposure of the NLS in both lambda- and zetaPKC is regulated by intramolecular interactions between the N-terminal part, including the pseudosubstrate sequence, and the catalytic domain. Thus, either deletion of the N-terminal region, including the pseudosubstrate sequence, or a point mutation in this sequence leads to nuclear accumulation of lambdaPKC. The ability of the two atypical PKC isoforms to enter the nucleus in HeLa cells upon leptomycin B treatment differs substantially. Although lambdaPKC is able to enter the nucleus very rapidly, zetaPKC is much less efficiently imported into the nucleus. This difference can be explained by the different relative strengths of the NLS and NES in lambdaPKC compared with zetaPKC.  相似文献   

10.
11.
Different G1 cyclins confer functional specificity to the cyclin-dependent kinase (Cdk) Cdc28p in budding yeast. The Cln3p G1 cyclin is localized primarily to the nucleus, while Cln2p is localized primarily to the cytoplasm. Both binding to Cdc28p and Cdc28p-dependent phosphorylation in the C-terminal region of Cln2p are independently required for efficient nuclear depletion of Cln2p, suggesting that this process may be physiologically regulated. The accumulation of hypophosphorylated Cln2 in the nucleus is an energy-dependent process, but may not involve the RAN GTPase. Phosphorylation of Cln2p is inefficient in small newborn cells obtained by elutriation, and this lowered phosphorylation correlates with reduced Cln2p nuclear depletion in newborn cells. Thus, Cln2p may have a brief period of nuclear residence early in the cell cycle. In contrast, the nuclear localization pattern of Cln3p is not influenced by Cdk activity. Cln3p localization requires a bipartite nuclear localization signal (NLS) located at the C terminus of the protein. This sequence is required for nuclear localization of Cln3p and is sufficient to confer nuclear localization to green fluorescent protein in a RAN-dependent manner. Mislocalized Cln3p, lacking the NLS, is much less active in genetic assays specific for Cln3p, but more active in assays normally specific for Cln2p, consistent with the idea that Cln3p localization explains a significant part of Clnp functional specificity.  相似文献   

12.
Expression of the recombinase proteins RAG-1 and RAG-2 is discordant: while RAG-1 is relatively long lived, RAG-2 is degraded periodically at the G(1)-S transition. Destruction of RAG-2 is mediated by a conserved interval in the recombination-dispensable region. The need for RAG-2 to reaccumulate in the nucleus at each cell division suggested the existence of an intrinsic RAG-2 nuclear localization signal (NLS). RAG-1 or RAG-2, expressed individually, is a nuclear protein. A screen for proteins that bind the recombination-dispensable region of RAG-2 identified the nuclear transport protein Importin 5. Mutation of residues 499 to 508 in RAG-2 abolished Importin 5 binding, nuclear accumulation, and periodic degradation of RAG-2. The Importin 5 binding site overlaps an NLS, defined by mutagenesis. RAG-1 rescued the localization of degradation-defective, RAG-2 NLS mutants; this required an intact RAG-1 NLS. Mutations in RAG-2 that abolish intrinsic nuclear accumulation but spare periodic degradation impaired recombination in cycling cells; induction of quiescence restored recombination to wild-type levels. Recombination defects were correlated with a cell cycle-dependent defect in the ability of RAG-1 to rescue localization of the RAG-2 mutants. These results suggest that the intrinsic RAG-2 NLS functions in the nuclear uptake of RAG-2 following its reexpression in cycling cells.  相似文献   

13.
C to U editing of apolipoprotein B (apoB) RNA requires a multicomponent holoenzyme complex in which minimal constituents include apobec-1 and apobec-1 complementation factor (ACF). We have examined the predicted functional domains in ACF in binding apoB RNA, interaction with apobec-1, and complementation of RNA editing. We demonstrate that apoB RNA binding and apobec-1-interacting domains are defined by two partially overlapping regions containing the NH(2)-terminal RNA recognition motifs of ACF. Both apoB RNA binding and apobec-1 interaction are required for editing complementation activity. ACF is a nuclear protein that upon cotransfection with apobec-1 results in nuclear colocalization and redistribution of apobec-1 from the cytoplasm. ACF constructs with deletions or mutations in the putative nuclear localization signal (NLS) still localize in the nucleus of transfected cells but do not colocalize with apobec-1, the latter remaining predominantly cytoplasmic. These observations suggest that the putative NLS motif in ACF is not responsible for its nucleo-cytoplasmic trafficking. By contrast, protein-protein interaction is important for the nuclear import of apobec-1. Taken together, these data suggest that functional complementation of C to U RNA editing by apobec-1 involves the NH(2)-terminal 380 residues of ACF.  相似文献   

