首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive radioactive assay of acyl CoA:sn-glycerol-3-phosphate-O-acyltransferase (EC 2.3.1.15) was developed to study the properties and subcellular distribution of this enzyme in rat epididymal adipose tissue. The esterification of sn-glycerol-3-phosphate was measured in the presence of palmitoyl CoA or palmitate, ATP, CoA, and Mg(2+) at pH 7.5. The presence of glycerophosphate acyltransferase was detected in both mitochondria and microsomes. The product of this reaction was identified as phosphatidate by thin-layer chromatography and dual isotope incorporation studies. Several divalent cations reduced the activity of this enzyme. Although Mg(2+) was not required for the activity of glycerophosphate acyltransferase, its addition to the incubation mixture resulted in an increased formation of neutral lipids at the expense of phosphatidate. This result is explained by an activation of microsomal phosphatidate phosphatase (EC 3.1.3.4). The effect of Mg(2+) was completely abolished by Ni(2+), Co(2+), Mn(2+), and Zn(2+). These studies suggest that the balance between Mg(2+) and several other divalent ions may be important in the regulation of neutral lipid synthesis in adipose tissue.  相似文献   

2.
Because the onset of triacylglycerol-rich lipoprotein synthesis occurs in guinea pig liver during fetal life, we investigated the microsomal enzyme activities of triacylglycerol synthesis in fetal and postnatal guinea pig liver. Hepatic monoacylglycerol acyltransferase specific and total microsomal activities peaked by the 50th day of gestation and declined rapidly after birth to levels that were virtually unmeasurable in the adult. Peak fetal specific activity was more than 75-fold higher than observed in the adult. The specific activities of fatty acid CoA ligase and lysophosphatidic acid acyltransferase increased 2- to 3-fold before birth; lysophosphatidic acid acyltransferase increased a further 2.6-fold during the first week of life. Specific activities of phosphatidic acid phosphatase, microsomal glycerophosphate acyltransferase, and diacylglycerol acyltransferase varied minimally over the time course investigated. These data demonstrate that selective changes occur in guinea pig hepatic microsomal activities of triacylglycerol synthesis before birth. Because of an approximate 11-fold increase in hepatic microsomal protein between birth and the adult, however, major increases in total microsomal activity of all the triacylglycerol synthetic activities occurred after birth. The pattern of monoacylglycerol acyltransferase specific and total microsomal activities differs from that of the rat in occurring primarily during the last third of gestation instead of during the suckling period. This pattern provides evidence that hepatic monoacylglycerol acyltransferase activity probably does not function to acylate 2-monoacylglycerols derived from partial hydrolysis of diet-derived triacylglycerol.  相似文献   

3.
Obesity in obese-hyperglycaemic mouse is associated with an increase in number and size of adipocytes. Adipocytes from the obese mouse showed increased incorporation of [14C]acetate and[14C]glucose into triacylglycerol. This increased capacity of triacylglycerol formation was correlated with increased activities of various triacylglycerol-forming enzymes measured in the microsomal fraction of adipose tissue from obese mice. Microsomal fractions from lean and obese mice contained sn-glycerol 3-phosphate acyltransferase, phosphatidate phosphohydrolase and diacylglycerol acyltransferase. Phosphatidate phosphohydrolase was also detected in the soluble fraction. In the presence of Mg2+, the phosphatidate phsophohydrolase from the soluble and the microsomal fractions was active towards membrane-bound phosphatidate. Among the three enzymes studied here, the increase in Mg2+-dependent phosphatidate phosphohydrolase was most prominent in adipose tissue of obese mice.  相似文献   

