首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract

Carbonic anhydrases (CAs) are metalloenzymes, and classified into the evolutionarily distinct α, β, γ, δ, ζ, and η classes. α-CAs are present in many living organisms. β- and γ-CAs are expressed in most prokaryotes and eukaryotes, except for vertebrates. δ- and ζ-CAs are present in phytoplanktons, and η-CAs have been found in Plasmodium spp. Since the identification of α- and β-CAs in Caenorhabditis elegans, the nematode CAs have been considered as an emerging target in research focused on antiparasitic CA inhibitors. Despite the presence of α-CAs in both helminths and vertebrates, structural studies have revealed different kinetic and inhibition results. Moreover, lack of β-CAs in vertebrates makes this enzyme as an attractive target for inhibitory studies against helminthic infection. Some CA inhibitors, such as sulfonamides, have been evaluated against nematode CAs. This review article aims to present comprehensive information about the nematode CAs and their inhibitors as potential anthelminthic drugs.  相似文献   

3.
Abstract

Diatom genome sequences clearly reveal the presence of different systems for HCO3? uptake. Carbon-concentrating mechanisms (CCM) based on HCO3? transport and a plastid-localized carbonic anhydrase (CA, EC 4.2.1.1) appear to be more probable than the others because CAs have been identified in the genome of many diatoms. CAs are key enzymes involved in the acquisition of inorganic carbon for photosynthesis in phytoplankton, as they catalyze efficiently the interconversion between carbon dioxide and bicarbonate. Five genetically distinct classes of CAs exist, α-, β-, γ-, δ- and ζ and all of them are metalloenzymes. Recently we investigated for the first time the catalytic activity and inhibition of the δ-class CA from the marine diatom Thalassiosira weissflogii, named TweCA. This enzyme is an efficient catalyst for the CO2 hydration and its inhibition profile with sulfonamide/sulfamate and anions have also been investigated. Here, we report the detailed biochemical characterization and chemico-physical properties of the δ-CA of T. weissflogii. The δ-CA encoding gene was cloned and expressed in Artic Express cells and the recombinant protein purified to homogeneity. Interesting to note that TweCA has no intrinsic esterase activity with 4-nitrophenyl acetate (pNpA) as substrate although the phylogenetic analysis showed that δ-CAs are closer to the α-CAs than to the other classes of such enzymes.  相似文献   

4.
5.
Carbonic anhydrases (CAs) are metalloenzymes that catalyze the interconversion of carbon dioxide (CO2) and hydrogen carbonate. CAs are distributed over all the three domains of life and are divided into five distinct evolutionarily unrelated gene families (α, β, γ, δ, ζ). In the large fungal kingdom, the majority of fungi encode multiple copies of β-CAs, with some also possessing genes for α-class CAs. Hemiascomycetous and basidiomycetous yeasts encode one or two β-CAs, while most of the filamentous ascomycetes have multiple copies of genes encoding α- and β-CAs. The functions of fungal β-CAs have been investigated intensively, while the role of fungal α-CAs is mostly unknown. The β-CAs are involved in sexual development, CO2-sensing, pathogenicity, and survival in ambient air. Only recently, researchers have begun to use functional and structural data of CAs from pathogenic and non-pathogenic organisms to develop powerful and effective drugs and inhibitors or to identify enzymes that can be utilized in industrial applications. Despite the large number of fungal CAs known, only five have been characterized structurally: the α-CA AoCA of Aspergillus oryzae, the full length β-CA Can2 from the pathogenic basidiomycete Cryptococcus neoformans, the N-terminally truncated Saccharomyces cerevisiae β-CA Nce103, and two β-CAs of Sordaria macrospora. This review focuses on the functional and structural properties of fungal CAs.  相似文献   

6.
Among the numerous metalloenzymes known to date, carbonic anhydrase (CA, EC 4.2.1.1) was the first zinc containing one, being discovered decades ago. CA is a hydro-lyase, which catalyzes the following hydration–dehydration reaction: CO2 + H2O  HCO3 + H+. Several CA classes are presently known, including the α-, β-, γ-, δ-, ζ- and η-CAs. In prokaryotes, the existence of genes encoding CAs from at least three classes (α-, β- and γ-class) suggests that these enzymes play a key role in the physiology of these organisms. In many bacteria CAs are essential for the life cycle of microbes and their inhibition leads to growth impairment or growth defects of the pathogen. CAs thus started to be investigated in detail in bacteria, fungi and protozoa with the aim to identify antiinfectives with a novel mechanism of action. Here, we investigated the catalytic activity, biochemical properties and anion inhibition profiles of the three CAs from the bacterial pathogen Vibrio cholera, VchCA, VchCAβ and VchCAγ. The three enzymes are efficient catalysts for CO2 hydration, with kcat values ranging between (3.4  8.23) × 105 s−1 and kcat/KM of (4.1  7.0) × 107 M−1 s−1. A set of inorganic anions and small molecules was investigated for inhibition of these enzymes. The most potent VchCAγ inhibitors were N,N-diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KI values ranging between 44 and 91 μM.  相似文献   

