首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cell-free extract from Arthrobacter 37, isolated from a manganese nodule from the Atlantic Ocean, exhibited enzymatic activity which accelerated manganese accretion to synthetic Mn-Fe oxide as well as to crushed manganese nodule. The reaction required oxygen and was inhibited by HgCl2 and p-chloromercuribenzoate but not by Atebrine dihydrochloride. The rate of enzymatic action depended on the concentration of cell-free extract used. The enzymatic activity had a temperature optimum around 17.5 C and was destroyed by heating at 100 C. The amount of heat required for inactivation depended on the amount of nucleic acid in the preparation. In the cell-free extract, unlike the whole-cell preparation, peptone could not substitute for NaHCO3 in the reaction mixture. An enzyme-containing protein fraction and a nucleic acid fraction could be separated from cell extract by gel filtration, when prepared in 3% NaCl but not in seawater. The nucleic acid fraction was not required for enzymatic activity.  相似文献   

2.
A method was developed to determine whether microorganisms mediate the precipitation of manganese(II) in the marine environment. Radioactive 54Mn(II) was used as a tracer to measure the precipitation (binding and oxidation) of Mn(II) [i.e., the 54Mn(II) trapped on 0.2-μm membrane filters] in the presence and absence of biological poisons. A variety of antibiotics, fixatives, and metabolic inhibitors were tested in laboratory control experiments to select poisons that did not interfere in the chemistry of manganese. The poisons were deemed suitable if (i) they did not complex Mn(II) more strongly than the ion-exchange resin Chelex 100, (ii) they did not interfere in the adsorption of 54Mn(II) onto synthetic δMnO2 (manganate), (iii) they did not cause desorption of 54Mn(II) which had been preadsorbed onto synthetic manganate, and (iv) they did not solubilize synthetic 54manganate. In addition, several known chelators, reducing agents, and buffers normally added to microbiological growth media or used in biochemical assays were tested. Most additions interfered to some extent with manganese chemistry. However, at least one inhibitor, sodium azide, or a mixture of sodium azide, penicillin, and tetracycline was shown to be appropriate for use in field studies of 54Mn(II) binding. Formaldehyde could also be used in short incubations (1 to 3 h) but was not suitable for longer time course studies. The method was applied to studies of Mn(II) precipitation in Saanich Inlet, British Columbia, Canada. Bacteria were shown to significantly enhance the rate of Mn(II) removal from solution in the manganese-rich particulate layer which occurs just above the oxygen-hydrogen sulfide interface in the water column.  相似文献   

3.
Bacteria belonging to the Roseobacter clade of the alpha-Proteobacteria occupy a wide range of environmental niches and are numerically abundant in coastal waters. Here we reveal that Roseobacter-like bacteria may play a previously unrecognized role in the oxidation and cycling of manganese (Mn) in coastal waters. A diverse array of Mn(II)-oxidizing Roseobacter-like species were isolated from Elkhorn Slough, a coastal estuary adjacent to Monterey Bay in California. One isolate (designated AzwK-3b), in particular, rapidly oxidizes Mn(II) to insoluble Mn(III, IV) oxides. Interestingly, AzwK-3b is 100% identical (at the 16S rRNA gene level) to a previously described Pfiesteria-associated Roseobacter-like bacterium, which is not able to oxidize Mn(II). The rates of manganese(II) oxidation by live cultures and cell-free filtrates are substantially higher when the preparations are incubated in the presence of light. The rates of oxidation by washed cell extracts, however, are light independent. Thus, AzwK-3b invokes two Mn(II) oxidation mechanisms when it is incubated in the presence of light, in contrast to the predominantly direct enzymatic oxidation in the dark. In the presence of light, production of photochemically active metabolites is coupled with initial direct enzymatic Mn(II) oxidation, resulting in higher Mn(II) oxidation rates. Thus, Roseobacter-like bacteria may not only play a previously unrecognized role in Mn(II) oxidation and cycling in coastal surface waters but also induce a novel photooxidation pathway that provides an alternative means of Mn(II) oxidation in the photic zone.  相似文献   

