首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CO-binding kinetics and the optical spectra of the NO derivative of the homodimeric hemoglobin from Scapharca inaequivalvis have been investigated over the range between pH 7.0 and 2.0. In the deoxygenated derivative, protonation of the proximal imidazole at very low pH values and the consequent cleavage of the Fe-N epsilon bond result in a approximately 50-fold enhancement of the rate constant for CO binding, as found in other hemoproteins. However, in the case of the hemoglobin from S. inaequivalvis, the pH profile displays a cooperative behavior (n = 1.8 +/- 0.1), a unique feature that differentiates this protein from any other hemoprotein investigated thus far. Cleavage of the proximal bond in the NO derivative of S. inaequivalvis hemoglobin likewise displays a very steep pH transition. The mode of assembly of the homodimer, in which the heme-carrying E and F helices provide the subunit interface and bring the hemes at a much shorter distance (18.4 A) than in vertebrate hemoglobins, is likely to provide the structural basis for this unique behavior.  相似文献   

2.
The unique functional properties of the homodimeric hemoglobin (HbI) extracted from the Arcid blood clam Scapharca inaequivalvis are discussed in the light of the unusual assembly of this protein. At variance with vertebrate hemoglobins, in S. inaequivalvis HbI, the heme-carrying E and F helices form the subunit interface and bring the heme groups almost into direct contact. This creates a new pathway for transferring information about the ligation state of the heme from one subunit to the other which allows cooperativity in the binding of heme ligands to be displayed by a homodimer. The tight coupling between the two subunits and the two heme groups also manifests itself in other reactions that are cooperative in S. inaequivalvis HbI, but not in human hemoglobin, namely, the cleavage of the proximal histidine-heme iron bond and the modification of specific residues located at the subunit interface.  相似文献   

3.
The effect of pH on the X-band electron paramagnetic resonance (EPR) spectrum of ferrous nitrosylated human adult tetrameric hemoglobin (HbNO) as well as of ferrous nitrosylated monomeric alpha- and beta-chains has been investigated, at -163 degrees C. At pH 7.3, the X-band EPR spectrum of tetrameric HbNO and ferrous nitrosylated monomeric alpha- and beta-chains displays a rhombic shape. Lowering the pH from 7.3 to 3.0, tetrameric HbNO and ferrous nitrosylated monomeric alpha- and beta-chains undergo a transition towards a species characterized by a X-band EPR spectrum with a three-line splitting centered at 334mT. These pH-dependent spectroscopic changes may be taken as indicative of the cleavage, or the severe weakening, of the proximal HisF8-Fe bond. In tetrameric HbNO, the pH-dependent spectroscopic changes depend on the acid-base equilibrium of two apparent ionizing groups with pK(a) values of 5.8 and 3.8. By contrast, the pH-dependent spectroscopic changes occurring in ferrous nitrosylated monomeric alpha- and beta-chains depend on the acid-base equilibrium of one apparent ionizing group with pK(a) values of 4.8 and 4.7, respectively. The different pK(a) values for the proton-linked spectroscopic transition(s) of tetrameric HbNO and ferrous nitrosylated monomeric alpha- and beta-chains suggest that the quaternary assembly drastically affects the strength of the proximal HisF8-Fe bond in both subunits. This probably reflects a 'quaternary effect', i.e., structural changes in both subunits upon tetrameric assembly, which is associated to a relevant variation of functional properties (i.e., proton affinity).  相似文献   

