首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to understand the main factors controlling salt marsh plant species structure and dynamics. So, we determined plant cover and composition across a permanent transect, 450 m long and 1 m wide, defined in 1951 in Corroios salt marsh, in the Tagus estuary (Portugal) and we characterized the physicochemical variables every 50 m along this transect. Based on those results we discuss the dynamic and evolution of salt marsh vegetation during the last 50 years comparing former and recent data. The results showed that differences in salinity and flooding were determinant factors in plant species composition and distribution along the studied transect. In addition, long-term variations of these factors as a consequence of vertical accretion and sea level rise seem to be responsible for the evolution in plant structure and vegetation zonation patterns, during the last 50 years in the Tagus estuary salt marshes.  相似文献   

2.
The present relationship between sea level and the zonation of salt marsh vegetation is discussed in terms of the salt marshes of the Essex and Kent coasts. These marshes are already decreasing in area as a result of a number of different environmental pressures, including the sinking of the land relative to the sea, at a rate of about 3 mm per year, the result of isostatic adjustment following the last glaciation. Because most British salt marshes are backed by a sea wall the marshes can not respond to rising sea levels by migrating landwards, thus increasing the impact of sea level change. In view of this and of the importance of salt marshes as protection for the sea walls themselves, a conceptual model has been developed, of the likely impact of climate change and the resulting sea level rise, on British salt marsh vegetation. The basis of this approach is the assumption that a rise in sea level will cause the drowning of certain existing vegetation zones and their subsequent replacement by new vegetation types appropriate to the changed sea level. Estimates have been made of the likely impact of rises in sea level of 0.5, 1.0 and 1.5 metres on the five major vegetation zones identified in East Anglia. The validity of this approach is discussed, together with the likely additive effect of present degenerative changes observed in the Essex salt marshes. It is estimated that over the next 60 years a sea level rise of only 0.5 m, when existing degeneration is taken to account, would cause a loss of over 40% of the present area of salt marsh in Essex and probably also in Kent. These losses would mainly effect the higher salt marsh vegetation zones which would be replaced by pioneer communities. These predictions would be greatly magnified by larger rises in sea level. The wider ecological implication of these changes and some possible remedial measures are considered. These predictions are discussed in relation to the situation in the rest of East Anglia and for Britain as a whole.  相似文献   

3.
The specific communities of spiders and carabid beetles of island salt marsh habitats of the East Frisian Island chain at the German North Sea coast were investigated. During the vegetation periods of 1997 and 1998 three pitfall trapping transects were installed on the islands of Borkum and Wangerooge. Within the salt marshes, transects extended from 0 m to 175 m. Elevation gradients varied between 10 cm and 232 cm above MHT (mean high tide). On Borkum, 35 traps were exposed in two transects, on Wangerooge 25 traps were placed in one transect. Three to five elevations above MHT were investigated per transect, each one with five traps. Highest species numbers were recorded in the higher elevated salt marshes. In contrast, highest activity values were noticed in the medium elevated salt marshes. Within both groups, spiders and carabids, four communities were distinguished by indirect gradient analysis. Indicator species were assigned to the different communities that were mainly assorted to different elevations of the salt marshes. Thus, the communities of both taxa corresponded well to the vegetational formations. The importance of sea level rise for structuring the communities of salt marsh arthropods is discussed. Overall, still great uncertainties exist on how arthropod communities and salt marshes themselves will develop.  相似文献   