7.
8.
9.
Abstract

Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β-, γ-, δ- and ζ-CAs are ubiquitous metalloenzymes present in prokaryotes and eukaryotes. CAs started to be investigated in detail only recently in pathogenic bacteria, in the search for antibiotics with a novel mechanism of action, since it has been demonstrated that in many such organisms they are essential for the life cycle of the organism. CA inhibition leads to growth impairment or growth defects in several pathogenic bacteria. The microbiota of the human oral mucosa consists of a myriad of bacterial species, Porphyromonas gingivalis being one of them and the major pathogen responsible for the development of chronic periodontitis. The genome of P. gingivalis encodes for a β- and a γ-CAs. Recently, our group purified the recombinant γ-CA (named PgiCA) which was shown to possess a significant catalytic activity for the reaction that converts CO2 to bicarbonate and protons, with a kcat of 4.1?×?105?s?1 and a kcat/Km of 5.4?×?107?M?1?×?s?1. We have also investigated its inhibition profile with a range of inorganic anions such as thiocyanate, cyanide, azide, hydrogen sulfide, sulfamate and trithiocarbonate. Here, we describe the cloning, purification and kinetic parameters of the other class of CA identified in the genome of P. gingivalis, the β-CA, named PgiCAb. This enzyme has a good catalytic activity, with a kcat of 2.8?×?105?s?1 and a kcat/Km of 1.5?×?107?M?1?×?s?1. PgiCAb was also inhibited by the clinically used sulfonamide acetazolamide, with an inhibition constant of 214?nM. The role of CAs as possible virulence factors of P. gingivalis is poorly understood at the moment but their good catalytic activity and the fact that they might be inhibited by a large number of compounds, which may pave the way for finding inhibitors with antibacterial activity that may elucidate these phenomena and lead to novel antibiotics.  相似文献   

10.
Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to α-, β-, γ- and ζ-classes and from various organisms, ranging from the bacteria, archaea to eukarya domains, were investigated for their esterase/phosphatase activity with 4-nitrophenyl acetate, 4-nitrophenyl phosphate and paraoxon as substrates. Only α-CAs showed esterase/phosphatase activity, whereas enzymes belonging to the β-, γ- and ζ-classes were completely devoid of such activity. Paraoxon, the metabolite of the organophosphorus insecticide parathione, was a much better substrate for several human/murine α-CA isoforms (CA I, II and XIII), with kcat/KM in the range of 2681.6–4474.9 M?1 s?1, compared to 4-nitrophenyl phosphate (kcat/KM of 14.9–1374.4 M?1 s?1).  相似文献   

11.
We investigated the catalytic activity and inhibition of the δ-class carbonic anhydrase (CA, EC 4.2.1.1) from the marine diatom Thalassiosira weissflogii, TweCA. The enzyme, obtained by cloning the synthetic gene, was an efficient catalyst for the CO2 hydration, its physiological reaction, with a kcat of 1.3 × 105 s−1 and a kcat/KM of 3.3 × 107 M−1 s−1. A range of inorganic anions and small molecules were investigated as inhibitors of TweCA. Chloride and sulfate did not inhibit the enzyme (KIs >200 mM) whereas other halides and pseudohalides were submillimolar–millimolar inhibitors (KIs in the range of 0.93–8.3 mM). The best TweCA inhibitors were hydrogen sulfide, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KIs in the range of 9–90 μM, whereas acetazolamide inhibited the enzyme with a KI of 83 nM. This is the first kinetic and inhibition study of a δ-class CA. However, these enzymes are widespread in the marine phytoplankton, being present in haptophytes, dinoflagellates, diatoms, and chlorophytic prasinophytes, contributing to the CO2 fixation by sea organisms. A phylogenetic analysis with all five genetic families of CAs showed that α- and δ-CAs are evolutionarily more related to each other with respect to the γ-CAs, although these three families clustered all together. On the contrary, the β- and ζ-CAs are also related to each other but phylogenetically much more distant from the α-, γ and δ-CA cluster. Thus, the study of δ-CAs is essential for better understanding this superfamily of metalloenzymes and their potential biotechnological applications in biomimetic CO2 capture processes, as these enzymes are part of the carbon concentrating mechanism used by many photosynthetic organisms.  相似文献   