4.
The effect of pH on (i) the second-order rate constant for CO binding and (ii) the spectral properties of the deoxygenated derivative of several monomeric hemoproteins has been investigated in the pH range between 2.3 and 9.0. As in the case of 3-[1-imidazolyl]-propylamide monomethyl ester mesoheme, the rate constant for CO binding to sperm whale, horse, Dermochelys coriacea, Coryphaena hippurus, and Aplysia limacina myoglobins (the latter only in the presence of acetate/acetic acid mixture) increases, as the pH is lowered, to a value at least 1 order of magnitude higher than at pH 7.0. Such an effect is not observed in A. limacina myoglobin (in the absence of the acetate/acetic acid mixture) and Chironomus thummi thummi erythrocruorin. Moreover, the absorption spectrum, in the visible region, of the deoxy derivative of all these monomeric hemoproteins (with the exception of A. limacina myoglobin in the absence of the acetate/acetic acid mixture) undergoes a transition as the pH is lowered, an effect observed previously with 3-[1-imidazolyl]-propylamide monomethyl ester protoheme. On the basis of analogous spectroscopic and kinetic properties of chelated heme model compounds we attribute this behavior to the protonation of the N epsilon of the proximal imidazole involved in the bond with the iron atom. On the basis of this model the movement of the iron atom to the heme plane appears as a crucial step for CO binding, the activation free energy of the process amounting to approximately 2 kcal/mol.  相似文献   

5.
 The cooperative effect of anions and proton concentration on the EPR spectroscopic properties of the ferrous nitrosylated derivative of monomeric Mb from loggerhead sea turtle (Caretta caretta), sperm whale (Physeter catodon), and horse (Caballus caballus) has been investigated between pH 4.5 and 9.0, at 100 K. In the absence of anions, an EPR spectrum characteristic of the hexa-coordinated species of ferrous nitrosylated Mb with an axial geometry is observed, which is unaffected by pH. On the other hand, a transition toward a species characterized by an EPR spectrum corresponding to a hexa-coordinated rhombic geometry takes place in the presence of phosphate, acetate, citrate, sulfate, and chloride. Only the hexa-coordinated form characterized by the rhombic EPR spectrum appears then to undergo a pH-dependent transition toward the penta-coordinated species. Present results show clear-cut evidence for the spectroscopic coupling of proton and anion binding sites with the Mb reactive center, indicating that an allosteric mechanism might modulate the proximal HisF8-heme-NO geometry in monomeric hemoproteins. Received: 15 December 1997 / Accepted: 15 June 1998  相似文献   

6.
Nichols JC  Royer WE  Gibson QH 《Biochemistry》2006,45(51):15748-15755
The transient absorbance change within the first 2 mus of photolysis of COHbI (from Scapharca inaequivalvis) reported by Chiancone et al. [Chiancone, E., Elber, R., Royer, W. E., Regan, R., and Gibson, Q. H. (1993) J. Biol. Chem. 268, 5711-5718] has been studied in several mutants. Evidence is presented that this change (rts) is associated with the allosteric transition between R and T states. Two different rts spectra relate to Hb2 and Hb2CO. No rts has been observed for mutants at position 97 (normally Phe). Correlation of ligand binding and rts shows that protein function changes at or near the rates of rts, typically, 2 x 10(6) s-1 (Hb2) and 5 x 10(5) s-1 (Hb2CO). Unique values of allosteric parameters for several mutants have been obtained by combining kinetic and equilibrium data. The effect of mutation on function thus may be assigned to allostery or to a change in intrinsic heme reactivity.  相似文献   

7.
Among heme-based sensors, recent phylogenomic and sequence analyses have identified 34 globin coupled sensors (GCS), to which an aerotactic or gene-regulating function has been tentatively ascribed. Here, the structural and biochemical characterization of the globin domain of the GCS from Geobacter sulfurreducens (GsGCS162) is reported. A combination of X-ray crystallography (crystal structure at 1.5 Å resolution), UV-vis and resonance Raman spectroscopy reveals the ferric GsGCS162 as an example of bis-histidyl hexa-coordinated GCS. In contrast to the known hexa-coordinated globins, the distal heme-coordination in ferric GsGCS162 is provided by a His residue unexpectedly located at the E11 topological site. Furthermore, UV-vis and resonance Raman spectroscopy indicated that ferrous deoxygenated GsGCS162 is a penta-/hexa-coordinated mixture, and the heme hexa-to-penta-coordination transition does not represent a rate-limiting step for carbonylation kinetics. Lastly, electron paramagnetic resonance indicates that ferrous nitrosylated GsGCS162 is a penta-coordinated species, where the proximal HisF8-Fe bond is severed.  相似文献   