4.
Microbial Diversity at a Deep-Sea Station of the Pacific Nodule Province   总被引:4,自引:0,他引:4  
The Pacific nodule province covers about 4.5 million km2 in the eastern tropical Pacific with abundance of polymetallic nodules. Microbes are believed to play large roles in the metal cycling in many environments, but the microbial community in the Pacific nodule province has never been studied. Phylogenetic studies based on 16S rRNA gene sequence analysis, together with bacterial cultivation were used to study the microbial populations in the Pacific nodule province (A core) deep-sea sediment. Bacterial 16S rRNA gene sequence analysisdemonstrated that Proteobacteria division mainly of γ-Proteobacteria dominated the microbial community of the nodule province A core. Among the γ-Proteobacteria, Shewanella species which were known as Fe(□), Mn(□) reducing bacteria were found prevalent. Besides Proteobacteria, Green nonsulfur bacteria, the candidate subdivision OP3, Cytophaga-Flexibacter-Bacteroides bacteria and novel unidentified strains were also detected. Archaeal 16S rDNA sequence analysis data and results from hybridization with crenarchaeotal marine group I specific probe revealed that all archaea detected at the station belong to Crenarchaeota nonthermophilic marinegroup I. Bacteria assigned to the gamma Proteobacteria wereisolated, none of them showed capability of manganese oxidation. These authors contributed equally to this paper.  相似文献   

5.
The Pacific deep-sea bottoms are dominated by rhizopodan Protozoa. Their abundance on manganese nodules and in the associated sediments suggests a contribution to nodule formation, though direct evidence is still lacking. Attention is called to iron contents in solid excretion products of some sessile rhizopods that may contribute to the initiation of manganese deposition and nodule growth. Manganese is scarce in the faecal pellets of sediment-dwelling rhizopods. This is discussed in context with questions regarding manganese mobilization in pelagic sediments.  相似文献   

6.
The microbial lysis of deep-sea nodules as a possible result of large-scale, deep-sea mining is considered. It is assumed that the Mn (IV) and Fe (III) compounds of the manganese nodules are reduced by the numerous aerobic bacteria at the sediment/water interface as soon as the adjacent nodule area is buried by sedimentation of the disturbed deposits and the organic-rich debris from the blooming surface plankton. Intensive mineralization processes in the resettled sediments cause oxygen depletion. Subsequently, the aerobic (and anaerobic) microorganisms will switch to Mn (IV) and Fe (III) oxides as alternative electron acceptors in order to continue their energy-conserving (ATP synthesis) reactions (anaerobic respiration). The higher the amount of decomposable organic matter, the more intensive are these processes. Consequently, buried manganese nodules may be dissolved, thereby liberating mobile Mn (II), Fe (II) and several trace elements (Ni, Cu, Co and others). This possible hazard and its ecological consequences should be evaluated carefully before deep-sea mining is started on a large scale.  相似文献   

7.
Bacteria belonging to the Roseobacter clade of the α-Proteobacteria occupy a wide range of environmental niches and are numerically abundant in coastal waters. Here we reveal that Roseobacter-like bacteria may play a previously unrecognized role in the oxidation and cycling of manganese (Mn) in coastal waters. A diverse array of Mn(II)-oxidizing Roseobacter-like species were isolated from Elkhorn Slough, a coastal estuary adjacent to Monterey Bay in California. One isolate (designated AzwK-3b), in particular, rapidly oxidizes Mn(II) to insoluble Mn(III, IV) oxides. Interestingly, AzwK-3b is 100% identical (at the 16S rRNA gene level) to a previously described Pfiesteria-associated Roseobacter-like bacterium, which is not able to oxidize Mn(II). The rates of manganese(II) oxidation by live cultures and cell-free filtrates are substantially higher when the preparations are incubated in the presence of light. The rates of oxidation by washed cell extracts, however, are light independent. Thus, AzwK-3b invokes two Mn(II) oxidation mechanisms when it is incubated in the presence of light, in contrast to the predominantly direct enzymatic oxidation in the dark. In the presence of light, production of photochemically active metabolites is coupled with initial direct enzymatic Mn(II) oxidation, resulting in higher Mn(II) oxidation rates. Thus, Roseobacter-like bacteria may not only play a previously unrecognized role in Mn(II) oxidation and cycling in coastal surface waters but also induce a novel photooxidation pathway that provides an alternative means of Mn(II) oxidation in the photic zone.  相似文献   