12.
Carbonic anhydrases in plants and algae   总被引:12,自引:1,他引:12  
Carbonic anhydrases catalyse the reversible hydration of CO2, increasing the interconversion between CO2 and HCO3 + H+ in living organisms. The three evolutionarily unrelated families of carbonic anhydrases are designated α-, β-and γ-CA. Animals have only the α-carbonic anhydrase type of carbonic anhydrase, but they contain multiple isoforms of this carbonic anhydrase. In contrast, higher plants, algae and cyanobacteria may contain members of all three CA families. Analysis of the Arabidopsis database reveals at least 14 genes potentially encoding carbonic anhydrases. The database also contains expressed sequence tags (ESTs) with homology to most of these genes. Clearly the number of carbonic anhydrases in plants is much greater than previously thought. Chlamydomonas, a unicellular green alga, is not far behind with five carbonic anhydrases already identified and another in the EST database. In algae, carbonic anhydrases have been found in the mitochondria, the chloroplast thylakoid, the cytoplasm and the periplasmic space. In C3 dicots, only two carbonic anhydrases have been localized, one to the chloroplast stroma and one to the cytoplasm. A challenge for plant scientists is to identify the number, location and physiological roles of the carbonic anhydrases.  相似文献   

13.
The inhibition of α-, β-, γ-, and δ-class carbonic anhydrases (CAs, EC 4.2.1.1) from bacteria (Vibrio cholerae and Porphyromonas gingivalis) and diatoms (Thalassiosira weissflogii) with a panel of N’-aryl-N-hydroxy-ureas is reported. The α-/β-CAs from V. cholerae (VchCAα and VchCAβ) were effectively inhibited by some of these derivatives, with KIs in the range of 97.5?nM – 7.26?µM and 52.5?nM – 1.81?µM, respectively, whereas the γ-class enzyme VchCAγ was less sensitive to inhibition (KIs of 4.75 – 8.87?µM). The β-CA from the pathogenic bacterium Porphyromonas gingivalis (PgiCAβ) was not inhibited by these compounds (KIs?>?10?µM) whereas the corresponding γ-class enzyme (PgiCAγ) was effectively inhibited (KIs of 59.8?nM – 6.42?µM). The δ-CA from the diatom Thalassiosira weissflogii (TweCAδ) showed effective inhibition with these derivatives (KIs of 33.3?nM – 8.74?µM). As most of these N-hydroxyureas are also ineffective as inhibitors of the human (h) widespread isoforms hCA I and II (KIs?>?10?µM), this class of derivatives may lead to the development of CA inhibitors selective for bacterial/diatom enzymes over their human counterparts and thus to anti-infectives or agents with environmental applications.  相似文献   

14.
The genome of the protozoan parasite Plasmodium falciparum, the causative agent of the most lethal type of human malaria, contains a single gene annotated as encoding a carbonic anhydrase (CAs, EC 4.2.1.1) thought to belong to the α-class, PfCA. Here we demonstrate the kinetic properties of PfCA for the CO2 hydration reaction, as well as an inhibition study of this enzyme with inorganic and complex anions and other molecules known to interact with zinc proteins, including sulfamide, sulfamic acid, and phenylboronic/arsonic acids, detecting several low micromolar inhibitors. A closer examination of the sequence of this and the CAs from other Plasmodium spp., as well as a phylogenetic analysis, revealed that these protozoa encode for a yet undisclosed, new genetic family of CAs termed the η-CA class. The main features of the η-CAs are described in this report.  相似文献   

15.
The carbonic anhydrase superfamily (CA, EC 4.2.1.1) of metalloenzymes is present in all three domains of life (Eubacteria, Archaea, and Eukarya), being an interesting example of convergent/divergent evolution, with its seven families (α-, β-, γ-, δ-, ζ-, η-, and θ-CAs) described so far. CAs catalyse the simple, but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons. Recently, our groups characterised the α-CA from the thermophilic bacterium, Sulfurihydrogenibium yellowstonense finding a very high catalytic activity for the CO2 hydration reaction (kcat?=?9.35?×?105?s?1 and kcat/Km?=?1.1?×?108?M?1?s?1) which was maintained after heating the enzyme at 80?°C for 3?h. This highly thermostable SspCA was covalently immobilised within polyurethane foam and onto the surface of magnetic Fe3O4 nanoparticles. Here, we describe a one-step procedure for immobilising the thermostable SspCA directly on the surface membrane of Escherichia coli, using the INPN domain of Pseudomonas syringae. This strategy has clear advantages with respect to other methods, which require as the first step the production and the purification of the biocatalyst, and as the second step the immobilisation of the enzyme onto a specific support. Our results demonstrate that thermostable SspCA fused to the INPN domain of P. syringae ice nucleation protein (INP) was correctly expressed on the outer membrane of engineered E. coli cells, affording for an easy approach to design biotechnological applications for this highly effective thermostable catalyst.  相似文献   

