首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population structure of Puccinia recondita f. sp. tritici (Prt) in western Europe was examined by assessing variability in pathogenicity and in randomly amplified polymorphic DNA (RAPD) among 61 single uredinial isolates. The isolates were chosen to represent pathotypes detected in a previous survey of pathogenic variability in the fungus in western Europe in 1995. Thirty‐five pathotypes were identified by assessing infection types produced by the 61 isolates on 24 differential lines, each with a single gene for resistance to Prt. In contrast, only 18 RAPD phenotypes were identified by scoring 19 polymorphic RAPD bands generated with eight RAPD primers. When analysed by cluster and bootstrap analyses, the pathogenicity and RAPD results revealed little evidence for robust distinct clusters among the isolates. Multiple isolates of several pathotypes collected from widely separated locations such as Belgium, Germany, France, Italy and Switzerland had the same RAPD phenotype, providing evidence of clonal migration over considerable distances in western Europe. Some variability (one or two band differences) was observed in RAPD phenotype within several pathotypes, indicating the possible occurrence of genetic changes independent of pathogenicity, and/or the independent development of pathotypes with different genetic backgrounds. Two groups of isolates identified in the 1995 survey, differentiated by pathogenicity for genes Lr3a, Lr3bg, Lr3ka and Lr30, were not distinguished by RAPD phenotype, indicating that the groups probably do not constitute separate lineages within the pathogen population. Little correlation was apparent between the polymorphisms observed in pathogenicity and RAPD phenotypes. The similarity in the genetic backgrounds of the isolates, as assessed by RAPD markers, suggest that the observed differences in pathogenicity may have arisen by selection for specific virulences corresponding to genes for resistance in wheat cultivars grown in the region. Three isolates of pathotype 3, restricted in its distribution to southern France during 1995, were distinct from all other isolates in RAPD phenotype. Circumstantial evidence suggests that this pathotype originated from northern Africa, and that it belongs to a group of leaf rust pathogens specialized to durum wheats.  相似文献   

2.
The causal agent of common bean anthracnose, Colletotrichum lindemuthianum, has considerable genetic and pathogenic variability, which makes the development of resistant cultivars difficult. We examined variability within and between Brazilian pathotypes of C. lindemuthianum through the identification of vegetative compatibility groups (VCGs) and by RAPD analysis. Two hundred and ninety-five nit mutants were obtained from 47 isolates of various pathotypes of the fungus collected from different regions, host cultivars and years. In complementation tests, 45 VCGs were identified. Eighteen RAPD primers were employed in the molecular analyses, producing 111 polymorphic bands. Estimates of genetic similarities, determined from the Sorence-Dice coefficient, ranged from 0.42 to 0.97; the dendrogram obtained by cluster analysis revealed 18 groups of isolates. RAPD and VCG markers presented high genotypic diversity. The number of significant associations (P=0.05) between RAPD, VCG and pathogenicity markers ranged from 0 (VCG) to 80% (pathogenicity). The test of multilocus association (rd) for RAPD markers was significantly different from zero (P<0.001), suggesting linkage disequilibrium. However, the results for VCG markers show the presence of recombination mechanisms. In conclusion, RAPD markers and VCGs were useful for detecting genetic variability among isolates of C. lindemuthianum. We found considerable diversity among isolates from the same geographic origin within a short interval; this suggests rapid evolution. There is a need for further studies to elucidate the population structure of this pathogen in agro-ecosystems.  相似文献   

3.
Red rot, caused by Colletotrichum falcatum Went, is one of the most important diseases of sugarcane (Saccharum officinarum L.). The pathogen shows a great diversity in virulence as a number of pathotypes are known to occur in nature. In the present study, the toxin producing ability and genetic variability among isolates of C. falcatum collected from major sugarcane growing areas of Tamil Nadu, India were analysed. The C. falcatum isolates differed significantly in their ability to produce toxin in vitro. The toxin from C. falcatum isolate Cf 671a induced the maximum electrolyte leakage (300 μS) from sugarcane leaf tissues. The genetic relatedness of the isolates of C. falcatum differing in toxin production potential was investigated by using RAPD analysis. Analysis of the genetic coefficient matrix derived from the scores of RAPD profiles showed that minimum and maximum percent similarities among the tested C. falcatum isolates were in the range of 19 to 95% respectively. The phylogenetic analysis by the UPGMA identified two main clusters. Cluster A contains only one isolate (Cf 98061) and all the other isolates were placed in Cluster B confirming high genetic diversity among the isolates. No correlation was observed between clustering of the C. falcatum isolates in the dendrogram and their toxin producing abilities.  相似文献   