4.
1. Measurements were made of the activities of the following enzymes of glycerolipid synthesis in homogenates of interscapsular brown adipose tissue obtained from rats subjected to a 4 degrees C environment for time periods of 6 h up to 12 days: fatty acyl-CoA synthetase (FAS), mitochondrial and microsomal forms of glycerolphosphate acyltransferase (GPAT), monoacylglycerolphosphate acyltransferase (MGPAT) and Mg2+-dependent phosphatidate phosphohydrolase (PPH). 2. Relative to tissue DNA content, the activities of mitochondrial GPAT, MGPAT and Mg2+-dependent PPH were significantly increased after 1 day of exposure to cold, and continued to increase thereafter. By contrast, FAS and microsomal GPAT activities were unchanged relative to tissue DNA. 3. The time profile of the increase in MGPAT activity correlated well with a concomitant increase in the microsomal marker NADP+-cytochrome c reductase. Changes in mitochondrial GPAT and in Mg2+-dependent PPH activities were larger in amplitude than that of MGPAT. 4. It is proposed that these selective changes in enzyme activity may be associated with the onset of brown-adipose-tissue hyperplasia or possibly with an increase in triacylglycerol synthesis during cold-acclimation.  相似文献   

5.
1. The in vitro activities of lipoprotein lipase (LPL) and hormone sensitive lipase (HSL) were examined in adipose tissue preparations from pigs 0-150 days of age. 2. The activities of both LPL and HSL increased 3- to 4-fold between birth and day 2 postpartum, remained at relatively high levels through weaning, and fell sharply in the oldest animals (150 days). 3. The decline in enzyme activities at older ages could partially be attributed to an increase in adipocyte size.  相似文献   

6.
1. The effects of dietary modification, including starvation, and of corticotropin injection on the activities of acyl-CoA synthetase, glycerol phosphate acyltransferase, dihydroxyacetone phosphate acyltransferase, phosphatidate phosphohydrolase, diacylglycerol acyltransferase and lipoprotein lipase were measured in adipose tissue. 2. Lipoprotein lipase activities in heart were increased and those in adipose tissue were decreased when rats were fed on diets enriched with corn oil or beef tallow rather than with sucrose or starch. The lipoprotein lipase activity was lower in the adipose tissue of rats fed on the sucrose rather than on the starch diet. 3. Rats fed on the beef tallow diet had slightly higher activities of the total glycerol phosphate acyltransferase in adipose tissue than did rats fed on the sucrose or starch diet. The diacylglycerol acyltransferase and the mitochondrial glycerol phosphate acyltransferase activities were higher for the rats fed on the tallow diet than for those fed on the corn-oil diet. 4. Starvation significantly decreased the activities of lipoprotein lipase (after 24 and 48 h), acyl-CoA synthetase (after 24 h) and of the mitochondrial glycerol phosphate acyltransferase and the N-ethylmaleimide-insensitive dihydroxyacetone phosphate acyltransferase (after 48 h) in adipose tissue. The activities of the microsomal glycerol phosphate acyltransferase, diacylglycerol acyltransferase and the soluble phosphatidate phosphohydrolase were not significantly changed after 24 or 48 h of starvation. 5. The activities of lipoprotein lipase and phosphatidate phosphohydrolase in adipose tissue were decreased 15 min after corticotropin was injected into rats during November to December. No statistically significant differences were found when these experiments were performed during March to September. These differences may be related to the seasonal variation in acute lipolytic responses. 6. These results are discussed in relation to the control of triacylglycerol synthesis and lipoprotein metabolism.  相似文献   