8.
The ferric form of the homodimeric hemoglobin from Scapharca inaequivalvis (HbI) displays a unique pH-dependent behavior involving the interconversion among a monomeric low-spin hemichrome, a dimeric high-spin aquomet six-coordinate derivative, and a dimeric high-spin five-coordinate species that prevail at acidic, neutral, and alkaline pH values, respectively. In the five-coordinate derivative, the iron atom is bound to a hydroxyl group on the distal side since the proximal Fe-histidine bond is broken, possibly due to the packing strain exerted by the Phe97 residue on the imidazole ring [Das, T. K., Boffi, A., Chiancone, E. and Rousseau, D. L. (1999) J. Biol. Chem. 274, 2916-2919]. To determine the proximal and distal effects on the coordination and spin state of the iron atom and on the association state, two heme pocket mutants have been investigated by means of optical absorption, resonance Raman spectroscopy, and analytical ultracentrifugation. Mutation of the distal histidine to an apolar valine causes dramatic changes in the coordination and spin state of the iron atom that lead to the formation of a five-coordinate derivative, in which the proximal Fe-histidine bond is retained, at acidic pH values and a high-spin, hydroxyl-bound six-coordinate derivative at neutral and alkaline pH values. At variance with native HbI, the His69 --> Val mutant is always high-spin and does not undergo dissociation into monomers at acidic pH values. The Phe97 --> Leu mutant, like the native protein, forms a monomeric hemichrome species at acidic pH values. However, at alkaline pH, it does not give rise to the unusual hydroxyl-bound five-coordinate derivative but forms a six-coordinate derivative with the proximal His and distal hydroxyl as iron ligands.  相似文献   

9.
The influence of quaternary structure on the low frequency molecular vibrations of the haem within deoxyhaemoglobin (deoxy Hb) and Oxyhaemoglobin (oxy Hb) was studied by resonance Raman scattering. The FeO2 stretching frequency was essentially identical between the high affinity (R) state (Hb A) and low affinity (T) state (Hb Kansas and Hb M Milwaukee with inositol hexaphosphate). However in deoxy Hb, only one of the polarized lines showed an appreciable frequency shift upon switch of quaternary structure, i.e. 215 to 218 cm?1 for the T state (Hb A, des-His(146β) Hb, and des-Arg(141α) Hb (pH 6.5)) and 220 to 221 cm?1 for the R state (des-Arg(141α) Hb (pH 9.0), des-His(146β)-Arg(141α) Hb and NES des-Arg(141α) Hb). Based on the observed 54Fe isotopic frequency shift of the corresponding Raman lines of deoxy Hb A (214 → 217 cm?1), of deoxy NES des-Arg Hb (220 → 223 cm?1), of the protoporphyrinato-Fe(II)-(2-methylimidazole) complex in the ferrous high spin state (207 → 211 cm?1) and of deoxymyoglobin (220 → 222 cm?1) (Kitagawa et al., 1979), and on substitution of perdeuterated for protonated 2-methylimidazole in the deoxygenated picket fence complex (TpivPP)Fe2+ (2-MeIm) (209 → 206 cm?1), and on the results of normal co-ordinates calculation carried out previously, we proposed that the 216 cm?1 line of deoxy Hb is associated primarily with the FeNε(HisF8) stretching mode and accordingly that the FeNε(HisF8) bond is stretched in the T state due to a strain exerted by globin.  相似文献   