4.
Increases in the elevation of the soil surfaces of mangroves and salt marshes are key to the maintenance of these habitats with accelerating sea level rise. Understanding the processes that give rise to increases in soil surface elevation provides science for management of landscapes for sustainable coastal wetlands. Here, we tested whether the soil surface elevation of mangroves and salt marshes in Moreton Bay is keeping up with local rates of sea level rise (2.358 mm y−1) and whether accretion on the soil surface was the most important process for keeping up with sea level rise. We found variability in surface elevation gains, with sandy areas in the eastern bay having the highest surface elevation gains in both mangrove and salt marsh (5.9 and 1.9 mm y−1) whereas in the muddier western bay rates of surface elevation gain were lower (1.4 and −0.3 mm y−1 in mangrove and salt marsh, respectively). Both sides of the bay had similar rates of surface accretion (~7–9 mm y−1 in the mangrove and 1–3 mm y−1 in the salt marsh), but mangrove soils in the western bay were subsiding at a rate of approximately 8 mm y−1, possibly due to compaction of organic sediments. Over the study surface elevation increments were sensitive to position in the intertidal zone (higher when lower in the intertidal) and also to variation in mean sea level (higher at high sea level). Although surface accretion was the most important process for keeping up with sea level rise in the eastern bay, subsidence largely negated gains made through surface accretion in the western bay indicating a high vulnerability to sea level rise in these forests.  相似文献   

5.
Salt marshes along the coast of The Netherlands   总被引:5,自引:4,他引:1  
The area of salt marshes does no longer increase. The recent erosion coincides with a rise in MHT-level in the last 25 years. Despite the decrease in area, sedimentation continues, especially in the lower salt marsh, which acts as a sink of nitrogen. Assimilation and mineralization of nitrogen are in balance in most plant communities along the gradient from lower to higher salt marshes. Mineralization of nitrogen increases towards the higher salt marsh, whereas the above-ground production and the mean nitrogen content of plants decrease. There is a positive correlation between quality of food plants in salt marshes and breeding success of Brent geese in the arctic tundra. Sedimentation on mainland salt marshes can compensate for the expected sea level rise. This is not the case for island salt marshes, if the relative sea level rise is more than 0.5–1.0 cm yr−1. The natural succession on salt marshes results in an accumulation of organic material, which is related to the dominance of single plant species. It is not clear to which extent this process is enhanced by eutrophication from acid deposition and seawater. Human exploitation of unprotected salt marshes is old and heavy in the system of mound settlements. Reclamation rates by dikes in the last centuries were higher than the rate of area increase. Grazing by cattle as a management practice results in both a higher plant species-richness and community diversity than abandoning; hay-making is intermediate, but shows less structural diversity than grazing with low stocking density. The invertebrate fauna is favoured by a short period of abandoning, but eventually characteristic salt marsh invertebrates are replaced by inland species. Many bird species prefer grazed salt marshes. The final section gives some perspectives. Provided that no further embankments take place the optimal nature management option for plants and animals is a vegetation pattern, which includes areas with a low canopy (grazed) and areas with a tall canopy.  相似文献   

6.
The interplay between storms and sea level rise, and between ecology and sediment transport governs the behavior of rapidly evolving coastal ecosystems such as marshes and barrier islands. Sediment deposition during hurricanes is thought to increase the resilience of salt marshes to sea level rise by increasing soil elevation and vegetation productivity. We use mesocosms to simulate burial of Spartina alterniflora during hurricane‐induced overwash events of various thickness (0–60 cm), and find that adventitious root growth within the overwash sediment layer increases total biomass by up to 120%. In contrast to most previous work illustrating a simple positive relationship between burial depth and vegetation productivity, our work reveals an optimum burial depth (5–10 cm) beyond which burial leads to plant mortality. The optimum burial depth increases with flooding frequency, indicating that storm deposition ameliorates flooding stress, and that its impact on productivity will become more important under accelerated sea level rise. Our results suggest that frequent, low magnitude storm events associated with naturally migrating islands may increase the resilience of marshes to sea level rise, and in turn, slow island migration rates. Synthesis: We find that burial deeper than the optimum results in reduced growth or mortality of marsh vegetation, which suggests that future increases in overwash thickness associated with more intense storms and artificial heightening of dunes could lead to less resilient marshes.  相似文献   