7.
Key enzymes involved in oxidation and esterification of long-chain fatty acids were investigated in male rats fed different types and amounts of oil in their diet. A diet with 20% (w/w) fish oil, partially hydrogenated fish oil (PHFO) and partially hydrogenated soybean oil (PHSO) was shown to stimulate the mitochondrial and microsomal palmitoyl-CoA synthetase activity (EC 6.2.1.3) compared to soybean oil-fed animals after 1 week of feeding. Rapeseed oil had no effect. Partially hydrogenated oils in the diet resulted in significantly higher levels of mitochondrial glycerophosphate acyltransferase compared to unhydrogenated oils in the diet. Rats fed 20% (w/w) rapeseed oil had a decreased activity of this mitochondrial enzyme, whereas the microsomal glycerophosphate acyltransferase activity was stimulated to a comparable extent with 20% (w/w) rapeseed oil, fish oil or PHFO in the diet. Increasing the amount of PHFO (from 5 to 25% (w/w)) in the diet for 3 days led to increased mitochondrial and microsomal palmitoyl-CoA synthetase and microsomal glycerophosphate acyltransferase activities with 5% of this oil in the diet. The mitochondrial glycerophosphate acyltransferase was only marginally affected by increasing the oil dose. Administration of 20% (w/w) PHFO increased rapidly the mitochondrial and microsomal palmitoyl-CoA synthetase, carnitine palmitoyltransferase and microsomal glycerophosphate acyltransferase activities almost to their maximum value within 36 h. In contrast, the glycerophosphate acyltransferase and palmitoyl-CoA hydrolase (EC 3.1.2.2) activities of the mitochondrial fraction and the peroxisomal beta-oxidation reached their maximum activities after administration of the dietary oil for 6.5 days. This sequence of enzyme changes (a) is in accordance with the proposal that an increased cellular level of long-chain acyl-CoA species act as metabolic messages for induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase, i.e., these enzymes are regulated by a substrate-induced mechanism, and (b) indicates that, with PHFO, a greater part of the activated fatty acids are directed from triacylglycerol esterification and hydrolysis towards oxidation in the mitochondria. It is also conceivable that the mitochondrial beta-oxidation is proceeding before the enhancement of peroxisomal beta-oxidation.  相似文献   

8.
Development of mitochondrial and microsomal glycerophosphate acyltransferase in the fetal guinea pig lung was investigated. Mitochondrial and microsomal enzyme activity gradually increased from 45 days to 55 days of gestation. The specific activity in the microsomal fraction (8.2 nmol/min per mg protein) then declined until term, but increased again in the 24-h newborn from 2.5 to 6.1 nmol/min per mg protein. Glycerophosphate acyltransferase activity in the mitochondrial fraction declined after 55 days (3.5 nmol/min per mg) to a minimum level at 60 days (1.8 nmol/min per mg), but increased again in the 24-h newborn (4.0 nmol/min per mg). The specific activity of both mitochondrial and microsomal enzyme declined after 24 h after birth until adult levels were attained. Glycerophosphate acyltransferase activity in mitochondria and microsomes from adult lung was 0.8 and 2.0 nmol/min per mg, respectively. Microsomal enzyme activity was consistently inhibited (over 95%) throughout gestation and adulthood by exposure to any one of several proteinases: trypsin, chymotrypsin, papain, bromelain, pronase and nagarse. Although mitochondrial enzyme activity was also inhibited by these proteinases, there was a continuous increase in proteinase-resistant glycerophosphate acyltransferase activity between 45 days of gestation and term. In contrast, adult mitochondrial enzyme activity was stimulated by all the proteinases studied. These results suggest that early in gestation, glycerophosphate acyltransferase lies more exposed on the cytoplasmic side of the mitochondrial outer membrane and as gestation progresses it becomes embedded into the phospholipid bilayer.  相似文献   

9.
The acylation of sn-glycerol 3-phosphate with palmityl-CoA was compared in mitochondria and microsomes isolated from rat liver. Polymyxin B, an antibiotic known to alter bacterial membrane structure, stimulated the mitochondrial glycerophosphate acyltransferase but inhibited the microsomal enzyme. When mitochondrial and microsomal fractions were incubated at 4–6 °C for up to 4 h, the mitochondrial enzyme remained virtually unchanged while the microsomal enzyme lost about one-half of its activity. Incubations at higher temperatures also revealed that the mitochondrial enzyme was comparatively more stable under the conditions employed. The mitochondrial acyltransferase showed no sensitivity to bromelain, papain, Pronase, and trypsin, all of which strongly inhibited the microsomal enzyme. The differential sensitivity to trypsin was observed in mitochondria and microsomes isolated from other rat organs. However, the liver mitochondrial glycerophosphate acyltransferase was inhibited by trypsin in the presence of either 0.05% deoxycholate or 0.1% Triton X-100. The trypsin sensitivity of the mitochondrial glycerophosphate acyltransferase in the presence of detergent was not due to the presence, in the mitochondrial fraction, of a trypsin inhibitor which became inactivated by Triton X-100 or deoxycholate. The results suggest that the catalytic site of mitochondrial glycerophosphate acyltransferase is not exposed to the cytosolic side and it is located in the inner aspect of the outer membrane.  相似文献   

