首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
许多有价值的酶催化反应都需要辅因子的参与。因为辅因子价格昂贵,所以,在酶催化工业应用中,需要实现辅因子原位再生。经过几十年研究,出现了酶法、化学法、电化学法、光化学法和基因工程法等手段实现烟酰胺类辅因子(NAD(P)H)、ATP、糖核苷酸等辅因子再生。对辅因子再生研究中取得的进展以及存在的问题进行讨论。  相似文献   

2.
Glyoxysomes, mitochondria, and plastids were separated from the cytosol of germinating castor bean endosperm by sucrose gradient centrifugation in a vertical rotor (25 min, 50,000gav). The amounts of nicotinamide cofactors, NAD(H) and NADP(H), retained in the isolated organelle fractions were measured by enzyme cycling techniques. The NAD(H) was equally distributed between the cytosol and the mitochondria with a small amount in the glyoxysomes. The mitochondria retained 4 pmol of NAD(H)/ μg protein, about seven times as much as the glyoxysomes. Most of the NADP(H) was in the cytosol. However, the glyoxysomes and plastids retained significant amounts, both having 0.3 pmol NADP(H)/μg protein, twice that in the mitochondria. The subcellular distribution of NADP(H) was compared to the location of dehydrogenases capable of using this cofactor. The cytosol and plastids contained 6-phosphogluconate dehydrogenase. NADP isocitrate dehydrogenase was found in the glyoxysomes, in mitochondria, and in an unidentified subcellular fraction obtained at 1.16 g/ml in the density gradients. Knowledge of the quantities of NADP(H) and NAD(H) retained in the isolated organelles should make it possible to investigate their reduction and reoxidation in intact organelles.  相似文献   

3.
Summary The single-channel current recording technique has been used to study the influences that the pyridine nucleotides NAD, NADH, NADP and NADPH have on the gating of ATP-sensitive K+ channels in an insulin-secreting cell line (RINm5F). The effects of the nucleotides were studied at the intracellular surface using either excised inside-out membrane patches or permeabilized cells. All four pyridine nucleotides were found to evoke similar effects. At low concentrations, 100 m and less, each promoted channel opening whereas high concentrations, 500 m and above, evoked channel closure. The degree of K+ channel activation by pyridine nucleotides (low conc.) was found to be similar to that evoked by the same concentrations of ADP or GTP, whereas the degree of K+ channel inhibition (high conc.) was less marked than that evoked by the same concentrations of ATP, and never resulted in refreshment of K+ channels following removal. The effects of NAD, NADH, NADP and NADPH seemed to interact with those of ATP and ADP. In the presence of 1mm ADP and 4mm ATP, 10 to 100 m concentrations of the pyridine nucleotides could not evoke channel opening, whereas concentrations of 500 m and above were found to evoke channel closure. In the presence of 2mm ATP and 0.5mm ADP, however, 10 to 100 m concentrations of the pyridine nucleotides were able to activate K+ channels.  相似文献   

4.
Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.  相似文献   

5.
Plant (and fungal) mitochondria contain multiple NAD(P)H dehydrogenases in the inner membrane all of which are connected to the respiratory chain via ubiquinone. On the outer surface, facing the intermembrane space and the cytoplasm, NADH and NADPH are oxidized by what is probably a single low-molecular-weight, nonproton-pumping, unspecific rotenone-insensitive NAD(P)H dehydrogenase. Exogenous NADH oxidation is completely dependent on the presence of free Ca2+ with aK 0.5 of about 1 µM. On the inner surface facing the matrix there are two dehydrogenases: (1) the proton-pumping rotenone-sensitive multisubunit Complex I with properties similar to those of Complex I in mammalian and fungal mitochondria. (2) a rotenone-insensitive NAD(P)H dehydrogenase with equal activity with NADH and NADPH and no proton-pumping activity. The NADPH-oxidizing activity of this enzyme is completely dependent on Ca2+ with aK 0.5 of 3 µM. The enzyme consists of a single subunit of 26 kDa and has a native size of 76 kDa, which means that it may form a trimer.  相似文献   