7.
Modeling Habitat Change in Salt Marshes After Tidal Restoration   总被引:4,自引:0,他引:4  
Salt marshes continue to degrade in the United States due to indirect human impacts arising from tidal restrictions. Roads or berms with inadequate provision for tidal flow hinder ecosystem functions and interfere with self‐maintenance of habitat, because interactions among vegetation, soil, and hydrology within tidally restricted marshes prevent them from responding to sea level rise. Prediction of the tidal range that is expected after restoration relative to the current geomorphology is crucial for successful restoration of salt marsh habitat. Both insufficient (due to restriction) and excessive (due to subsidence and sea level rise) tidal flooding can lead to loss of salt marshes. We developed and applied the Marsh Response to Hydrological Modifications model as a predictive tool to forecast the success of management scenarios for restoring full tides to previously restricted areas. We present an overview of a computer simulation tool that evaluates potential culvert installations with output of expected tidal ranges, water discharges, and flood potentials. For three New England tidal marshes we show species distributions of plants for tidally restricted and nonrestricted areas. Elevation ranges of species are used for short‐term (<5 years) predictions of changes to salt marsh habitat after tidal restoration. In addition, elevation changes of the marsh substrate measured at these sites are extrapolated to predict long‐term (>5 years) changes in marsh geomorphology under restored tidal regimes. The resultant tidal regime should be designed to provide habitat requirements for salt marsh plants. At sites with substantial elevation losses a balance must be struck that stimulates elevation increases by improving sediment fluxes into marshes while establishing flooding regimes appropriate to sustain the desired plants.  相似文献   

8.
Feedbacks between plant biomass density and sedimentation maintain intertidal marshes in equilibrium with mean sea level (MSL). Stable marshes exist at an elevation that is supraoptimal for the biomass density of marsh macrophytes. At this elevation, biomass density is sensitive to changes in MSL, and adjustments in productivity and sedimentation rate help to maintain the marsh in a dynamic equilibrium with sea level, provided that the surface elevation remains within the supraoptimal range of the vegetation. The equilibrium elevation varies inversely with the rate of sea-level rise and directly with biomass density. It was also shown that a succession of intertidal plant communities depends upon the rate of sea level rise and the distribution of biomass density as a function of hydroperiod. Soft engineering solutions to coastal flooding could incorporate planting of marsh vegetation in the intertidal zone for the purpose of promoting sedimentation and dissipating wave energy. A successful design would employ plant species that have varying degrees of tolerance to flooding, maximum drag at their preferred depths, broad ranges within the intertidal zone, and that form a successional series.  相似文献   

9.
Many authors have referred to the important role of vegetation in the consolidation of salt marsh sediments, but experiments previously carried out by us have shown results that do not always agree with these statements. In other words, the type of salt marsh surface coverage is not the main factor that contributes to the consolidation of sediments. To test this hypothesis different Portuguese salt marsh stations (species/unvegetated areas) from two sites, Tagus estuary (Corroios and Pancas) and Ria de Aveiro (Barra and Verdemilho), were compared to evaluate their influence on suspended matter deposition on the salt marsh surface. A short-term sedimentation study was performed within stands of Spartina maritima, Halimione portulacoides, Sarcocornia perennis subsp. perennis and unvegetated areas, by analysing the deposition of sediment material on nylon filters anchored to the marsh surface. Numerical results obtained from hydrodynamic models coupled to a Lagrangean module implemented for the Ria de Aveiro and the Tagus Estuary, namely the root-mean square velocity (V rms) and residual velocity of tides, were also used. Average sedimentation rates (mean value between the different surface cover in a salt marsh) showed a seasonal trend more or less defined but with significantly different values between sites and salt marshes. Sedimentation rates varied between marshes: there are significant differences between Pancas and the other three marshes, but only significant differences in sedimentation rates between Spartina and Sarcocornia. Despite the important role of vegetation in the consolidation of salt marsh sediments, our results suggest that, the position of stations and related abiotic conditions in the salt marshes are determining factors of variation to take into account in the studies related with the stabilization and survival of salt marshes facing sea level rise. Handling editor: P. Viaroli  相似文献   