10.
Effects of ethanol feeding on hepatic lipid synthesis   总被引:3,自引:0,他引:3  
Rats were fed a high-fat, liquid diet containing either 36% of total calories as ethanol or an isocaloric amount of sucrose, for a period up to 35 days. At different time intervals we measured the effects of ethanol administration on the activities of a number of key enzymes involved in hepatic lipid synthesis. At the start of the experimental period the activities of acetyl-CoA carboxylase and fatty acid synthase, measured in liver homogenates, increased in the control as well as in the ethanol-fed group. After 35 days these enzyme activities were still elevated but there were no significant differences between the two groups. In hepatocytes isolated from controls as well as from ethanol-fed rats, short-term incubations with ethanol induced an increase in the rate of fatty acid synthesis and in the activities of acetyl-CoA carboxylase and fatty acid synthase. However, no alterations in the regulation of these enzymes by short-term modulators of lipogenesis were apparent in hepatocytes isolated from alcohol-treated animals. The results do not indicate a major role for the enzymes of de novo fatty acid synthesis in the development of the alcoholic fatty liver. The amount of liver triacylglycerols increased in ethanol-fed rats during the entire treatment period, whereas the hepatic levels of phosphatidylcholine and phosphatidylethanolamine were not affected by ethanol ingestion. Ethanol administration for less than 2 weeks increased the activities of phosphatidate phosphohydrolase, diacylglycerol acyltransferase, and microsomal phosphocholine cytidylyltransferase, whereas the cytosolic activity of phosphocholine cytidylyltransferase was slightly decreased. Upon prolonged ethanol administration the activities of these enzymes were slowly restored to control values after 35 days, suggesting development of some kind of adaptation. It is interesting that, although the activities of phosphatidate phosphohydrolase and diacylglycerol acyltransferase were restored to the levels found in the control rats, this effect was not accompanied by a stabilization or decrease of the concentration of hepatic triacylglycerols.  相似文献   

11.
A high cholesterol diet induced a fatty liver and an increase in cholesterol oleate in spontaneously hypertensive rats. The activity of microsomal glycerophosphate acyltransferase in liver increased 2-3-fold to meet the increased supply of oleate, the synthesis of which was stimulated by a 10-fold increase in microsomal delta 9-desaturase activity. Hepatic fatty acid synthetase and diacylglycerol acyltransferase activities were decreased somewhat. These results, together with the fact that the large increases in hepatic cholesterol ester and triacylglycerol were not correspondingly reflected in plasma, indicated that the fatty liver resulted from decreased secretion of lipoprotein rather than increased lipogenesis. Endogenous cholesterol in liver microsomes increased 2-fold and hepatic acyl-CoA:cholesterol acyltransferase activity increased 3-fold, whereas plasma lecithin:cholesterol acyltransferase activity was unchanged. Thus, the increase in cholesterol oleate seen in spontaneously hypertensive rats fed a high cholesterol diet is due mainly to increases in acyl-CoA:cholesterol acyltransferase and delta 9-desaturase activities.  相似文献   

12.
1. The accumulation of triglyceride in the liver remnant after subtotal hepatectomy (removal of 82% of the liver) exceeded that described for partial hepatectomy (removal of 70% of the liver). 2. Palmitoyl-CoA synthetase, glycerol phosphate acyltransferase and diglyceride acyltransferase activities were measured in the microsomal fraction, and phosphatidate phosphohydrolase activity was measured in the particle-free supernatant fraction, prepared from the liver remnant at various times after subtotal hepatectomy. 3. The only enzyme showing a significant change in specific activity was phosphatidate phosphohydrolase. The specific activity was approximately fivefold that of the control value at 6h after operation and threefold that of the control at 10, 16 and 24h after operation. A smaller increase in the specific activity of the enzyme in sham-operated animals occurred only at 6h after operation. 4. However, at this time the total phosphohydrolase activity of the remaining liver in the sham-operated rats was approximately threefold that in hepatectomized rats. 5. Injection of actinomycin D prevented the increase in activity of phosphatidate phosphohydrolase but did not prevent the accumulation of triglyceride.  相似文献   