16.
Carbonic anhydrase enzymes (EC 4.2.1.1, CAs) are metalloenzyme families that catalyze the rapid conversion of H2O and CO2 to HCO3 and H+. CAs are found in different tissues where they participate in various significant biochemical processes such as ion transport, carbon dioxide respiration, ureagenesis, lipogenesis, bone resorption, electrolyte secretion, acid-base balance, and gluconeogenesis. In such processes, many CAs are significant therapeutic targets because of their inhibitory potentials especially in the treatment of some diseases such as edema, glaucoma, obesity, cancer, epilepsy, and osteoporosis. Acetylcholinesterase (AChE) and Butyrylcholinesterase (BuChE) inhibitors are also valuable compounds for different therapeutic applications including Alzheimer’s disease. In this work, we report a fast and effective synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one’s aryl Schiff base derivatives and also their CA and cholinesterases inhibitory properties. Our findings showed that these Schiff base derivatives, with triazole ring, found as strong CA and cholinesterases inhibitors.  相似文献   

17.
Six tripeptides incorporating acidic amino acid residues were prepared for investigation as activators of β- and γ-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacteria Vibrio cholerae, Mycobacterium tuberculosis, and Burkholderia pseudomallei. The primary amino acid residues that are involved in the catalytic mechanisms of these CA classes are poorly understood, although glutamic acid residues near the active site appear to be involved. The tripeptides that contain Glu or Asp residues can effectively activate VchCAβ and VchCAγ (enzymes from V. cholerae), Rv3273 CA (mtCA3, a β-CA from M. tuberculosis) and BpsCAγ (γ-CA from B. pseudomallei) at 0.21–18.1?µM levels. The position of the acidic residues in the peptide sequences can significantly affect bioactivity. For three of the enzymes, tripeptides were identified that are more effective activators than both l-Glu and l-Asp. The tripeptides are also relatively selective because they do not activate prototypical α-CAs (human carbonic anhydrases I and II). Because the role of CA activators in the pathogenicity and life cycles of these infectious bacteria are poorly understood, this study provides new molecular probes to explore such processes.  相似文献   

18.
Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread enzymes in all organisms, catalyzing CO2 hydration to bicarbonate and protons. Their inhibition is exploited clinically for decades for various classes of diuretics and systemically acting antiglaucoma agents. In the last years novel applications of CA inhibitors (CAIs) emerged, such as topically acting antiglaucoma, anticonvulsants, antiobesity, antipain, and antitumor agents/diagnostic tools. Such CAIs target diverse isozymes of the 13 catalytically active α-CA isoforms present in mammals. CAs belonging to the α-, β-, γ-, δ-, and ζ-families are found in many organisms all over the phylogenetic tree, and their inhibition was studied ultimately for some pathogenic protozoa (Plasmodium falciparum), fungi (Cryptococcus neoformans, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae), and bacteria (Helicobacter pylori, Mycobacterium tuberculosis, and Brucella suis). Novel interesting chemotypes, in addition to the sulfonamide and sulfamate CAIs, such as coumarins, phenols, and fullerenes, were also reported recently, together with their mechanism of inhibition. This class of enzyme inhibitors shows promise for designing interesting pharmacological agents and understanding in detail protein–drug interactions at molecular level.  相似文献   

19.
The β-carbonic anhydrases (β-CAs) are a diverse but structurally related group of zinc-metalloenzymes found in eubacteria, plant chloroplasts, red and green algae, and in the Archaea. The enzyme catalyzes the rapid interconversion of CO2 and H2O to HCO3 and H+, and is believed to be associated with metabolic enzymes that consume or produce CO2 or HCO3. For many organisms, β-CA is essential for growth at atmospheric concentrations of CO2. Of the five evolutionarily distinct classes of carbonic anhydrase, β-CA is the only one known to exhibit allosterism. Here we review the structure and catalytic mechanism of β-CA, including the structural basis for allosteric regulation.  相似文献   

20.
A series of sulfonamides was prepared by reaction of sulfanilamide with aryl/alkyl isocyanates. The ureido-substituted benzenesulfonamides showed a very interesting profile for the inhibition of several carbonic anhydrases (CAs, EC 4.2.1.1) such as the human hCA II and three β-CAs from pathogenic fungal or bacterial species. The Candida albicans enzyme was inhibited with potencies in the range of 3.4-3970 nM, whereas the Mycobacterium tuberculosis enzymes Rv1284 and Rv3273 were inhibited with Kis in the range of 4.8-6500 nM and of 6.4-6850 nM, respectively. The structure-activity relationship for this class of inhibitors is rather complex, but the main features associated with effective inhibition of both α- and β-CAs investigated here have been delineated. The nature of the moiety substituting the second ureido nitrogen is the determining factor in controlling the inhibitory power, probably due to the flexibility of the ureido linker and the possibility of this moiety to orientate in different subpockets of the active site cavities of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号