10.
Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km2, a 74% increase. Concurrently, salt marsh area decreased by 77.8 km2, a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss.  相似文献   

11.
Short-term sediment deposition was studied at four salt marsh areas in the Tagus estuary. In areas covered with Sarcocornia perennis, Sarcocornia fruticosa, Halimione portulacoides and Spartina maritima and also in the non-vegetated areas, sedimentation was measured as the monthly accumulation of sediments on nylon filters anchored on the soil surface, from August 2000 to May 2001. Our experiments were used also to determine the influence of the different plant species in vertical accretion rates. Short-term sedimentation rates (from 2.8 to 272.3 g m−2 d−1) did show significant differences when the four salt marshes studied in the Tagus estuary were compared to each others. Salt marshes closer to the sediment sources had higher sedimentation rates. Our results suggest that the salt marsh type and surface cover may provide small-scale variations in sedimentation and also that sediment deposition values do change according to the position of the different plant species within the salt marsh. Sedimentation is an essential factor in salt marsh vertical accretion studies and our investigation may provide support to help forecast the adaptative response of the Tagus estuary wetlands to future sea level rise.  相似文献   

12.
From 2003 through 2005, tidal marsh plant species diversity and abundance on historically surveyed vegetation transects along the salinity gradient of the San Francisco Estuary were investigated to establish empirical relationships between plant distributions and environmental conditions, and furthermore to examine and predict past and future plant distribution changes. This study suggests that for most species, salinity is the primary control on plant distribution. Thus, ongoing changes in estuarine conditions (increasing sea level and salinity) are resulting in a complex mix of plant distribution changes. On the low marsh, where sediment salinity is similar to that of ambient water, halophytic species are replacing salt-intolerant taxa. However, on marsh plains, where increased tidal flooding is moderating high salinity (concentrated by evaporation), halophytic “high marsh” species are being replaced by salt-intolerant “low marsh” taxa. Thus, future changes in plant distributions will hinge on whether marsh sediment accumulation keeps pace with sea level rise.  相似文献   

13.
Within isolated and fragmented populations, species interactions such as predation can cause shifts in community structure and demographics in tidal marsh ecosystems. It is critical to incorporate species interactions into our understanding when evaluating the effects of sea‐level rise and storm surges on tidal marshes. In this study, we hypothesize that avian predators will increase their presence and hunting activities during high tides when increased inundation makes their prey more vulnerable. We present evidence that there is a relationship between tidal inundation depth and time of day on the presence, abundance, and behavior of avian predators. We introduce predation pressure as a combined probability of predator presence related to water level. Focal surveys were conducted at four tidal marshes in the San Francisco Bay, California where tidal inundation patterns were monitored across 6 months of the winter. Sixteen avian predator species were observed. During high tide at Tolay Slough marsh, ardeids had a 29‐fold increase in capture attempts and 4 times greater apparent success rate compared with low tide. Significantly fewer raptors and ardeids were found on low tides than on high tides across all sites. There were more raptors in December and January and more ardeids in January than in other months. Ardeids were more prevalent in the morning, while raptors did not exhibit a significant response to time of day. Modeling results showed that raptors had a unimodal response to water level with a peak at 0.5 m over the marsh platform, while ardeids had an increasing response with water level. We found that predation pressure is related to flooding of the marsh surface, and short‐term increases in sea levels from high astronomical tides, sea‐level rise, and storm surges increase vulnerability of tidal marsh wildlife.  相似文献   

14.
To avoid submergence during sea‐level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea‐level rise may change. To compare how well mangroves and salt marshes accommodate sea‐level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table‐marker horizon system. Comparison of land movement with relative sea‐level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub‐root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small‐scale disturbance of the plant canopy also had no effect on elevation trajectories—contrary to work in peat‐forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment accretion, subsidence), mangrove replacement of salt marsh, with or without disturbance, will not necessarily alter vulnerability to sea‐level rise.  相似文献   