6.
The membrane potentials, rates of NAD(P)H formation, and rates of flavoprotein reduction have been measured for single mitochondria isolated from porcine hearts. These metabolic responses were elicited by the addition of malate and measured using fluorescence microscopy. For the measurements of mitochondrial membrane potential, mitochondria were stained with tetramethylrhodamine ethyl ester, and the membrane potentials of single mitochondria were determined. Individual mitochondria maintained the membrane potential at around -80 mV before addition of malate. Upon the addition of malate, each mitochondrion was rapidly polarized to around -100 approximately -140 mV and underwent repeated cycles of polarization and depolarization, which were probably caused by openings and closings of permeability transition pores. NAD(P)(+) and flavoprotein were reduced immediately after addition of malate and then slowly became reoxidized. Thus, single mitochondria can undergo rapid and repetitive changes in membrane potential, but not in the redox state of NAD(P)H and flavoprotein.  相似文献   

7.
S. Ogawa  C. Shen  C.L. Castillo 《BBA》1980,590(2):159-169
31P-NMR has been used to study the increase of ΔpH in mitochondria by externally added ATP. Freshly prepared mitochondria was treated with N-ethylmaleimide to inhibit the exchange between internal and external Pi. Upon addition of ATP, phosphocreatine (30 mM) and creatine kinase to a NMR sample of mitochondria suspension (approx. 120 mg protein/ml) at 0°C, an increase of ΔpH by approx. 0.5 pH unit was observed. However the increased ΔpH could not be maintained, but slowly decayed along with the increase of external ADP/ATP ratio. Further addition of valinomycin to the suspension induced a larger ΔpH (approx. 1) which was maintained by the increased rate of internal ATP hydrolysis as seen in the growth of the internal Pi peak intensity in NMR spectra and the concomitant decrease of the external phosphocreatine peak. The external Pi and ATP peaks stayed virtually constant. When carboxyatractyloside was added to inhibit the ATP/ADP translocase, the internal Pi increase was stopped and the ΔpH decayed. These observations in conjunction with those made earlier in respiring mitochondria clearly show the reversible nature of the ATPase function in which the internal ATP hydrolysis is associated with outward pumping of protons.  相似文献   

8.
目的肝刺激因子(hepatic stimulator substance,HSS)可以保护肝细胞免受各种毒素的影响,但机制尚未清楚,研究探讨肝刺激因子保护肝细胞的可能机制。方法利用稳定转染FLAG-pcDNA3.0/hHss的肝癌细胞BEL-7402为模型,使用Alexa Flour 488、Hoechst 33342、MitoTracker 580分别将HSS、细胞核以及线粒体染色,观察HSS在细胞中的定位情况。当野生型7402细胞、转染空载体FLAG-pcDNA3.0的7402细胞以及转染FLAppcDNA3.0/hHSS的7402细胞受到线粒体膜孔道开放剂羰基氰化间氯苯腙(carbonyl cyanide m—chlorophenylhydrazone,CCCP)的损伤后,用电镜观察线粒体形态、荧光素酶检测ATP、流式细胞仪测定线粒体膜电位(mitoehondrial membrane potential,MMP)等,综合观察过表达HSS的肝细胞的抗损伤能力。结果在稳定转染hHSS基因的7402细胞中,大部分HSS与线粒体共定位;在CCCP作用下,对照组野生型7402细胞以及转染空载体的7402细胞MMP下降明显,线粒体肿胀,嵴断裂、消失,ATP下降显著;实验组稳定转染hHSS基因的7402细胞MMP下降幅度较小,线粒体肿胀与嵴形态的改变明显减轻,ATP的含量较对照组高。结论肝刺激因子HSS在细胞中主要定位于线粒体,可以稳定MMP,维持线粒体形态及细胞内ATP的水平,从而增强肝细胞抗损伤的能力。  相似文献   

