首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
蛋白质入核转运的机制和研究进展   总被引:2,自引:0,他引:2  
细胞核膜是由外膜和内膜组成的磷脂双分子层结构,同时镶嵌一些核孔复合体(NPC).核孔复合体是胞浆和胞核之间主动和被动转运的生理屏障.核内功能蛋白在胞浆内合成后通过核孔复合体进入胞核,这个过程除了需要NPC上核孔蛋白、胞浆内核转运受体和RanGTP等蛋白的参与外, 货物蛋白本身的结构特征在其入核转运过程中亦发挥重要作用.本文着重就蛋白入核转运的机制及近年来取得的相关进展进行综述.  相似文献   

2.
3.
Nucleocytoplasmic transport of proteins   总被引:4,自引:0,他引:4  
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.  相似文献   

4.
5.
The double membrane of the nuclear envelope is a formidable barrier separating the nucleus and cytoplasm of eukaryotic cells. However, movement of specific macromolecules across the nuclear envelope is critical for embryonic development, cell growth and differentiation. Transfer of molecules between the nucleus and cytoplasm occurs through the aqueous channel formed by the nuclear pore complex (NPC)
  • 1 Abbreviations: NPC, nuclear pore complex; GlcNac, N-acetylglucosamine; WGA, wheat germ agglutinin
  • . Although small molecules may simply diffuse across the NPC, transport of large proteins and RNA requires specific transport signals and is energy dependent. A family of pore glycoproteins modified by O-linked N-acetylglucosamine moieties are essential for transport through the NPC. Recent evidence suggests that the regulation of nuclear transport may also involve the inteaction of RNA and nuclear proteins with specific binding proteins that recognize these transport signals. Are these nuclear pore glycoproteins and signal binding proteins the ‘gatekeepers’ that control access to the genetic material? Recent evidence obtained from a combination of biochemical and genetic approaches suggests – perhaps.  相似文献   

    6.
    Nuclear pore complexes are constitutive structures of the nuclear envelope in eukaryotic cells and represent the sites where transport of molecules between nucleus and cytoplasm takes place. However, pore complexes of similar structure, but with largely unknown functional properties, are long known to occur also in certain cytoplasmic cisternae that have been termed annulate lamellae (AL). To analyze the capability of the AL pore complex to interact with the soluble mediators of nuclear protein import and their karyophilic protein substrates, we have performed a microinjection study in stage VI oocytes ofXenopus laevis.In these cells AL are especially abundant and can easily be identified by light and electron microscopy. Following injection into the cytoplasm, fluorochrome-labeled mediators of two different nuclear import pathways, importin β and transportin, not only associate with the nuclear envelope but also with AL. Likewise, nuclear localization signals (NLS) of the basic and M9 type, but not nuclear export signals, confer targeting and transient binding of fluorochrome-labeled proteins to cytoplasmic AL. Mutation or deletion of the NLS signals prevents these interactions. Furthermore, binding to AL is abolished by dominant negative inhibitors of nuclear protein import. Microinjections of gold-coupled NLS-bearing proteins reveal specific gold decoration at distinct sites within the AL pore complex. These include such at the peripheral pore complex-attached fibrils and at the central “transporter” and closely resemble those of “transport intermediates” found in electron microscopic studies of the nuclear pore complex (NPC). These data demonstrate that AL can represent distinct sites within the cytoplasm of transient accumulation of nuclear proteins and that the AL pore complex shares functional binding properties with the NPC.  相似文献   

    7.
    Virtual gating and nuclear transport: the hole picture   总被引:16,自引:0,他引:16  
    The eukaryotic nucleus is surrounded by a protective nuclear envelope, which is perforated by trafficking machines termed nuclear pore complexes (NPCs). The NPCs are the sole mediators of exchange between the nucleus and the cytoplasm. Small molecules pass through the NPCs unchallenged; however, large macromolecules are excluded unless chaperoned across by transport factors. Here, we suggest a model, termed ‘virtual gating’, to explain the mechanism of this rapid and selective macromolecular trafficking.  相似文献   

    8.
    How proteins enter the nucleus   总被引:127,自引:0,他引:127  
    P A Silver 《Cell》1991,64(3):489-497
    Nuclear protein import is a selective process. Proteins destined for the nucleus contain NLSs. These short stretches of amino acids interact with proteins located in the cytoplasm, on the nuclear envelope, and/or at the nuclear pore complex. Following binding at the pore complex, proteins are translocated through the pore into the nucleus in a manner requiring ATP. The biochemical dissection of the nuclear pore complex has begun. Alteration of protein import into the nucleus is emerging as a new and complex form of regulation. However, we are left with the following problems: How do proteins move through the cytoplasm to reach the nuclear pore? How does the nuclear pore complex open and close in a selective manner? How is ATP utilized during import? And finally, how is bi-directional traffic of both proteins and RNA through the pore regulated?  相似文献   