8.
9.
Two hundred forty-three isolates of alfalfa nodule bacteria (Sinorhizobium meliloti) were obtained from legume nodules and soils sampled in the northern Aral region, experiencing secondary salinization. Isolates obtained from nodules (N isolates) were significantly more salt-tolerant than those from soils (S isolates) when grown in a liquid medium with 3.5% NaCl. It was found that wild species of alfalfa, melilot, and trigonella preferably formed symbioses with salt-tolerant nodule bacteria in both salinized and nonsalinized soils. Only two alfalfa species, Medicago falcata and M. trautvetteri, formed efficient symbioses in soils contrasting in salinity. The formation of efficient symbiosis with alfalfa in the presence of 0.6% NaCl was studied in 36 isolates (N and S) differing in salt tolerance and symbiotic efficiency. Fifteen isolates formed efficient symbioses in the presence of salt. The increase in the dry weight of the plants was 25-68% higher than in the control group. The efficiency of symbiotic interaction under salinization conditions depended on the efficiency of the isolates under standard conditions but did not correlate with the source of nodule bacteria (soil or nodule) or their salt tolerance. The results indicate that nodule bacterium strains forming efficient symbioses under salinization conditions can be found.  相似文献   

10.
Electrothermal atomic-absorption spectroscopy was employed for measuring manganese in beta-cell-rich pancreatic islets microdissected from ob/ob mice. The islet content of endogenous manganese was 80 mumol/kg dry wt., which is about half as much as found in the exocrine pancreas. The initial uptake was characterized by two components, with approximate Km values of 35 microM and 3.7 microM respectively. After 60 min of incubation with 0.25 mM-Mn2+, the intracellular concentration of manganese corresponded to an almost 25-fold accumulation compared with that of the extracellular medium. When exposed to 20 mM-D-glucose, the islets retained more manganese, owing to suppression of its mobilization. The glucose inhibition of efflux was prompt and reversible, as indicated from direct recordings of manganese in a perifusion medium. D-Glucose was an equally potent inhibitor of efflux in the presence of 15 microM- and 1.28 mM-Ca2+. The inhibitory action disappeared when metabolism was suppressed by adding 0.1 mM-N-ethylmaleimide or by lowering the temperature from 37 degrees C to 2 degrees C. At a concentration of 0.25 mM, Mn2+ abolished the insulin-releasing action of D-glucose, exerting only moderate suppression of its metabolism. The addition of Mn2+ resulted in inhibition of basal insulin release in the presence of 1.28 mM-Ca2+, but not in a Ca2+-deficient medium. The studies indicate that the previously observed phenomenon of glucose inhibition of 45Ca efflux has a counterpart in the suppression of manganese mobilization from the pancreatic islets. With the demonstration of a pronounced glucose inhibition of manganese efflux, it is evident that Mn2+ may represent a useful tool for exploring the mechanism of glucose-induced retention of calcium in the pancreatic beta-cells.  相似文献   

11.
Different Frankia strains and crushed nodule suspensions were tested for their ability to nodulate Coriaria nepalensis and Datisca cannabina. Datisca cannabina seedlings were nodulated effectively by both crushed nodule suspension from Coriaria nepalensis and Datisca cannabina. The origin of the endophyte in Datisca nodules induced by crushed nodules of Coriaria was confirmed by comparing partial PCR-amplified 16S rRNA sequences with those of the endophytes of both plants. Coriaria seedlings could only be nodulated by crushed nodule suspensions of Coriaria nepalensis. All pure cultures of Frankia used as a single inoculum source or in combinations with a nodule filtrate, failed to induce nodulation on Coriaria. Two atypical Frankia strains Cn3 and Cn7 isolated from Coriaria nodules showed no acetylene reduction activity and did not induce nodulation on the host seedlings.  相似文献   

12.
Bacterial manganese (Mn) oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or absence of Mn by inductively coupled plasma mass spectrometry (ICP-MS). Mn oxidizing wild type P. putida GB-1 had higher intracellular Mn than non Mn oxidizing mutants grown under the same conditions. P. putida GB-1 had a 5 fold increase in intracellular Mn compared to the non Mn oxidizing mutant P. putida GB-1-007 and a 59 fold increase in intracellular Mn compared to P. putida GB-1 ∆2665 ∆2447. The intracellular Mn is primarily associated with the less than 3 kDa fraction, suggesting it is not bound to protein. Protein oxidation levels in Mn oxidizing and non oxidizing cultures were relatively similar, yet Mn oxidation did increase survival of P. putida GB-1 when oxidatively stressed. This study is the first to link Mn oxidation to Mn homeostasis and oxidative stress protection.  相似文献   