15.
Numerous initiatives are underway throughout New England and elsewhere to quantify salt marsh vegetation change, mostly in response to habitat restoration, sea level rise, and nutrient enrichment. To detect temporal changes in vegetation at a marsh or to compare vegetation among different marshes with a degree of statistical certainty an adequate sample size is required. Based on sampling 1 m2 vegetation plots from 11 New England salt marsh data sets, we conducted a power analysis to determine the minimum number of samples that were necessary to detect change between vegetation communities. Statistical power was determined for sample sizes of 5, 10, 15, and 20 vegetation plots at an alpha level of 0.05. Detection of subtle differences between vegetation data sets (e.g., comparing vegetation in the same marsh over two consecutive years) can be accomplished using a sample size of 20 plots with a reasonable probability of detecting a difference when one truly exists. With a lower sample size, and thus lower power, there is an increased probability of not detecting a difference when one exists (e.g., Type II error). However, if investigators expect to detect major changes in vegetation (e.g., such as those between an un-impacted and a highly impacted marsh) then a sample size of 5, 10, or 15 plots may be appropriate while still maintaining adequate power. Due to the relative ease of collecting vegetation data, we suggest a minimum sample size of 20 randomly located 1 m2 plots when developing monitoring designs to detect vegetation community change of salt marshes. The sample size of 20 plots per New England salt marsh is appropriate regardless of marsh size or permanency (permanent or non-permanent) of the plots.  相似文献   

16.
Climate change and loss of saltmarshes: consequences for birds   总被引:3,自引:0,他引:3  
R. G. Hughes 《Ibis》2004,146(S1):21-28
Saltmarshes are areas of vegetation subject to tidal inundation and are important to birds for several reasons. Saltmarshes are areas of high primary productivity and their greatest significance for coastal birds is probably as the base of estuarine food webs, because saltmarshes export considerable amounts of organic carbon to adjacent habitats, particularly to the invertebrates of mudflats. In addition, saltmarshes are of direct importance to birds by providing sites for feeding, nesting and roosting. Climate change can affect saltmarshes in a number of ways, including through sea-level rise. When sea-level rises the marsh vegetation moves upward and inland but sea walls that prevent this are said to lead to coastal squeeze and loss of marsh area. However, evidence from southeast England, and elsewhere, indicates that sea-level rise does not necessarily lead to loss of marsh area because marshes accrete vertically and maintain their elevation with respect to sea-level where the supply of sediment is sufficient. Organogenic marshes and those in areas where sediment may be more limiting (e.g. some west coast areas) may be more susceptible to coastal squeeze, as may other marshes, if some extreme predictions of accelerated rates of sea-level rise are realized.  相似文献   

17.
A positive relationship between interannual sea level and plant growth is thought to stabilize many coastal landforms responding to accelerating rates of sea level rise. Numerical models of delta growth, tidal channel network evolution, and ecosystem resilience incorporate a hump-shaped relationship between inundation and plant primary production, where vegetation growth increases with sea level up to an optimum water depth or inundation frequency. In contrast, we use decade-long measurements of Spartina alterniflora biomass in seven coastal Virginia (USA) marshes to demonstrate that interannual sea level is rarely a primary determinant of vegetation growth. Although we find tepid support for a hump-shaped relationship between aboveground production and inundation when marshes of different elevation are considered, our results suggest that marshes high in the intertidal zone and low in relief are unresponsive to sea level fluctuations. We suggest existing models are unable to capture the behavior of wetlands in these portions of the landscape, and may underestimate their vulnerability to sea level rise because sea level rise will not be accompanied by enhanced plant growth and resultant sediment accumulation.  相似文献   

