首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An image processing system was programmed to automatically track and digitize the movement of amebae under phase-contrast microscopy. The amebae moved in a novel chemotaxis chamber designed to provide stable linear attractant gradients in a thin agarose gel. The gradients were established by pumping attractant and buffer solutions through semipermeable hollow fibers embedded in the agarose gel. Gradients were established within 30 min and shown to be stable for at least a further 90 min. By using this system it is possible to collect detailed data on the movement of large numbers of individual amebae in defined attractant gradients. We used the system to study motility and chemotaxis by a score of Dictyostelium discoideum wild-type and mutant strains, including "streamer" mutants which are generally regarded as being altered in chemotaxis. None of the mutants were altered in chemotaxis in the optimal cAMP gradient of 25 nM/mm, with a midpoint of 25 nM. The dependence of chemotaxis on cAMP concentration, gradient steepness, and temporal changes in the gradient were investigated. We also analyzed the relationship between turning behavior and the direction of travel during chemotaxis in stable gradients. The results suggest that during chemotaxis D. discoideum amebae spatially integrate information about local increases in cAMP concentration at various points on the cell surface.  相似文献   

2.
Abstract Chemoattractants determine not only the direction of leucocyte locomotion (chemotaxis) but also its speed (chemokinesis). Various mechanisms by which leucocytes may detect chemotactic gradients, including spatial and temporal detection, are briefly reviewed. These mechanisms as originally proposed did not address the question how attractants cause leucocytes to migrate in persistent random paths in the absence of a gradient. Stochastic models have recently been presented in which leucocytes either respond by polarizing and migrating in the direction from which they receive their first signal, or respond to random flucuations in the perceived attractant concentration. Stochastic models allow an explanation for the persistent random walk shown by cells in uniform concentrations of attractant as well as for directional locomotion in gradients. They suggest that, at the biochemical level, the mechanisms by which attractants stimulate chemotaxis and chemokinesis are probably the same.  相似文献   

3.
Wu D  Lin F 《PloS one》2011,6(4):e18805
Directed cell migration mediates physiological and pathological processes. In particular, immune cell trafficking in tissues is crucial for inducing immune responses and is coordinated by multiple environmental cues such as chemoattractant gradients. Although the chemotaxis mechanism has been extensively studied, how cells integrate multiple chemotactic signals for effective trafficking and positioning in tissues is not clearly defined. Results from previous neutrophil chemotaxis experiments and modeling studies suggested that ligand-induced homologous receptor desensitization may provide an important mechanism for cell migration in competing chemoattractant gradients. However, the previous mathematical model is oversimplified to cell gradient sensing in one-dimensional (1-D) environment. To better understand the receptor desensitization mechanism for chemotactic navigation, we further developed the model to test the role of homologous receptor desensitization in regulating both cell gradient sensing and migration in different configurations of chemoattractant fields in two-dimension (2-D). Our results show that cells expressing normal desensitizable receptors preferentially orient and migrate toward the distant gradient in the presence of a second local competing gradient, which are consistent with the experimentally observed preferential migration of cells toward the distant attractant source and confirm the requirement of receptor desensitization for such migratory behaviors. Furthermore, our results are in qualitative agreement with the experimentally observed cell migration patterns in different configurations of competing chemoattractant fields.  相似文献   

4.
Chemoattractants determine not only the direction of leucocyte locomotion (chemotaxis) but also its speed (chemokinesis). Various mechanisms by which leucocytes may detect chemotactic gradients, including spatial and temporal detection, are briefly reviewed. These mechanisms as originally proposed did not address the question how attractants cause leucocytes to migrate in persistent random paths in the absence of a gradient. Stochastic models have recently been presented in which leucocytes either respond by polarizing and migrating in the direction from which they receive their first signal, or respond to random fluctuations in the perceived attractant concentration. Stochastic models allow an explanation for the persistent random walk shown by cells in uniform concentrations of attractant as well as for directional locomotion in gradients. They suggest that, at the biochemical level, the mechanisms by which attractants stimulate chemotaxis and chemokinesis are probably the same.  相似文献   