9.
Antisera produced against peptides deduced from potato nda1 and ndb1, homologues of yeast genes for mitochondrial rotenone-insensitive NADH dehydrogenases, recognise respective proteins upon expression in Escherichia coli. In western blots of potato (Solanum tuberosum L.) mitochondrial proteins, the NDB and NDA antibodies specifically detect polypeptides of 61 and 48 kDa, respectively. The proteins are found in mitochondria of flowers, leaves and tubers. Different signal intensities are seen relative to other respiratory chain components when organs are compared, indicating variations in relative abundance of dehydrogenases within the plant. The antibodies detect single polypeptides, of similar size as in potato, in mitochondria from several plant species. No specific cross-reaction was found in chloroplasts, but a weak NDA signal of 50 kDa was found in microsomes, possibly associated with peroxisomes. Two-dimensional native/SDS-PAGE analyses indicate that both NDA and NDB proteins reside as higher molecular mass forms, possibly oligomeric. The NDB immunoreactive protein is released by sonication of mitochondria, but is resistant to extraction by digitonin and partially to Triton X-100. In comparison, the NDA protein remains bound to the inner membrane at sonication or digitonin treatment, but can be solubilised with Triton. Investigation of a beetroot (Beta vulgaris L.) induction system for external NADH dehydrogenase indicates that the NDB antibody does not recognise the induced external NADH dehydrogenase in this species, but possibly an external NADPH dehydrogenase.  相似文献   

10.
Ribonucleotide reductase (RR) is a rate-limiting enzyme that catalyzes de novo conversion of ribonucleotide 5′-diphosphates to the corresponding 2′-deoxynucleotide, essential for DNA synthesis and replication. The mutations or knockout of RR small subunit, p53R2, results in the depletion of mitochondrial DNA (mtDNA) in human, implying that p53R2 might play a critical role for maintaining mitochondrial homeostasis. In this study, siRNA against p53R2 knockdown approach is utilized to examine the impact of p53R2 depletion on mitochondria and to derive underlying mechanism in KB and PC-3 cancer cells. Our results reveal that the p53R2 expression not only positively correlates with mtDNA content, but also partakes in the proper mitochondria function, such as ATP synthesis, cytochrome c oxidase activity and membrane potential maintenance. Furthermore, overexpression of p53R2 reduces intracellular ROS and protects the mitochondrial membrane potential against oxidative stress. Unexpectedly, knockdown of p53R2 has a modest, if any, effect on mitochondrial and total cellular dNTP pools. Taken together, our study provides functional evidence that mitochondria is one of p53R2-targeted organelles and suggests an unexpected function of p53R2, which is beyond known RR function on dNTP synthesis, in mitochondrial homeostatic control.  相似文献   

11.
The respiratory chain of plant mitochondria differs from that in mammalian mitochondria by containing several rotenone-insensitive NAD(P)H dehydrogenases. Two of these are located on the outer, cytosolic surface of the inner membrane. One is specific for NADH, the other for NADPH. Only the latter is inhibited by diphenyleneiodonium (DPI). Both of these enzymes are normally dependent upon Ca2+ for activity and this constitutes a potentially important mechanism by which the cell can regulate the oxidation of cytosolic NAD(P)H via the concentration of free Ca2+. This and other potential regulatory mechanisms such as the substrate concentration and polyamines are discussed.  相似文献   