18.
A massive ice storm hit northeastern North America in 1998, dropping more than 100 mm of freezing rain at its epicenter in southern Quebec, Canada. There has been extensive study of which trees and areas received the most damage, but the biodiversity consequences of this damage at landscape scales have not received much attention. We assessed the effectiveness of seven remotely sensed vegetation indices—Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index, Difference Vegetation Index, Renormalized Difference Vegetation Index, Atmospherically Resistant Vegetation Index, Green Normalized Difference Vegetation Index and Visible Atmospheric Resistant Index—for modeling the coarse woody debris (CWD) influx in an old growth forest reserve at the storm’s epicenter; NDVI was the best predictor of CWD influx. We categorized the geospatial CWD predictions from the NDVI-derived model to map the spatial distribution of sun-exposed, moist-shaded, dry-shaded and wet CWD microhabitats on the forest floor. Moist-shaded, dry-shaded and wet patches of CWD were large and well connected, but sun-exposed patches were small and sparse. Since these microhabitats affect the distribution and abundance of saproxylic insects, wood-rotting fungi, salamanders, birds, small burrowing mammals and plant species dependent on nurse-logs for establishment, the CWD influx from the 1998 ice storm may have revitalized local populations of these taxa through increased habitat availability as well as increased dispersal within the reserve.  相似文献   

19.
神祥金  张佳琦  吕宪国 《生态学报》2020,40(18):6259-6268
基于2000—2017年逐旬MODIS NDVI数据和逐月气温、降水数据,分析了青藏高原不同类型沼泽湿地植被生长季NDVI时空变化特征及其对气候变化的响应。研究结果表明:青藏高原沼泽植被生长季多年平均NDVI自西北向东南逐渐增加;沼泽植被生长季平均NDVI在2000—2017年总体呈现显著上升趋势 (0.010/10a) ,生长季NDVI呈上升趋势的面积占整个研究区面积的78.25%。青藏高原沼泽植被生长季NDVI与降水量总体上呈现弱的相关性,表明降水并不是影响该地区沼泽植被生长的主要因素。青藏高原沼泽植被生长主要受气温影响,气温升高能明显促进沼泽植被的生长。此外,首次发现白天和夜晚温度升高对青藏高原沼泽植被生长具有不对称性影响,其中夜晚增温对沼泽植被生长的促进效果更加显著。在全球白天和夜晚不对称增温的背景下,白天和夜晚温度对青藏高原沼泽植被的不对称影响应当引起重视,尤其是在利用模型模拟未来气候变化对该地区沼泽植被影响时。  相似文献   

20.
Tomato is among important vegetable crops cultivated in different climates; however, heat stress can greatly affect fruit quality and overall yield. Crop reflectance measurements based on ground reflectance sensor data are reliable indicators of crop tolerance to abiotic stresses. Here, we report on using non-destructive spectral vegetation indices to monitor yield traits of 10 tomato genotypes transplanted on three different dates (Aug. 2, Sept. 3 and Oct. 1) during 2019 growing season in the Riyadh region. The ten genotypes comprised six commercial cultivars–(Pearson Improved, Strain B, Valentine, Marmande VF, Super Strain B, and Pearson early) ––and four local Saudi cultivars (Al-Ahsa, Al-Qatif, Hail and Najran). Spectral reflectance data were utilized using a FieldSpec 3 spectroradiometer in the range of 350–2500 nm to calculate nine vegetation indices (VIs): Normalized Water Band Index (NWBI), Difference Water Index (NDWI), Photochemical Reflectance Index (PRI), Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Red Edge Normalized Difference Vegetation Index, Soil Adjusted Vegetation Index (SAVI), Red Edge Normalized Difference Vegetation Index (RENDVI), Renormalized Difference Vegetation Index (RDVI), and Normalized Difference Nitrogen Index (NDNI). VIs and yield parameters (total fruit yield, harvest index) revealed that second transplanting date was optimal for all the genotypes. Valentine showed the best growth performance followed by Najran, Hail, Super Strain B and finally Pearson early. For all the three transplanting dates, Valentine recorded the highest total fruit yield. Additionally, some genotypes had no significant differences in the VIs values or the total fruit yield between the second and third transplanting dates. This study indicated that yield parameters could be linked to rapid, non-destructive hyperspectral reflectance data to predict tomato production under heat stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号