14.
Recent studies highlight the existence of a nuclear lipid metabolism related to cellular proliferation. However, the importance of nuclear phosphatidylcholine (PC) metabolism is poorly understood. Therefore, we were interested in nuclear PC as a source of second messengers and, particularly, nuclear localization of PC-specific phospholipase D (PLD). In the present study we have identified the nuclear localization sequence (NLS) of PLD1 whose mutation abolished its nuclear import. Recently, we reported that caspase-mediated cleavage of PLD1 generates the N-terminal fragment (NF-PLD1) and C-terminal fragment (CF-PLD1). Here we show that CF-PLD1 but not NF-PLD1, is exclusively imported into the nucleus via its functional NLS, whereas only some portions of intact PLD1 were localized into the nucleus. The NLS of intact PLD1 or CF-PLD1 is required for interaction with importin-β, which is known to mediate nuclear import. The amount of intact PLD1 or CF-PLD1 translocated into nucleus is correlated with its binding affinity with importin-β. Ultimately, nuclear localization of intact PLD1 but not CF-PLD1 mediates the activation of nuclear protein kinase Cα and extracellular signal-regulated kinase signaling pathways. Taken together, we propose that nuclear localization of PLD1 via the NLS and its interaction with importin-β may provide new insights on the functional role of nuclear PLD1 signaling.  相似文献   

15.
Mutations in the RNA binding protein FUS (fused in sarcoma) have been linked to a subset of familial amyotrophic lateral sclerosis (ALS) cases. The mutations are clustered in the C-terminal nuclear localization sequence (NLS). Various FUS mutants accumulate in the cytoplasm whereas wild-type (WT) FUS is mainly nuclear. Here we investigate the effect of one ALS causing mutant (FUS-ΔNLS, also known as R495X) on pre-mRNA splicing and RNA expression using genome wide exon-junction arrays. Using a non-neuronal stable cell line with inducible FUS expression, we detected early changes in RNA composition. In particular, mutant FUS-ΔNLS increased calcium/calmodulin-dependent protein kinase II inhibitor 2 (CAMK2N2) at both mRNA and protein levels, whereas WT-FUS had no effect. Chromatin immunoprecipitation experiments showed that FUS-ΔNLS accumulated at the CAMK2N2 promoter region, whereas promoter occupation by WT-FUS remained constant. Given the loss of FUS-ΔNLS in the nucleus through the mutation-induced translocation, this increase of promoter occupancy is surprising. It indicates that, despite the obvious cytoplasmic accumulation, FUS-ΔNLS can act through a nuclear gain of function mechanism.  相似文献   

16.
17.
Fanconi anemia (FA) is a genetic disease characterized by congenital defects, bone marrow failure, and cancer susceptibility. Cells from patients with FA exhibit genomic instability and hypersensitivity to DNA cross linking agents such as mitomycin C. Despite the identification of seven complementation groups and the cloning of six genes, the function of the encoded gene products remains elusive. The FancA (Fanconi anemia complementation group A), FancC, and FancG proteins have been detected within a nuclear complex, but no change in level, binding, or localization has been reported as a result of drug treatment or cell cycle. We show that in immunofluorescence studies, FancA appears as a non-nucleolar nuclear protein that is excluded from condensed, mitotic chromosomes. Biochemical fractionation reveals that the FA proteins are found in nuclear matrix and chromatin and that treatment with mitomycin C results in increase of the FA proteins in nuclear matrix and chromatin fractions. This induction occurs in wild-type cells and mutant FA-D (Fanconi complementation group D) cells but not in mutant FA-A cells. Immunoprecipitation of FancA protein in chromatin demonstrates the coprecipitation of FancA, FancC, and FancG, showing that the FA proteins move together as a complex. Also, fractionation of mitotic cells confirms the lack of FA proteins in chromatin or the nuclear matrix. Furthermore, phosphorylation of FancG was found to be temporally correlated with exit of the FA complex from chromosomes at mitosis. Taken together, these findings suggest a role for FA proteins in chromatin and nuclear matrix.  相似文献   

18.
The ultimate destination for most gene therapy vectors is the nucleus and nuclear import of potentially therapeutic DNA is one of the major barriers for nonviral vectors. We have developed a novel approach of attaching a nuclear localization sequence (NLS) peptide to DNA in a non-essential position, by generating a fusion between the tetracycline repressor protein TetR and the SV40-derived NLS peptide. The high affinity and specificity of TetR for the short DNA sequence tetO was used in these studies to bind the NLS to DNA as demonstrated by the reduced electrophoretic mobility of the TetR.tetO-DNA complexes. The protein TetR-NLS, but not control protein TetR, specifically enhances gene expression from lipofected tetO-containing DNA between 4- and 16-fold. The specific enhancement is observed in a variety of cell types, including primary and growth-arrested cells. Intracellular trafficking studies demonstrate an increased accumulation of fluorescence labeled DNA in the nucleus after TetR-NLS binding. In comparison, binding studies using the similar fusion of peptide nucleic acid (PNA) with NLS peptide, demonstrate specific binding of PNA to plasmid DNA. However, although we observed a 2-8.5-fold increase in plasmid-mediated luciferase activity with bis-PNA-NLS, control bis-PNA without an NLS sequence gave a similar increase, suggesting that the effect may not be because of a specific bis-PNA-NLS-mediated enhancement of nuclear transfer of the plasmid. Overall, we found TetRNLS-enhanced plasmid-mediated transgene expression at a similar level to that by bis-PNA-NLS or bis-PNA alone but specific to nuclear uptake and significantly more reliable and reproducible.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号