    9.
    The central features of nuclear import have been conserved during evolution. In yeast the nuclear accumulation of proteins follows the same selective and active transport mechanisms known from higher eukaryotes. Yeast nuclear proteins contain nuclear localization sequences (NLS) which are presumably recognized by receptors in the cytoplasm and the nuclear envelope. Subsequent to this recognition step, nuclear proteins are translocated into the nucleus via the nuclear pore complexes. The structure of the yeast nuclear pore complex resembles that of higher eukaryotes. Recently, the first putative components of the yeast nuclear import machinery have been cloned and sequenced. The genetically amenable yeast system allows for an efficient structural and functional analysis of these components. Due to the evolutionary conservation potential insights into the nuclear import mechanisms in yeast can be transferred to higher eukaryotes. Thus, yeast can be considered as a eukaryotic model system to study nuclear transport.  相似文献   

    10.
    11.
    Dynamic nuclear pore complexes: life on the edge   总被引:37,自引:0,他引:37  
    Tran EJ  Wente SR 《Cell》2006,125(6):1041-1053
    The exchange of molecules between the nucleus and cytoplasm is mediated through nuclear pore complexes (NPCs) embedded in the nuclear envelope. Altering the interactions between transport receptors and their cargo has been shown to be a major regulatory mechanism to control traffic through NPCs. New evidence now suggests that NPC proteins play active roles in translocation, and that transport is also controlled by dynamic changes in NPC composition and architecture. This view of ever-changing NPCs necessitates the re-evaluation of current models of nuclear transport and how this process is regulated.  相似文献   

    12.
    We recently showed that a nuclear location signal (NLS)-containing karyophile forms a stable complex with cytoplasmic components for nuclear pore-targeting The complex, termed nuclear pore-targeting complex (PTAC), contained two essential proteins of 54 and 90 kDa, respectively, as estimated by electrophoresis. In this study, we found that the 54 kDa component of PTAC is the mouse homologue of Xenopus importin (m-importin). Cytoplasmic injection of the antibodies raised against recombinant m-importin showed an inhibitory effect on nuclear import of a karyophile in living mammalian cells. A portion of cytoplasmically injected antibodies migrated rapidly into the nucleus, indicating dynamic movement of this protein across the nuclear envelope. Moreover, the injected antibodies co-precipitated the karyophile, in an NLS-dependent manner, with endogenous m-importin in the cytoplasm. These results provide in vivo evidence that m-importin is involved in nuclear protein import through association with a NLS in the cytoplasm before nuclear pore binding.  相似文献   

    13.
    Nuclear import of proteins is mediated by the nuclear pore complexes in the nuclear envelope and requires the presence of a nuclear localization signal (NLS) on the karyophilic protein. In this paper, we describe studies with a monoclonal antibody, Mab E2, which recognizes a class of nuclear pore proteins of 60-76 kDa with a common phosphorylated epitope on rat nuclear envelopes. The Mab E2-reactive proteins fractionated with the relatively insoluble pore complex-containing component of the envelope and gave a finely punctate pattern of nuclear staining in immunofluorescence assays. The antibody did not bind to any cytosolic proteins. Mab E2 inhibited the interaction of a simian virus 40 large T antigen NLS peptide with a specific 60-kDa NLS-binding protein from rat nuclear envelopes in photoaffinity labeling experiments. The antibody blocked the nuclear import of NLS--albumin conjugates in an in vitro nuclear transport assay with digitonin-permeabilized cells, but did not affect passive diffusion of a small non-nuclear protein, lysozyme, across the pore. Mab E2 may inhibit protein transport by directly interacting with the 60-kDa NLS-binding protein, thereby blocking signal-mediated nuclear import across the nuclear pore complex.  相似文献   

    14.
    Nucleocytoplasmic transport of macromolecules.   总被引:23,自引:0,他引:23       下载免费PDF全文
    Nucleocytoplasmic transport is a complex process that consists of the movement of numerous macromolecules back and forth across the nuclear envelope. All macromolecules that move in and out of the nucleus do so via nuclear pore complexes that form large proteinaceous channels in the nuclear envelope. In addition to nuclear pores, nuclear transport of macromolecules requires a number of soluble factors that are found both in the cytoplasm and in the nucleus. A combination of biochemical, genetic, and cell biological approaches have been used to identify and characterize the various components of the nuclear transport machinery. Recent studies have shown that both import to and export from the nucleus are mediated by signals found within the transport substrates. Several studies have demonstrated that these signals are recognized by soluble factors that target these substrates to the nuclear pore. Once substrates have been directed to the pore, most transport events depend on a cycle of GTP hydrolysis mediated by the small Ras-like GTPase, Ran, as well as other proteins that regulate the guanine nucleotide-bound state of Ran. Many of the essential factors have been identified, and the challenge that remains is to determine the exact mechanism by which transport occurs. This review attempts to present an integrated view of our current understanding of nuclear transport while highlighting the contributions that have been made through studies with genetic organisms such as the budding yeast, Saccharomyces cerevisiae.  相似文献   