10.
We have examined the Fe(2+)-N epsilon (HisF8) complex in hemoglobin A (HbA) by measuring the band profile of its Raman-active nu Fe-His stretching mode at pH 6.4, 7.0, and 8.0 using the 441-nm line of a HeCd laser. A line shape analysis revealed that the band can be decomposed into five different sublines at omega 1 = 195 cm-1, omega 2 = 203 cm-1, omega 3 = 212 cm-1, omega 4 = 218 cm-1, and omega 5 = 226 cm-1. To identify these to the contributions from the different subunits we have reanalyzed the nu Fe-His band of the HbA hybrids alpha(Fe)2 beta(Co)2 and alpha(Co)2 beta(Fe)2 reported earlier by Rousseau and Friedman (D. Rousseau and J. M. Friedman. 1988. In Biological Application on Raman Spectroscopy. T. G. Spiro, editor, 133-216). Moreover we have reanalyzed other Raman bands from the literature, namely the nu Fe-His band of the isolated hemoglobin subunits alpha SH- and beta SH-HbA, various hemoglobin mutants (i.e., Hb(TyrC7 alpha-->Phe), Hb(TyrC7 alpha-->His), Hb M-Boston and Hb M-Iwate), N-ethylmaleimide-des(Arg141 alpha) hemoglobin (NES-des(Arg141 alpha)HbA) and photolyzed carbonmonoxide hemoglobin (Hb*CO) measured 25 ps and 10 ns after photolysis. These molecules are known to exist in different quaternary states. All bands can be decomposed into a set of sublines exhibiting frequencies which are nearly identical to those found for deoxyhemoglobin A. Additional sublines were found to contribute to the nu Fe-His band of NES-des(Arg141 alpha) HbA and the Hb*CO species. The peak frequencies of the bands are determined by the most intensive sublines. Moreover we have measured the nu Fe-His band of deoxyHbA at 10 K in an aqueous solution and in a 80% glycerol/water mixture. Its subline composition at this temperature depends on the solvent and parallels that of more R-like hemoglobin derivatives. We have also measured the optical charge transfer band III of deoxyHbA at room temperature and found, that at least three subbands are required to fit its asymmetric band shape. This corroborates the findings on the nu Fe-His band in that it is indicative of a heterogeneity of the Fe(2+)-N epsilon(HisF8) bond. Finally we measured the nu Fe-His band of horse heart deoxyMb at different temperatures and decomposed it into three different sublines. In accordance with what was obtained for HbA their intensities rather than their frequencies are temperature-dependent.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
 Synthetic models of the myoglobin active site have provided much insight into factors that affect CO and O2 binding in the proteins. "Capped" and "pocket" metal porphyrin systems have been developed to probe how steric factors affect ligand binding and ultimately to elucidate important aspects of the mechanism of CO discrimination in the proteins. These model porphyrins are among the most thoroughly characterized systems to date. From the twenty-one known crystal structures, analysis of the types of distortion that occur upon ligand binding under the cap, including porphyrin doming and ruffling, lateral and horizontal movement of the cap, and bending and tilting of the Fe–C–O bond, provides an indication of how steric interactions will affect structure in Hb and Mb. The model porphyrin systems discussed range from those that discriminate against O2 binding compared to biological systems to those with similar CO and O2 binding strength to myoglobin, and also to those that bind both O2 and CO very weakly or not at all. The primary type of distortion observed upon CO binding is vertical or lateral movement of the cap and some ruffling of the porphyrin plane. Minimal bending or tilting of the M–C–O bond is observed, suggesting that the Fe–C–O bending that has been found from crystal structures of the hemoproteins is unlikely. Received, accepted: 23 May 1997  相似文献   