13.
Livers from fed male rats were perfused in a nonrecycling system for 60 min with a medium containing 100 mg/dl glucose, 3 g/dl bovine serum albumin, and ~0.5 mm oleic acid, with or without 20 μm dibutyryl cyclic adenosine-3′,5′-monophosphate (Bt2cAMP). At the termination of the experiment, microsomes were isolated from these livers. In agreement with data reported previously, Bt2cAMP decreased output of triacylglycerol, but stimulated ketogenesis and output of glucose; uptake of free fatty acid was unaffected by the nucleotide. Perfusion with Bt2AMP decreased the biosynthesis of triacylglycerol, diacylglycerol, and phosphatidate from sn-[U-14C]glycerol-3-phosphate by microsomes isolated from these livers. Perfusion with Bt2cAMP also decreased incorporation of sn-glycerol-3-phosphate into phosphatidate by microsomes isolated from the livers, when the microsomes were incubated with NaF to inhibit phosphatidate phosphohydrolase, and when fatty acid, coenzyme A and ATP were replaced by the acyl coenzyme A derivative; the formation of phosphatidate under these conditions was used as an estimate of the activity of sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15). However, the activities of microsomal phosphatidate phosphohydrolase (EC 3.1.3.4) and diacylglycerol acyltransferase (EC 2.3.1.20), measured with microsomal bound substrate, were increased by Bt2cAMP. These data have been interpreted to mean that Bt2cAMP inhibits hepatic microsomal synthesis of triacylglycerol at a step prior to the formation of phosphatidate, presumably at the glycerophosphate acyltransferase (EC 2.3.1.15) step(s).  相似文献   

14.
1. The activities of fatty acid synthetase, acyl-CoA synthetase, glycerol phosphate acyltransferase and phosphatidate phosphatase were measured in the mammary glands of rabbits from day 16 of pregnancy to day 15 of post partum. 2. There were significant correlations between the increases in activities of these enzymes during this period. This was the case whether the activities were expressed per mg of homogenate protein, per g wet wt. of tissue or per total wet weight of the whole glands. The only exception was the lack of correlation between the activities of fatty acid synthetase and of phosphatidate phosphatase per g wet wt. of tissue. 3. These co-ordinate increases are discussed in relation to the changes which occur in fatty acid metabolism in the mammary gland during pregnancy and lactation.  相似文献   

15.
1. Glycerol phosphate acyltransferase (GPAT) activities were measured in subcellular fractions obtained from rat epididymal adipocytes. These contained both N-ethylmaleimide-sensitive and N-ethylmaleimide-insensitive forms of the enzyme. 2. As shown by parallel measurements of marker enzymes, N-ethylmaleimide-insensitive GPAT is most probably a mitochondrial activity, whereas N-ethylmaleimide-sensitive GPAT is the microsomal enzyme. 3. Subcellular distributions are also reported for dihydroxyacetone phosphate acyltransferase (DHAPAT) (assayed with and without N-ethylmaleimide), monoacylglycerol phosphate acyltransferase (MGPAT) and Mg2+-dependent and Mg2+-independent forms of phosphatidate phosphohydrolase (PPH).  相似文献   