4.
The genetic diversity, relationship and molecular identification of 15 well known, widely planted traditional Chinese elite tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in the China National Germplasm Hangzhou Tea Repository in the Tea Research Institute of the Chinese Academy of Agricultural Sciences located in Zhejiang province, China, were investigated using RAPD markers. A total of 1050 bands with an average of 52.5 bands per primer, 70 bands per genetic resource were generated by the 20 selected primers from the 15 tea genetic resources. In the total of 137 amplified products, 129 were polymorphic, corresponding to 94.2% genetic diversity. The relative frequency of polymorphic products was from 0.24 to 0.83, with an average of 0.47. In general, this average frequency was relatively high. The genetic distances among the genetic resources were from 0.16 to 0.62, with an average of 0.37. The 15 tea genetic resources were grouped into three groups by UPGMA cluster analysis based on RAPD data. By using the presence of 20 unique RAPD markers and the absence of 11 unique markers, all the 15 investigated tea genetic resources could be easily identified. RAPD markers provided a practical method not only to evaluate the genetic diversity and relationship, but also to identify tea genetic resources.  相似文献   

5.
An influence of some Random Amplified Polymorphic DNA (RAPD) reaction factors on resulting banding pattern and the ability of RAPD technique to detect DNA polymorphism among six economically important pea cultivars was tested. Relatively high level of DNA polymorphism among peas was observed, using polyacrylamide/urea gels and silver staining. Altogether 13 arbitrarily designed primers produced 313 amplification products. In addition 59 polymorphisms were found. These polymorphisms can serve as potential genetic markers. RAPD data were processed using cluster analysis and plotted as dendrogram. Each tested cultivar was clearly distinguished from the others. Moreover,Pisum sativum andP. sativum subsp.arvense cultivars were separated into 2 different clusters, according to their systematic relationships.  相似文献   

6.
为揭示中国橄榄(Canarium album)种质资源的遗传多样性,采用ISSR和RAPD标记对橄榄主要分布区的86份种质资源进行遗传多样性分析并构建核心种质。结果表明,基于UPGMA遗传相似系数,86份种质资源可分为3个大类;基于STRUCTURE模型聚类,可分为4个类群,这基本符合橄榄的地域性分布规律。采用ISSR和RAPD获得的中国橄榄种质资源的整体遗传多样性水平分别为0.284±0.169和0.244±0.163,多态性位点百分率分别为92.56%和100%,总遗传分化系数分别为0.127和0.142,基因流分别为3.423和3.025,群体间遗传相似系数分别为0.930和0.939,个体间遗传相似系数分别为0.736和0.732。因此,中国橄榄种质资源丰富的遗传多样性主要来源于个体间的遗传分化或变异,且这种遗传多样性存在明显的地域性差异。  相似文献   

7.
Genetic variability, population structure and differentiation among 17 populations of 5 species and 2 natural interspecific hybrids of section Algarobia of genus Prosopis were analyzed from data of 23 isozyme and 28 RAPD loci. Both markers indicated that the studied populations are highly variable. P. alba populations in average showed lower values of genetic variability estimates from isozyme data, but this trend was not observed for RAPD markers. The hierarchical analyses of the distribution of genetic variability showed that the highest proportion of variation occurred within populations, the differentiation among species was intermediate and the lowest component was observed among populations within species. The consistency between results from both dataset implies that they are not biased and reflect the actual genetic structure of the populations analyzed. The matrices of Euclidean distances obtained from the two sets of markers were highly correlated according to Mantel test. In both cases the corresponding phenogram and MDS plot tended to cluster conspecific populations while hybrid populations were not intermediate between putative parents. Some disagreements between isozyme and RAPD phenograms were observed mainly in the affinities of hybrid populations. Such inconsistencies might result from reticular rather than dichotomic evolutionary relationships. The phenetic associations retrieved gave no support to the division of the section Algarobia into series.  相似文献   