12.
Three mutant proteins of sperm whale myoglobin (Mb) that exhibit altered axial ligations were constructed by site-directed mutagenesis of a synthetic gene for sperm whale myoglobin. Substitution of distal pocket residues, histidine E7 and valine E11, with tyrosine and glutamic acid generated His(E7)Tyr Mb and Val(E11)Glu Mb. The normal axial ligand residue, histidine F8, was also replaced with tyrosine, resulting in His(F8)Tyr Mb. These proteins are analogous in their substitutions to the naturally occurring hemoglobin M mutants (HbM). Tyrosine coordination to the ferric heme iron of His(E7)Tyr Mb and His(F8)Tyr Mb is suggested by optical absorption and EPR spectra and is verified by similarities to resonance Raman spectral bands assigned for iron-tyrosine proteins. His(E7)Tyr Mb is high-spin, six-coordinate with the ferric heme iron coordinated to the distal tyrosine and the proximal histidine, resembling Hb M Saskatoon [His(beta E7)Tyr], while the ferrous iron of this Mb mutant is high-spin, five-coordinate with ligation provided by the proximal histidine. His(F8)Tyr Mb is high-spin, five-coordinate in both the oxidized and reduced states, with the ferric heme iron liganded to the proximal tyrosine, resembling Hb M Iwate [His(alpha F8)Tyr] and Hb M Hyde Park [His(beta F8)Tyr]. Val(E11)Glu Mb is high-spin, six-coordinate with the ferric heme iron liganded to the F8 histidine. Glutamate coordination to the ferric iron of this mutant is strongly suggested by the optical and EPR spectral features, which are consistent with those observed for Hb M Milwaukee [Val(beta E11)Glu]. The ferrous iron of Val(E11)Glu Mb exhibits a five-coordinate structure with the F8 histidine-iron bond intact.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
I Morishima  Y Shiro  S Adachi  Y Yano  Y Orii 《Biochemistry》1989,28(19):7582-7586
The kinetics of carbon monoxide (CO) binding to myoglobin (Mb) modified at the distal histidine (His) by cyanogen bromide (BrCN) has been studied. The CO association and dissociation rates of BrCN-modified Mb were obtained as 1.8 x 10(3) M-1 s-1 and 0.13 s-1, respectively (20 degrees C and pH 7.0). Thermodynamic parameters were obtained as well. These values are notable, compared with those for other hemoproteins, the slowest association and the fastest dissociation rates among various hemoproteins examined so far. On the basis of the available structural data obtained from the absorption, 1H NMR, and IR spectral measurements, these unique kinetic and thermodynamic properties were reasonably explained in terms of the steric restriction at the modified distal side.  相似文献   

14.
Utilization of near-infrared spectroscopy (NIRS) in clinical exercise testing to detect microvascular abnormalities requires characterization of the responses in healthy individuals and theoretical foundation for data interpretation. We examined the profile of the deoxygenated hemoglobin signal from NIRS {deoxygenated hemoglobin + myoglobin [deoxy-(Hb+Mb)] approximately O(2) extraction} during ramp exercise to test the hypothesis that the increase in estimated O(2) extraction would be close to hyperbolic, reflecting a linear relationship between muscle blood flow (Q(m)) and muscle oxygen uptake (Vo(2)(m)) with a positive Q(m) intercept. Fifteen subjects (age 24 +/- 5 yr) performed incremental ramp exercise to fatigue (15-35 W/min). The deoxy-(Hb+Mb) response, measured by NIRS, was fitted by a hyperbolic function [f(x) = ax/(b + x), where a is the asymptotic value and b is the x value that yields 50% of the total amplitude] and sigmoidal function {f(x) = f(0) + A/[1 + e(-(-c+dx))], where f(0) is baseline, A is total amplitude, and c is a constant dependent on d, the slope of the sigmoid}, and the goodness of fit was determined by F test. Only one subject demonstrated a hyperbolic increase in deoxy-(Hb+Mb) (a = 170%, b = 193 W), whereas 14 subjects displayed a sigmoidal increase in deoxy-(Hb+Mb) (f(0) = -7 +/- 7%, A = 118 +/- 16%, c = 3.25 +/- 1.14, and d = 0.03 +/- 0.01). Computer simulations revealed that sigmoidal increases in deoxy-(Hb+Mb) reflect a nonlinear relationship between microvascular Q(m) and Vo(2)(m) during incremental ramp exercise. The mechanistic implications of our findings are that, in most healthy subjects, Q(m) increased at a faster rate than Vo(2)(m) early in the exercise test and slowed progressively as maximal work rate was approached.  相似文献   