13.
Regions of the Rhizobium meliloti nodulation genes from the symbiotic plasmid were transferred to Agrobacterium tumefaciens and Rhizobium trifolii by conjugation. The A. tumefaciens and R. trifolii transconjugants were unable to elicit curling of alfalfa root hairs, but were able to induce nodule development at a low frequency. These were judged to be genuine nodules on the basis of cytological and developmental criteria. Like genuine alfalfa nodules, the nodules were initiated from divisions of the inner root cortical cells. They developed a distally positioned meristem and several peripheral vascular bundles. An endodermis separated the inner tissues of the nodule from the surrounding cortex. No infection threads were found to penetrate either root hairs or the nodule cells. Bacteria were found only in intercellular spaces. Thus, alfalfa nodules induced by A. tumefaciens and R. trifolii transconjugants carrying small nodulation clones of R. meliloti were completely devoid of intracellular bacteria. When these strains were inoculated onto white clover roots, small nodule-like protrusions developed that, when examined cytologically, were found to more closely resemble roots than nodules. Although the meristem was broadened and lacked a root cap, the protrusions had a central vascular bundle and other rootlike features. Our results suggest that morphogenesis of alfalfa root nodules can be uncoupled from infection thread formation. The genes encoded in the 8.7-kilobase nodulation fragment are sufficient in A. tumefaciens or R. trifolii backgrounds for nodule morphogenesis.  相似文献   

14.
The development and mature structure of bacterial leaf nodules in Psychotria bacteriophila were studied by using light and electron microscopy. Bacteria in mucilage surrounding the shoot apex pass through certain stomates in leaf primordia into the substomatal chamber. These chambers enlarge and become nodules as the yound leaves grow out of the apical region. Surrounding mesophyll cells grow into each nodule and form a cellular reticulum whose interstices are occupied by bacteria. Each intrusive mesophyll cell wall is unusually thick and continually supplemented by vesicles originating from dictyosomes. The gram-negative bacteria are often surrounded by capsules. Nodule bacteria contain several crystal-like dense bodies. A population of normal, dividing, and degenerating bacteria is found in each nodule. Extensive membranes occur between the bacteria. A hypothesis is proposed to explain certain aspects of this obligate symbiotic relationship.  相似文献   

15.
Manganese was accumulated by cells of Escherichia coli by means of an active transport system quite independent of the magnesium transport system. When the radioisotope (54)Mn was used, manganese transport showed saturation kinetics with a K(m) of 2 x 10(-7)m and a V(max) of 1 to 4 nmoles/min per 10(12) cells at 25 C. The manganese transport system is highly specific; magnesium and calcium did not stimulate, inhibit, or compete with manganese for cellular uptake. Cobalt and iron specifically interfered with (54)Mn uptake, but only when added at concentrations 100 times higher than the K(m) for manganese. Active transport of manganese is temperature- and energy-dependent: uptake of (54)Mn was inhibited by cyanide, dinitrophenol, and m-chlorophenyl carbonylcyanide hydrazone (CCCP). Furthermore, the turnover or exit of manganese from intact cells was inhibited by energy poisons such as dinitrophenol and CCCP.  相似文献   

16.
Magnesium and Manganese Content of Halophilic Bacteria   总被引:1,自引:0,他引:1       下载免费PDF全文
Magnesium and manganese contents were measured by atomic absorption spectrophotometry in bacteria of several halophilic levels, in Vibrio costicola, a moderately halophilic eubacterium growing in 1 M NaCl, Halobacterium volcanii, a halophilic archaebacterium growing in 2.5 M NaCl, Halobacterium cutirubrum, an extremely halophilic archaebacterium growing in 4 M NaCl, and Escherichia coli, a nonhalophilic eubacterium growing in 0.17 M NaCl. Magnesium and manganese contents varied with the growth phase, being maximal at the early log phase. Magnesium and manganese molalities in cell water were shown to increase with the halophilic character of the logarithmically growing bacteria, from 30 mmol of Mg per kg of cell water and 0.37 mmol of Mn per kg of cell water for E. coli to 102 mmol of Mg per kg of cell water and 1.6 mmol of Mn per kg of cell water for H. cutirubrum. The intracellular concentrations of manganese were determined independently by a radioactive tracer technique in V. costicola and H. volcanii. The values obtained by 54Mn loading represented about 70% of the values obtained by atomic absorption. The increase of magnesium and manganese contents associated with the halophilic character of the bacteria suggests that manganese and magnesium play a role in haloadaptation.  相似文献   