8.
 The poor definition of variation in the ascochyta blight fungus (Ascochyta rabiei) has historically hindered breeding for resistance to the chickpea (Cicer arietinum L.) blight disease in West Asia and North Africa. We have employed 14 RAPD markers and an oligonucleotide probe complementary to the microsatellite sequence (GATA)4 to construct a genotype-specific DNA fragment profile from periodically sampled Syrian field isolates of this fungus. By using conventional pathogenicity tests and genome analysis with RAPD and microsatellite markers, we demonstrated that the DNA markers distinguish variability within and among the major pathotypes of A. rabiei and resolved each pathotypes into several genotypes. The genetic diversity estimate based on DNA marker analysis within pathotypes was highest for the least-aggressive pathotype (pathotype I), followed by the aggressive (pathotype II) and the most-aggressive pathotype (pathotype III). The pair-wise genetic distance estimated for all the isolates varied from 0.00 to 0.39, indicating a range from a clonal to a diverse relationship. On the basis of genome analysis, and information on the spatial and temporal distribution of the pathogen, a general picture of A. rabiei evolution in Syria is proposed. Received: 10 January 1998 / Accepted: 23 January 1998  相似文献   

9.
Thirty two pathogenic isolates of Fusarium udum from different pigeonpea growing areas in India were studied for pathogenic and molecular variability. Pathogenic variability was tested on 12 pigeonpea differential genotypes, which revealed prevalence of five variants in F. udum. The amount of genetic variation was evaluated by Polymerase Chain Reaction (PCR) amplification with 20 random amplified polymorphic DNA (RAPD) markers and nine microsatellite markers. All amplifications revealed scorable polymorphisms among the isolates, and a total of 137 polymorphic fragments were scored for the RAPD markers and 16 alleles for the simple sequence repeat (SSR) markers. RAPD primers showed 86% polymorphism. Genetic similarity was calculated using Jaccard's similarity coefficient and cluster analysis was used to generate a dendrogram showing relationships between them. Isolates could be grouped into three subpopulations based on molecular analysis. Results indicated that there is high genetic variability among a subpopulation of F. udum as identified by RAPD and SSR markers and pathogenicity on differential genotypes.  相似文献   

10.
To control the genetic quality during the whole process of tissue culture of the traditional Chinese medicinal plant, Saussurea involucrate Kar. et Kir., DNA polymorphisms and genetic variations were investigated using randomly amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) markers. The genetic stability/variation in tissue-cultured products, including three calli, three adventitious shoots, regenerated plantlets and 2 year-old regenerated plantlets cultivated in the planting base in Tianshan Mountain, were assessed compared with 1 year-old and 2 year-old seedlings cultivated in the same planting base using aseptic seedlings as reference. Apparent genetic variation was detected in the 11 type of plant materials. The percentages of polymorphic bands in the RAPD and ISSR analysis were, respectively, 35% and 33%. Cluster analysis indicated that the genetic similarity values calculated on the basis of RAPD and ISSR data among the 11 type of plant materials were respectively ranged from 0.823 to 0.995 with a mean of 0.878 and 0.825 to 0.974 with a mean of 0.885, which classified the samples into three groups. The similarity coefficient also revealed that differences among three calli were not remarkable by both RAPD and ISSR analysis, and only chemical components and growth properties needed consideration in the screening of callus used for the next redifferentiation studies. But there are remarkable differences among three adventitious shoots analyzed by ISSR markers. Therefore, RAPD and ISSR markers are efficient tools in genetic variation assessment and quality control in plant tissue culture process.  相似文献   