12.
Podocytes are an important constituent of the glomerular filtration barrier. The function of these glomerular cells is affected by extracellular nucleotides through P2 receptors. The activation of P2 receptors may lead to the activation of NAD(P)H oxidase, the key enzyme in oxidative stress, with the intracellular pathways leading to intracellular ATP depletion associated with an increase in the intracellular AMP:ATP ratio. This deregulation of the energy balance activates AMP-activated protein kinase (AMPK) to restore energy homeostasis. We investigated whether P2 receptor activation influences NAD(P)H oxidase-dependent rate of superoxide anion (O2•−) generation and AMPK activity in cultured mouse podocytes. The rate of O2•− generation was measured by chemiluminescence and changes in AMPK activity were determined by immunoblotting against AMPKα-Thr172-P. The addition of 100 μM ATP induced a rapid and transient decrease in rate of O2•− generation and increased AMPK phosphorylation with maximal effects in the first minute (2.44 ± 0.09 versus 1.62 ± 0.06 nmol/mg protein/min, P < 0.05 and 0.64 ± 0.04 versus 0.97 ± 0.07, P < 0.05, respectively). Both parameters returned to control levels at 10 min. Suramin (300 μM, P2 receptor antagonist) and compound C (100 μM, AMPK inhibitor) completely, and STO-609 (25 μM, CaMKK-β inhibitor) partially, prevented ATP action in rate of O2•− generation and AMPK phosphorylation. Various ATP analogues (10 μM) mimicked the effects of ATP on rate of O2•− generation and AMPK phosphorylation. The data indicate that extracellular ATP, acting through P2 receptors upstream of CaMKK-β, modulates podocyte function through simultaneous effects on AMPK and NAD(P)H oxidase activities. This mechanism may play a role in restoring energy homeostasis after oxidative stress.  相似文献   

13.
The 2.1 A resolution crystal structure of flavin reductase P with the inhibitor nicotinamide adenine dinucleotide (NAD) bound in the active site has been determined. NAD adopts a novel, folded conformation in which the nicotinamide and adenine rings stack in parallel with an inter-ring distance of 3.6 A. The pyrophosphate binds next to the flavin cofactor isoalloxazine, while the stacked nicotinamide/adenine moiety faces away from the flavin. The observed NAD conformation is quite different from the extended conformations observed in other enzyme/NAD(P) structures; however, it resembles the conformation proposed for NAD in solution. The flavin reductase P/NAD structure provides new information about the conformational diversity of NAD, which is important for understanding catalysis. This structure offers the first crystallographic evidence of a folded NAD with ring stacking, and it is the first enzyme structure containing an FMN cofactor interacting with NAD(P). Analysis of the structure suggests a possible dynamic mechanism underlying NADPH substrate specificity and product release that involves unfolding and folding of NADP(H).  相似文献   

14.
The ability of the rabbit blastocyst to reduce nitroblue tetrazolium (NBT) to formazan in the presence of cyanide was assayed as an indicator of extramitochondrial oxidase activity capable of generating the superoxide radical. A cytochemical method initially developed for the detection and localization of hydrogen peroxide production at the ultrastructural level in phagocytosing leukocytes (Briggs et al.: J Cell Biol 67:566, 1975) was also applied to the blastocyst. The results demonstrate that the rabbit blastocyst acquires the ability to reduce NBT by a cyanide-insensitive process and to generate hydrogen peroxide between the fourth and fifth days postcoitum. The enzymatic activity responsible is apparently an NAD(P)H-dependent oxidase in the outer, microvillous plasma membrane of the trophoblast.  相似文献   

15.
Cyclosporin A (CsA) generates superoxide in smooth muscle cells. Our earlier studies have demonstrated that the increase in the vasopressin type 1 receptor induced in vascular smooth muscle cells in the presence of CsA is probably due to superoxide (Krauskopf et al., J Biol Chem 278, 41685-41690, 2003). This increase in vasopressin receptor is likely at the base of increased vascular responsiveness to vasoconstrictor hormones and hypertension induced by CsA. Here, we demonstrate that CsA produces superoxide. In addition, our data show that superoxide generation does not originate from the major cellular superoxide generating systems NAD(P)H oxidase or xanthine oxidase. Our results suggest that the side effects of CsA could be diminished with the help of SOD mimetic drugs.  相似文献   

16.
Rat heart mitochondria were isolated and forced in a well-defined metabolic state. After freeze-fracturing, the intramembrane particle dimension and density on both fracture faces of the inner mitochondrial membrane were measured. No significant differences could be calculated between the diameter of the membrane particles in the five different states. However, the particle density on the fracture faces of the inner mitochondrial membrane in the condensed configuration is significantly smaller than in the orthodox configuration on the 99.5% level of confidence. These results are compared with the literature, where conflicting data have been published about these particle densities.  相似文献   