15.
The subunit interface of the homodimeric hemoglobin from Scapharca inaequivalvis, HbI, is stabilized by a network of interactions that involve several hydrogen-bonded structural water molecules, a hydrophobic patch, and a single, symmetrical salt bridge between residues Lys-30 and Asp-89. Upon mutation of Lys-30 to Asp, the interface is destabilized markedly. Sedimentation equilibrium and velocity experiments allowed the estimate of the dimerization constants for the unliganded (K(1,2D) = 8 x 10(4) M(-1)) and for the CO-bound (K(1,2L) = 1 x 10(3) m(-1)) and oxygenated (K(1,2L) = 70 m(-1)) derivatives. For the oxygenated derivative, the destabilization of the subunit interface with respect to native HbI corresponds to about 8 kcal/mol, an unexpectedly high figure. In the K30D mutant, at variance with the native protein, oxygen affinity and cooperativity are strongly dependent on protein concentration. At low protein concentrations (e.g. 1.2 x 10(-5) m heme), at which the monomeric species becomes significant also in the unliganded derivative, oxygen affinity increases and cooperativity decreases. At protein concentrations where both derivatives are dimeric (e.g. 3.3 x 10(-3) m heme), both cooperativity and oxygen affinity decrease. Taken together, the experimental data indicate that in the K30D mutant, the mechanism of cooperativity is drastically altered and is driven by a ligand-linked monomer-dimer equilibrium rather than being based on a direct heme-heme communication as in native HbI.  相似文献   

16.
Myoglobin and hemoglobin rotational diffusion in the cell.   总被引:2,自引:1,他引:1       下载免费PDF全文
D Wang  U Kreutzer  Y Chung    T Jue 《Biophysical journal》1997,73(5):2764-2770
The detection of the 1H NMR signal of myoglobin (Mb) in tissue opens an opportunity to examine its cellular diffusion property, which is central to its purported role in facilitating oxygen transport. In perfused myocardium the field-dependent transverse relaxation analysis of the deoxy Mb proximal histidyl NdeltaH indicates that the Mb rotational correlation time in the cell is only approximately 1.4 times longer than it is in solution. Such a mobility is consistent with the theory that Mb facilitates oxygen diffusion from the sarcoplasm to the mitochondria. The microviscosities of the erythrocyte and myocyte environment are different. The hemoglobin (Hb) rotational correlation time is 2.2 longer in the cell than in solution. Because both the overlapping Hb and Mb signals are visible in vivo, a relaxation-based NMR strategy has been developed to discriminate between them.  相似文献   

17.
The hemoproteins (sperm whale myoglobin, hemoglobin from larvae of Chironomus thummi thummi, bovine hemoglobin) were studied in viscous solvents (saturated sucrose solution, glycerol and water-glycerol solutions) in the temperature range +50 divided by -100 degrees C. At low temperatures the three-phase kinetics of Mb recombination with CO was observed. The velocities of two "fast" reactions did not depend on ligand concentration. This fact indicates that they are due to a so called cage-effect. The formation of the cage is caused apparently by a local change of the solvent state in the heme region. To explain the biphasic "cage" kinetics it has been assumed that during some time after photodissociation myoglobin remains in the "ligand-bound" conformation and reacts with CO faster than the "normal" myoglobin. For other hemoproteins the "cage-effect" was not observed. For all the studied hemoproteins the quantum yield of photodissociation decreased as the temperature decreased. The decrease of quantum yield can be described by the Arrenius law. The rates of the decrease of quantum yield differ for different proteins.  相似文献   