11.
Conservation of identified germplasm is an important component forefficient and effective management of plant genetic resources. Traditionally,species identification has relied on morphological characters like growth habit,floral morphology like flower colour, and agronomic characteristics of the plant.Dalbergia species are important wind-dispersed tropicaltimber trees which exhibit high intrafruit seed abortion because of intensesibling competition for maternal resources. Studies were undertaken foridentification and genetic relationships in five species ofDalbergia and to evaluate genetic diversity withinpopulations of Dalbergia sisso, D.latifolia, D. paniculata, D.assamica and D. spinosa by using randomamplified polymorphic DNAs (RAPD) markers. Analysis was started by using 30decamer primers that allowed to distinguish five species and to select a reducedset of primers. The selected primers were used for identification and forestablishing a profiling system to estimate genetic relationships and toevaluate the genetic variability among the individuals in a population ofDalbergia species. A total of 120 distinct DNA fragments(bands), ranging from 0.3 to 4.0 kb, were amplified byusing nine selected random decamer primers. The genetic similarity was evaluated onthe basis of presence or absence of bands, which revealed a wide range ofvariability within the species. The cluster analysis indicated that five speciesof Dalbergia formed two major clusters. The first clusterconsisted of D. spinosa, D. latifolia and D.sisso. The second cluster was represented by two species, i.e.D. paniculata and D. assamica.A maximum similarity of 60% was observed in D. paniculata andD. assamica and they formed a minor cluster.Dalbergia latifolia and D. sissoformed another minor cluster with more than 50% similarity. Dalbergiaspinosa shared up to 40% similarity with D.latifolia and D. sisso. All the species sharemore than 20% similarity among themselves. The closest genetic distance existedwithin populations of different Dalbergia species. Thus,these RAPD markers have the potential for conservation of identified clones andcharacterization of genetic relatedness among the species. This is also helpful intree breeding programs and provides an important input into conservation biology.  相似文献   

12.
Restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers are being used widely for evaluating genetic relationships of crop germplasm. Differences in the properties of these two markers could result in different estimates of genetic relationships among some accessions. Nuclear RFLP markers detected by genomic DNA and cDNA clones and RAPD markers were compared for evaluating genetic relationships among 18 accessions from six cultivated Brassica species and one accession from Raphanus sativus. Based on comparisons of genetic-similarity matrices and cophenetic values, RAPD markers were very similar to RFLP markers for estimating intraspecific genetic relationships; however, the two marker types gave different results for interspecific genetic relationships. The presence of amplified mitochondrial and chloroplast DNA fragments in the RAPD data set did not appear to account for differences in RAPD- and RFLP-based dendrograms. However, hybridization tests of RAPD fragments with similar molecular weights demonstrated that some fragments, scored as identical, were not homologous. In all these cases, the differences occurred at the interspecific level. Our results suggest that RAPD data may be less reliable than RFLP data when estimating genetic relationships of accessions from more than one species.  相似文献   

13.
Twenty isolates of Tilletia indica collected from sites in North and North‐western India showed pathogenic variation on 18 host differentials. Sixteen aggressive pathotypes were identified on the basis of percent coefficient of infection (PCI). Two major clusters were apparent in the dendrogram; cluster 1 comprised 13 isolates and cluster two consisted of seven isolates. One of the isolate Kashipur had a high PCI on most of the host differentials compared to other isolates. Polymerase chain reaction‐based random amplified polymorphic DNA (PCR – RAPD) analysis also divided isolates into two major clusters, one comprising of 5 isolates collected from hill and foot‐hill sites and another group comprising of 15 isolates collected from plain sites. Thus, the clusters identified based on PCI did not match closely with those identified by molecular analysis based on RAPD. Although diversity among the isolates of T. indica was absent in the rDNA‐ITS region, our study based on pathogenicity and molecular markers confirms the existence of great diversity in the pathogen, also shifting of ‘hot spot’ areas from one place to another within Karnal bunt prevailing areas.  相似文献   