17.
Summary Acetylene was reduced to ethylene by effective white clover nodules and by fully and partially effective intact nodules, nodule homogenates, and bacteroids of soybeans. Succinate and several amino acids markedly stimulated the reduction by effective soybean bacteroids, but the stimulation was slight with partially effective bacteroids. Acetylene metabolism by effective soybean bacteroids was also enhanced by excretions of in vitro-grown Rhizobium japonicum, excretions of bacteria derived from effective and ineffective nodules, and the soluble fraction from these nodules. Inhibitors of nitrogen fixation were not found in ineffective nodules. Ineffective soybean and white clover nodules and homogenates or isolated bacteria from ineffective soybean nodules did not reduce acetylene. Additions of succinate, amino acids, the soluble fraction of effective nodules, or excretions of effective bacteroids or of in vitro-grown cells of an effective R. japonicum strain did not promote nitrogen fixation by bacterial cells obtained from ineffective soybean nodules.  相似文献   

18.
Manganese: elemental defence for a life with oxygen   总被引:12,自引:0,他引:12  
The presence of enzymes such as catalase, peroxidase and superoxide dismutase (SOD) obviates the problems associated with life in an aerobic environment by eliminating the harmful reactive oxygen species (ROS) that arise from respiration. Enzymic detoxification of ROS might not, however, be the only mechanism at work in bacteria. The accumulation of manganese (Mn), an abundant element in many environments, via several, recently identified transporters is thought to form the basis for an alternative, catalytic detoxification of ROS. An increasing body of evidence from work on the genetics and biochemistry of Mn accumulation and its cellular roles reveals that this overlooked defence mechanism is likely to be widespread among bacteria and might also contribute to virulence.  相似文献   

19.
Legume plants establish a symbiotic association with bacteria called rhizobia, resulting in the formation of nitrogen-fixing root nodules. A Lotus japonicus symbiotic mutant, sen1, forms nodules that are infected by rhizobia but that do not fix nitrogen. Here, we report molecular identification of the causal gene, SEN1, by map-based cloning. The SEN1 gene encodes an integral membrane protein homologous to Glycine max nodulin-21, and also to CCC1, a vacuolar iron/manganese transporter of Saccharomyces cerevisiae, and VIT1, a vacuolar iron transporter of Arabidopsis thaliana. Expression of the SEN1 gene was detected exclusively in nodule-infected cells and increased during nodule development. Nif gene expression as well as the presence of nitrogenase proteins was detected in rhizobia from sen1 nodules, although the levels of expression were low compared with those from wild-type nodules. Microscopic observations revealed that symbiosome and/or bacteroid differentiation are impaired in the sen1 nodules even at a very early stage of nodule development. Phylogenetic analysis indicated that SEN1 belongs to a protein clade specific to legumes. These results indicate that SEN1 is essential for nitrogen fixation activity and symbiosome/bacteroid differentiation in legume nodules.  相似文献   

20.
Manganese oxidation by microbial consortia from sand filters   总被引:5,自引:0,他引:5  
The role of microbial consortia on the removal of manganese (Mn) was examined on sand from three different Belgian rapid sand filters for the treatment of ground water. Microorganisms closely associated with deposits of Fe and amorphous Mn precipitates were observed by SEM and EDAX techniques on sand from the filters able to remove Mn efficiently. Bacterial counts were performed. Of the CFU enumerated on PYM-medium, 25–33% displayed Mn-oxidizing activity.Batch cultures were set up by inoculating a Mn-containing, low organic medium with sand from one of the filters. Microbial growth resulted in the formation of Mn-removing bacterial flocs and a pH increase. Suppression of microbial growth by addition of azide, kanamycin, or by autoclaving reduced removal of Mn2+ from 0.5 mM/day to 0.05–0.11 mM/day. Buffering the pH of the medium at 7.5 (0.1 mM Hepes) decelerated the Mn removal but did not halt it, whereas microelectrode measurements revealed a clear pH drop of about 0.7 units inside bacterial flocs. In the absence of Mn2+, the pH drop was only 0.4 units. The auto-catalytic removal of Mn by the Mn oxide coated filter sand was not sufficient to explain the Mn removal observed. Inactivated cells were not capable of a pronounced autocatalytic Mn removal. Experiments with enrichment cultures indicated that the Mn-removing capacity of the microbial sand filter consortia was not constitutive but was promoted by preadaptation and the presence of a substratum. These results clearly link Mn oxidation in rapid sand filters to microbial processes. Offprint requests to: W. Verstraete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号