18.
The hydroxyl group of Tyr alpha 42 in human hemoglobin forms a hydrogen bond with the carboxylate of Asp beta 99 which is considered to be one of the most important hydrogen bonds for stabilizing the "T-state." However, no spontaneous mutation at position 42 of the alpha subunit has been reported, and the role of the tyrosine has not been tested experimentally. Two artificial human mutant hemoglobins in which Tyr alpha 42 was replaced by phenylalanine or histidine were synthesized in Escherichia coli, and their proton NMR spectra were studied with particular attention to the hyperfine-shifted and hydrogen-bonded proton resonances. The site-directed mutagenesis of the Tyr alpha 42----Phe removes the hydrogen bond described above and prevents transition to the T-state so that the mutant Hb is rather similar to the "R-state" even when deoxygenated. On the other hand, the mutation from tyrosine to histidine causes less drastic structural changes, and its quaternary and tertiary structures are almost the same as native deoxy-Hb A. This may be attributed to the formation of a new hydrogen bond between His alpha 1(42) and Asp beta 2(99). These observations indicate that the hydrogen bond formed between Tyr alpha 42 and Asp beta 99 is required to convert unliganded Hb to the T-state.  相似文献   

19.
Kinetics of CO binding to human hemoglobin (Hb) has been followed below neutrality. With respect to the behavior observed at pH 7.0, CO binding to deoxy-Hb at pH 2.3 displays a much faster second-order combination rate constant (1.2 x 10(-7) M-1 s-1) and loss of the autocatalytic character of the kinetic progress curve. The spectroscopic features of the transient deoxy-Hb at pH 2.75 indicate the phenomenon to be related to the cleavage of the proximal histidine N epsilon-Fe bond, as reported for monomeric hemoproteins (Coletta, M., Ascenzi, P., Traylor, T. G., and Brunori, M. (1985) J. Biol. Chem. 260, 4151-4155). The faster CO binding rate constant, higher than that characteristic of the R state, cannot be attributed to either (i) an enhanced dimerization of deoxy-Hb at low pH, or (ii) a quaternary switch of the unliganded form to the R0 state. The data indicate that interaction(s) of the heme on the proximal side is crucial in accounting for the difference in the CO binding rate constant between the two quaternary conformations of hemoglobin.  相似文献   

20.
Soluble guanylate cyclase (GC) from bovine lung is activated 4-fold by carbon monoxide (CO) and 400-fold by nitric oxide (NO). Spectroscopic and kinetic data for ligation of CO and NO with GC are summarized and compared with similar data for myoglobin (Mb), hemoglobin (Hb), and heme model compounds. Kinetic, thermodynamic, and structural data form a basis on which to construct a model for the manner in which the two ligands affect protein structure near the heme for heme proteins in general and for GC in particular. The most significant datum is that although association rates of ligands with GC are similar to those with Mb and Hb, their dissociation rates are dramatically faster. This suggests a delicate balance between five- and six-coordinate heme iron in both NO and CO complexes. Based on these and other data, a model for GC activation is proposed: The first step is formation of a six-coordinate species concomitant with tertiary and quaternary structural changes in protein structure and about a 4-fold increase in enzyme activity. In the second step, applicable to NO, the bond from iron to the proximal histidine ruptures, leading to additional relaxation in the quaternary and tertiary structure and a further 100-fold increase in activity. This is the main event in activation, available to NO and possibly other activators or combinations of activators. It is proposed, finally, that the proximal base freed in step 2, or some other protein base suitably positioned as a result of structural changes following ligation, may provide a center for nucleophilic substitution catalyzing the reaction GTP --> cGMP. An example is provided for a similar reaction in a derivatized protoheme model compound. The reaction mechanism attempts to rationalize the relative enzymatic activities of GC, heme-deficient GC, GC-CO, and GC-NO on a common basis and makes predictions for new activators that may be discovered in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号