14.
Genetic relationships were evaluated among nine cultivars ofBrassica campestris by employing random amplification of polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers. RAPDs generated a total of 125 bands using 13 decamer primers (an average of 9.6 bands per assay) of which nearly 80% were polymorphic. The per cent polymorphism ranged from 60–100%. AFLP, on the other hand generated a total of 319 markers, an average of 64 bands per assay. Of these, 213 were polymorphic in nature (66.8%). AFLP methodology detected polymorphism more efficiently than RAPD approach due to a greater number of loci assayed per reaction. Cultivar-specific bands were identified, for some cultivars using RAPD, and for most cultivars with AFLP. Genetic similarity matrix, based on Jaccard’s index detected coefficients ranging from 0.42 to 0.73 for RAPD, and from 0.48 to 0.925 for AFLPs indicating a wide genetic base. Cluster analyses using data generated by both RAPD and AFLP markers, clearly separated the yellow seeded, self-compatible cultivars from the brown seeded, self-incompatible cultivars although AFLP markers were able to group the cultivars more accurately. The higher genetic variation detected by AFLP in comparison to RAPD was also reflected in the topography of the phenetic dendrograms obtained. These results have been discussed in light of other studies and the relative efficiency of the marker systems for germplasm evaluation.  相似文献   

15.
Two resistances to downy mildew derived from Lactuca serriola were characterized genetically and mapped using molecular markers. Classical genetic analysis suggested monogenic inheritance; however, the presence of multiple, tightly-linked genes in each case could not be eliminated. Therefore, they were designated resistance factors R17 and R18. Analysis with molecular markers known to be linked to clusters of resistance genes quickly revealed linkage of R18 to the major cluster of resistance genes and provided six linked markers, three RAPD (Random Amplified Polymorphic DNA) markers and three codominant SCAR (Sequence Characterized Amplified Region) markers. The mapping of R17 required the screening of arbitrary RAPD markers using bulked segregant analysis; this provided five linked markers, three of which segregated in the basic mapping population. This demonstrated loose linkage to a second cluster of resistance genes and provided additional linked markers. Two RAPD markers linked to R17 were converted into SCARs. The identification of reliable PCR-based markers flanking each gene will aid in selection and in combining these resistance genes with others.  相似文献   

16.
Genetic similarity among 45 Brassica Oleracea genotypes was compared using two molecular markers, random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphisms (RFLPs). The genotypes included 37 broccolis (var. italica), five cauliflowers (var. botrytis) and three cabbages (var. capitata) which represented a wide range of commercially-available germplasm, and included open-pollinated cultivars, commercial hybrids, and inbred parents of hybrid cultivars. Fifty-six polymorphic RFLP bands and 181 polymorphic RAPD bands were generated using 15 random cDNA probes and 62 10-mer primers, respectively. The objectives were to compare RFLP and RAPD markers with regard to their (1) sampling variance, (2) rank correlations of genetic distance among sub-samples, and (3) inheritance. A bootstrap procedure was used to generate 200 random samples of size n (n=2,3,5,... 55) independently from the RAPD and RFLP data sets. The coefficient of variance (CV) was estimated for each sample. Pooled regressions of the coefficient of variance on bootstrap sample size indicated that the rate of decrease in CV with increasing sample size was the same for RFLPs and RAPDs. The rank correlation between the Nei-Li genetic similarity values for all pairs of genotypes (990) based on RFLP and RAPD data was 0.745. Differences were observed between the RFLP and RAPD dendrograms of the 45 genotypes. Overlap in the distributions of rank correlations between independent sub-samples from the RAPD data set, compared to correlations between RFLP and RAPD sub-samples, suggest that observed differences in estimation of genetic similarity between RAPDs and RFLPs is largely due to sampling error rather than due to DNA-based differences in how RAPDs and RFLPs reveal polymorphisms. A crossing algorithm was used to generate hypothetical banding patterns of hybrids based on the genotypes of the parents. The results of this study indicate that RAPDs provide a level of resolution equivalent to RFLPs for detemination of the genetic relationships among genotypes.  相似文献   

17.
The potential use of random amplified polymorphic DNA (RAPD) was evaluated as a source of genetic markers for studying variation among four species of Panicum and within the crop species P. miliaceum and P. sumatrense. Polymorphism in RAPD markers was observed across and within species. The four species were distinct in RAPD patterns and were separated at low correlation values even with small samples involving single genotypes per species. Accessions of P. miliaceum were grouped according to geographical regions of origin. The study demonstrated that unlike isozyme and protein electrophoresis patterns, RAPD markers can be applied to studying genetic diversity, defining gene pools, and identifying cultivars for this group of millets.  相似文献   