16.
1. Adipocytes were isolated from the interscapular brown fat and the epididymal white fat of normal, streptozotocin-diabetic and hypothyroid rats. 2. Measurements were made of the maximum rate of triacylglycerol synthesis by monitoring the incorporation of [U-14C]glucose into acylglycerol glycerol in the presence of palmitate (1 mM) and insulin (4 nM) and of the activities of the following triacylglycerol-synthesizing enzymes: fatty acyl-CoA synthetase (FAS), mitochondrial and microsomal forms of glycerolphosphate acyltransferase (GPAT), dihydroxyacetonephosphate acyltransferase (DHAPAT), monoacylglycerol phosphate acyltransferase (MGPAT), Mg2+-dependent phosphatidate phosphohydrolase (PPH) and diacylglycerol acyltransferase (DGAT). 3. FAS activity in brown adipocytes was predominantly localized in the mitochondrial fraction, whereas a microsomal localization of this enzyme predominated in white adipocytes. Subcellular distributions of the other enzyme activities in brown adipocytes were similar to those shown previously with white adipocytes [Saggerson, Carpenter, Cheng & Sooranna (1980) Biochem. J. 190, 183-189]. 4. Relative to cell DNA, brown adipocytes had lower activities of triacylglycerol-synthesizing enzymes and showed lower rates of metabolic flux into acylglycerols than did white adipocytes isolated from the same animals. 5. Diabetes decreased both metabolic flux into acylglycerols and the activities of triacylglycerol-synthesizing enzymes in white adipocytes. By contrast, although diabetes decreased metabolic flux into brown-adipocyte acylglycerols by 80%, there were no decreases in the activities of triacylglycerol-synthesizing enzymes, and the activity of PPH was significantly increased. 6. Hypothyroidism increased metabolic flux into acylglycerols in both cell types, and increased activities of all triacylglycerol-synthesizing enzymes in brown adipocytes. By contrast, in white adipocytes, although hypothyroidism increased the activities of FAS, microsomal GPAT and DGAT, this condition decreased the activities of mitochondrial GPAT and PPH. 7. It was calculated that the maximum capabilities for fatty acid oxidation and esterification are approximately equal in brown adipocytes. In white adipocytes esterification is predominant by approx. 100-fold. 8. Diabetes almost abolished incorporation of [U-14C]glucose into fatty acids in both adipocyte types. Hypothyroidism increased fatty acid synthesis in white and brown adipocytes by 50% and 1000% respectively.  相似文献   

17.
1. Rats were injected with a single dose of 35mg of streptozotocin/kg body wt. They exhibited a diabetes that was characterized by glycosuria, polyuria, polydipsia, hyperphagia, hyperglycaemia, increased concentrations of unesterified fatty acids, glycerol and triacylglycerols in the serum and an increased activity of glucose 6-phosphatase in the liver. 2. After 10 weeks the hepatic activities of the microsomal glycerol phosphate acyltransferase, phosphatidate phosphohydrolase, phosphatidate cytidylyltransferase, diacylglycerol acyltransferase, choline phosphotransferase, CDP-diacylglycerol--inositol phosphatidyltransferase and the soluble phosphatidate phosphohydrolase were measured. 3. The only significant changes were an increase in the activity of the soluble phosphatidate phosphohydrolase and a decrease in that of the CDP-diacylglycerol--inositol phosphatidyltransferase in the diabetic rats. 4. These results are discussed in relation to the control of glycerolipid synthesis.  相似文献   

18.
Fatty acid metabolism and triacylglycerol synthesis are critical processes for the survival of hibernating mammals that undergo a prolonged fasting period. Fatty acid synthase, fatty-acid-CoA ligase, diacylglycerol acyltransferase, and monoacylglycerol acyltransferase activities were measured in liver and in white and brown adipose tissue, in order to determine whether enzymes of lipogenesis and triacylglycerol synthesis vary seasonally during hibernation in the yellow-bellied marmot (Marmota flaviventris). Compared with mid-winter hibernation, fatty acid synthase activity was higher in all three tissues during early spring when marmots emerged from hibernation and in mid-summer when they were feeding, consistent with the synthesis of fatty acids from the carbohydrate-rich summer diet. Fatty-acid-CoA ligase and diacylglycerol acyltransferase activities were highest in summer in white adipose tissue when triacylglycerol synthesis would be expected to be high; diacylglycerol acyltransferase activity was also high in brown adipose tissue during spring and summer. In liver, however, diacylglycerol acyltransferase specific activity was highest during hibernation, suggesting that triacylglycerol synthesis may be prominent in liver in winter. Monoacylglycerol acyltransferase activity, which may aid in the retention of essential fatty-acids, was 80-fold higher in liver than in white or brown adipose tissue, but did not vary seasonally. Its dependence on palmitoyl-CoA suggests that a divalent cation might play a role in enzyme activation. The high hepatic diacylglycerol acyltransferase activity during hibernation suggests that the metabolism of very low density lipoprotein may be important in the movement of adipose fatty acids to brown adipose tissue and muscle during the rewarming that occurs periodically during hibernation. These studies suggest that enzymes of lipid metabolism vary seasonally in the marmot, consistent with requirements of this hibernator for triacylglycerol synthesis and metabolism.Abbreviations BAT brown adipose tissue - DGAT diacylglycerol acyltransferase - FAS fatty acid synthase - K m Michaelis constant - MGAT monoacylglycerol acyltransferase - RQ respiratory quotiant - VLDL very low density lipoprotein - WAT white adipose tissue  相似文献   