    15.
    Proteins and RNAs move between the nucleus and cytoplasm by translocation through nuclear pore complexes in the nuclear envelope. To do this, they require specific targeting signals, energy, and a cellular apparatus that catalyzes their transport. Several of the factors involved in nucleocytoplasmic trafficking of proteins have been identified and characterized in some detail. The emerging picture for nuclear transport proposes a central role for the small GTPase Ran and proteins with which it interacts. In particular, asymmetric distribution of these proteins between nucleus and cytoplasm appears to be responsible for the vectorial nature of nucleocytoplasmic transport. Here, we summarize the role of Ran and Ran-binding proteins in nuclear trafficking of proteins with classical nuclear localisation signals. We also discuss examples of the growing number of alternative pathways that are involved in transport of proteins across the nuclear envelope. BioEssays 21:579–589, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

    16.
    A radioiodinated, photoactivable synthetic nonapeptide corresponding to the nuclear location signal (NLS) of SV40 large T antigen has been used in photolabelling reactions with purified mouse liver nuclei, nuclear envelopes and other cellular fractions, to identify specific NLS-binding proteins which may be involved in selective transport of karyophilic proteins. SDS-polyacrylamide gel analysis of photolabelled products demonstrates that a 60 kDa nuclear protein and four nuclear envelope proteins (67, 60, 53 and 47 kDa) bind specifically to the native NLS and not to a mutant NLS or unrelated sequences. This binding shows saturation kinetics, with highest affinity of the NLS for the 60 and 67 kDa proteins. The nuclear 60 kDa NLS-binding protein is identical to the nuclear envelope 60 kDa NLS-binding protein by two-dimensional gel analysis of labelled proteins. Biochemical fractionation of labelled nuclear envelopes suggests that the 53 and 47 kDa proteins are peripheral membrane proteins whereas the 67 and 60 kDa proteins can be localized to the pore complex. The NLS also binds to solubilized 67, 60, 53 and 47 kDa proteins but with decreased affinity. Our results suggest that one of the early steps in selective nuclear transport of proteins may be the recognition of the NLS by the 60 kDa and/or 67 kDa binding proteins present in the nuclear pore complex.  相似文献   

    17.
    Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm.  相似文献   

    18.
    The nuclear envelope is essential for compartmentalizing the nucleus from the cytoplasm in all eukaryotic cells. There is a tremendous flux of both RNA and proteins across the nuclear envelope, which is intact throughout the entire cell cycle of yeasts but breaks down during mitosis of animal cells. Transport across the nuclear envelope requires the recognition of cargo molecules by receptors, docking at the nuclear pore, transit through the nuclear pore, and then dissociation of the cargo from the receptor. This process depends on the RanGTPase system, transport receptors, and the nuclear pore complex. We provide an overview of the nuclear transport process, with particular emphasis on the fission yeast Schizosaccharomyces pombe, including strategies for predicting and experimentally verifying the signals that determine the sub-cellular localization of a protein of interest. We also describe a variety of reagents and experimental strategies, including the use of mutants and chemical inhibitors, to study nuclear protein import, nuclear protein export, nucleocytoplasmic protein shuttling, and mRNA export in fission yeast. The RanGTPase and its regulators also play an essential transport independent role in nuclear envelope re-assembly after mitosis in animal cells and in the maintenance of nuclear envelope integrity at mitosis in S. pombe. Several experimental strategies and reagents for studying nuclear size, nuclear shape, the localization of nuclear pores, and the integrity of the nuclear envelope in living fission yeast cells are described.  相似文献   

    19.
    The spatial separation between the cytoplasm and the cell nucleus necessitates the continuous exchange of macromolecular cargo across the double-membraned nuclear envelope. Being the only passageway in and out of the nucleus, the nuclear pore complex (NPC) has the principal function of regulating the high throughput of nucleocytoplasmic transport in a highly selective manner so as to maintain cellular order and function. Here, we present a retrospective review of the evidence that has led to the current understanding of both NPC structure and function. Looking towards the future, we contemplate on how various outstanding effects and nanoscopic characteristics ought to be addressed, with the goal of reconciling structure and function into a single unified picture of the NPC.  相似文献   

    20.
    Nuclear proteins are transported from the cytoplasm into the nucleus via nuclear envelope pore complexes (NPCs). At the molecular level, the mechanisms responsible for this transport remain obscure. However, it is known that, for many proteins, the process requires ATP and proceeds against formidable nucleocytoplasmic concentration gradients. Therefore, the NPC is often thought of as an active transport site. In this article, Philip Paine presents the alternative hypothesis that, on current evidence, protein translocation across the nuclear envelope and accumulation in the nucleus can equally well be explained by facilitated transport through the NPC and subsequent intranuclear binding.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号