18.
Using RAPDs to study phylogenetic relationships in Rosa   总被引:6,自引:0,他引:6  
Nineteen species of rose (Rosa sp.) were analysed using Random Amplified Polymorphic DNA markers (RAPD). Each 10-base-long arbitrary primer produced a specific DNA banding pattern that grouped plants belonging to the same species and botanical sections as predicted from their genetic background. One hundred and seventy-five amplification products were examined by cluster analysis to assess the genetic relationships among species and their genetic distances. All of the accessions belonging to 1 species grouped together before branching to other species. Dendrograms constructed for intra- and inter-specific studies showed a good correlation with previous classifications by different authors based on morphological and cariological studies. Our results show that the RAPD technique is a sensitive and precise tool for genomic analysis in rose, being useful in assigning unclassified accessions to specific taxonomic groups or else allowing accessions classified by traditional criteria to be re-classified.  相似文献   

19.
Genetic diversity among 13 different cultivars of date palm (Phoenix dactylifera L.) of Saudi Arabia was studied using random amplified polymorphic DNA (RAPD) markers. The screening of 140 RAPD primers allowed selection of 37 primers which revealed polymorphism, and the results were reproducible. All 13 genotypes were distinguishable by their unique banding patterns produced by 37 selected primers. Cluster analysis by the unweighted paired group method of arithmetic mean (UPGMA) showed two main clusters. Cluster A consisted of five cultivars (Shehel, Om-Kobar, Ajwa, Om-Hammam and Bareem) with 0.59–0.89 Nei and Li's coefficient in the similarity matrix. Cluster B consisted of seven cultivars (Rabeeha, Shishi, Nabtet Saif, Sugai, Sukkary Asfar, Sukkary Hamra and Nabtet Sultan) with a 0.66–0.85 Nei and Li's similarity range. Om-Hammam and Bareem were the two most closely related cultivars among the 13 cultivars with the highest value in the similarity matrix for Nei and Li's coefficient (0.89). Ajwa was closely related with Om-Hammam and Bareem with the second highest value in the similarity matrix (0.86). Sukkary Hamra and Nabtet Sultan were also closely related, with the third highest value in the similarity matrix (0.85). The cultivar Barny did not belong to any of the cluster groups. It was 34% genetically similar to the rest of the 12 cultivars. The average similarity among the 13 cultivars was more than 50%. As expected, most of the cultivars have a narrow genetic base. The results of the analysis can be used for the selection of possible parents to generate a mapping population. The variation detected among the closely related genotypes indicates the efficiency of RAPD markers over the morphological and isozyme markers for the identification and construction of genetic linkage maps.Communicated by H.F. Linskens  相似文献   

20.
Phytophthora blight induced by Phytophthora capsici causes significant yield loss in a number of vegetable crops. It is imperative to understand the diversity and aggressiveness of the pathogen to design more efficient disease management programs. A collection of P. capsici strains isolated from different vegetable crops in Georgia, USA, were characterised in this study. Of the 49 isolates tested, 24 were A1 and 25 were A2 mating type, respectively, with both mating types found in the same fields. Variability of the isolates was assessed in terms of their aggressiveness on six pepper genotypes. The isolates differed in their aggressiveness on different pepper cultivars with 10 pathotypes identified. No correlation between aggressiveness of the isolates and their host origin or geographical location of isolation was observed. Randomly amplified polymorphic DNA (RAPD) analysis was used to evaluate genetic variability among P. capsici populations. RAPD analysis using 15 random primers resulted in 133 reproducible bands and cluster analysis separated the isolates into 5 groups. Analysis of molecular variance showed that there was moderate genetic differentiation associated with host origin and geographical location of the isolates. No correlation was found between RAPD groups and pathotypes or mating types. These results indicate that P. capsici populations infecting vegetable crops in Georgia were genetically diverse, which should be taken into account in developing resistant cultivars or other disease management programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号