17.
The effects of tamoxifen (TAM) were studied on the mitochondrial permeability transition (MPT) induced by the prooxidant tert-butyl hydroperoxide (t-BuOOH) or the thiol cross-linker phenylarsine oxide (PhAsO), in the presence of Ca2+, in order to clarify the mechanisms involved in the MPT inhibition by this drug. The combination of Ca2+ with t-BuOOH or PhAsO induces mitochondrial swelling and depolarization of membrane potential (deltapsi). These events are inhibited by cyclosporine A (CyA), suggesting the inhibition of the MPT. The pre-incubation of mitochondria with TAM also prevents those events and induces a time-dependent reversal of deltapsi depolarization following MPT induction, similarly to CyA. Moreover, TAM inhibits the Ca2+ release and the oxidation of NAD(P)H and protein thiol (-SH) groups promoted by t-BuOOH plus Ca2+. On the other hand, the MPT induced by PhAsO plus Ca2+ does not induce -SH groups oxidation, supporting the notion that MPT induction by this compound is not mediated by the oxidation of specific membrane proteins groups. However, TAM also inhibits the PhAsO induced MPT, suggesting that this drug may inhibit this phenomenon by inhibiting PhAsO binding to -SH vicinal groups, implicated in the MPT induction. These data indicate that the MPT inhibition by TAM may be related to its antioxidant capacity in preventing the oxidation of NAD(P)H and -SH groups or by blocking these groups, since the oxidation of these groups increases the sensitivity of mitochondria to the MPT induction. Additionally, they suggest an MPT-independent pathway for TAM-induced apoptosis and a potential ER-independent mechanism for the effectiveness of this drug in the cancer therapy and prevention.  相似文献   

18.
The increased levels of NAD(P)H effected by electrical depolarization are markedly augmented in the presence of cyclic AMP, isoproterenol, or RO 20-1724, agents known to elevate cyclic AMP in rat brain slices. The data presented indicate that the cyclic AMP effect on an important component of intermediate metabolism is not an enhancement of a basal response but a separate response that is activated by depolarization, is Ca2+-dependent, regulates cytochrome a-a3 independently of its effects on NAD(P)H levels, and is dependent on a substrate other than glucose.  相似文献   

19.
Calciphorin, the putative mitochondrial calcium ionophore from rat liver mitochondria, exhibits the inherent properties of the mitochondrial calcium transport system and is similar to the calf heart preparation reported earlier. The protein has a strong selectivity for Ca2+, and has a Kd for Ca2+ of 56.5 ± 6.6 μM and 13.9 ± 2.1 μM in organic extraction and flow dialysis experiments, respectively. Reduction of the contaminating lipids from 23 ± 6.5 to 1.73 ± 0. moles per mole protein does not alter the affinities, Ca2+/protein soichiometry or selectivity for Ca2+.  相似文献   

20.
Ian M. Mller  John M. Palmer 《BBA》1981,638(2):225-233
(1) The optimum pH for the oxidation of exogenous NADH by mitochondria from both Jerusalem artichoke (Helianthus tuberosus) tubers and Arum maculatum spadices was 7.0–7.1. NADPH oxidation had a lower optimum pH of 6.6 in Arum and 6.0 in Jerusalem artichoke mitochondria. In both types of mitochondria the rates of NADH and NADPH oxidation were identical below pH 6.0–5.5. (2) It is shown conclusively that neither a phosphatase converting NADPH to NADH nor a nicotinamide nucleotide transhydrogenase was involved in the oxidation of NADPH by these mitochondria. (3) Palmitoyl-CoA, an inhibitor of transhydrogenase activity in mammalian mitochondria, inhibits both NADH and NADPH oxidation by plant mitochondria with a Ki of about 10 μM. (4) It is concluded that the known properties of NAD(P)H oxidation are best explained by assuming the presence of a second dehydrogenase specific for NADPH. At low pH, electron flow from the two dehydrogenases to oxygen shares a common rate-limiting step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号