19.
1. Various aspects of triacylglycerol metabolism were compared in rats given phenobarbital at a dose of 100mg/kg body wt. per day by intraperitoneal injection; controls were injected with an equal volume of 0.15m-NaCl by the same route. Animals were killed after 5 days of treatment. 2. Rats injected with phenobarbital demonstrated increased liver weight, and increased microsomal protein per g of liver. Other evidence of microsomal enzyme induction was provided by increased activity of aminopyrine N-demethylase and cytochrome P-450 content. Increased hepatic activity of γ-glutamyltransferase (EC 2.3.2.2) occurred in male rats, but not in females, and was not accompanied by any detectable change in the activity of this enzyme in serum. 3. Phenobarbital treatment increased the hepatic content of triacylglycerol after 5 days in starved male and female rats, as well as in non-starved male rats; non-starved females were not tested in this regard. At 5 days after withdrawal of the drug, there was no difference in hepatic triacylglycerol content or in hepatic functions of microsomal enzyme induction between the treated and control rats. 4. After 5 days, phenobarbital increased the synthesis in vitro of glycerolipids in cell-free liver fractions fortified with optimal concentrations of substrates and co-substrates when results were expressed per whole liver. The drug caused a significant increment in the activity of hepatic diacylglycerol acyltransferase (EC 2.3.1.20), but did not affect the activity per liver of phosphatidate phosphohydrolase (EC 3.1.3.4) in cytosolic or washed microsomal fractions. A remarkable sex-dependent difference was observed for this latter enzyme. In female rats, the activity of the microsomal enzyme per liver was 10-fold greater than that of the cytosolic enzyme, whereas in males, the activities of phosphohydrolases per liver from both subcellular fractions were similar. 5. The phenobarbital-mediated increase in hepatic triacylglycerol content could not be explained by a decrease in the hepatic triacylglycerol secretion rate as measured by the Triton WR1339 technique. Since the hepatic triacylglycerol showed significant correlation with microsomal enzyme induction functions, with hepatic glycerolipid synthesis in vitro and with diacylglycerol acyltransferase activity, it is likely to be due to enhanced triacylglycerol synthesis consequent on hepatic microsomal enzyme induction. 6. In contrast with rabbits and guinea pigs, rats injected with phenobarbital showed a decrease in serum triacylglycerol concentration in the starved state; this decrease persisted for up to 5 days after drug administration stopped, and did not occur in non-starved animals. It seems to be independent of the microsomal enzyme-inducing properties of the drug, and may be due to the action of phenobarbital at an extrahepatic site.  相似文献   

20.
In rats fed a fish oil-enriched diet, plasma triacylglycerols were lowered 51%. At the same time there was a mean 45% reduction in Mg2+-dependent phosphatidate phosphohydrolase activity in liver microsomes and a mean 20% decrease in microsomal triacylglycerol (neutral) and diacylglycerol hydrolase activities, but not of diacylglycerol acyltransferase. These observations support the hypothesis that decreases in the activities of phosphatidate phosphohydrolase and of both lipases are involved in the expression of the inhibitory effects of fish oil feeding on hepatic lipoprotein triacylglycerol secretion. Conversely, the feeding of a sucrose-enriched diet resulted in a mean 39% rise in plasma triacylglycerols, a 19% increase in triacylglycerol hydrolase and a mean 45% increase in Mg2+-dependent microsomal phosphohydrolase activity. The effects of the two nutritional interventions on phosphatidate phosphohydrolase activity confirm a key function for this enzyme in triacylglycerol formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号