5.
Neutrophils need to correctly interpret gradients of chemotactic factors (CFs) such as interleukin 8 (IL-8) to migrate to the site of infection and perform immune functions. Because diffusion-based chemotaxis assays used in previous studies suffer from temporally changing gradients, it is difficult to distinguish the influence of CF gradient steepness from mean CF concentration on chemotaxis. To better understand the roles of mean CF concentration and CF gradient steepness, we developed a microfluidic device that can maintain stable IL-8 gradients. We report that the random motility of neutrophils is a biphasic function of IL-8 concentration and its magnitude plays a decisive role in effective chemotaxis, a quantitative measure of migration. We show that the concentrations for the optimum chemotaxis in linear IL-8 gradients and for the maximum random motility in uniform IL-8 coincide. In contrast, we find that the steepness of IL-8 gradients has no significant effect on effective chemotaxis.  相似文献   

6.
Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells'' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine.  相似文献   

7.
The role of the cilia in the locomotion (“gliding”) of Tetrahymena thermophila in a semi-solid medium has been studied when cells were migrating in gradients of attractant. Video recordings and computer-aided motion analysis of migrating cells and their ciliary activity show that Tetrahymena thermophila migrate by swimming forward in semi-solid methyl cellulose, using their cilia. Ciliary reversals occur at certain intervals and cause a termination (“stop”) of cellular migration. Cells with reversed cilia resume forward migration when normal ciliary beating resumes. In gradients of attractants, cells migrating towards the attractant suppress ciliary reversals, which leads to longer runs between stops than in control cells. Cells migrating away from the attractant have a higher frequency of ciliary reversals than the control cells resulting in shorter runs. Stimulated cells adapt to a particular ambient concentration of attractant several times during migration in the gradient. Adaptation is followed by de-adaptation, which occurs during the “stop”. In the presence of cycloheximide, a strong inhibitor of chemoattraction, the attractant-induced suppression of ciliary reversal is abolished (cells become desensitized to the attractant). It is concluded that Tetrahymena has a short-term memory during adaptation. This is important for the efficiency of migration towards an attractant.  相似文献   

8.
Platelet-derived growth factor in chemotactic for fibroblasts   总被引:57,自引:18,他引:39       下载免费PDF全文
Chemotaxis assays in modified Boyden chambers were used to detect fibroblast chemoattractants in materials released from early-stage inflammatory cells, namely, mast cells, platelets, and neutrophils. Strong attractant activity was found in substances released from platelets. This activity was accounted for mainly by the platelet- derived growth factor (PDGF), which is released from the platelets and which was active as a chemoattractant at 0.5-1.0 mitogenic units/ml. The mitogenic activity of purified PDGF, measured by [3H]thymidine incorporation, occurs at a similar concentration range. By varying the gradient of PDGF, we demonstrated that PDGF stimulates chemotaxis rather than random motility. Preincubation of suspensions of fibroblasts in the presence of PDGF decreased the subsequent migration of cells to a gradient of PDGF as well as to a gradient of fibronectin, which is also in attractant for fibroblasts. The chemotactic response of fibroblasts to PDGF was not inhibited by hydroxyurea or azidocytidine but was inhibited by actinomycin D and cycloheximide, suggesting that synthesis of RNA and proteins but not of DNA is required for the chemotactic response to occur. Fibroblast growth factor, epidermal growth factor, nerve growth factor, and insulin were not chemotactic for human skin fibroblasts, suggesting that the chemoattractant activity of PDGF for fibroblasts is not a general property of growth factors and mitogens. These results suggest that PDGF could have two functions in wound healing: to attract fibroblasts to migrate into the clot and then to induce their proliferation.  相似文献   

9.
Gradients of secreted signaling proteins guide growing blood vessels during both normal and pathological angiogenesis. However, the mechanisms by which endothelial cells integrate and respond to graded distributions of chemotactic factors are still poorly understood. We have in this study investigated endothelial cell migration in response to hill-shaped gradients of vascular endothelial growth factor A (VEGFA) and fibroblast growth factor 2 (FGF2) using a novel microfluidic chemotaxis chamber (MCC). Cell migration was scored at the level of individual cells using time-lapse microscopy. A stable gradient of VEGFA165 ranging from 0 to 50 ng/ml over a distance of 400 microm was shown to strongly induce chemotaxis of endothelial cells of different vascular origin. VEGFA121, unable to bind proteoglycan and neuropilin coreceptors, was also shown to induce chemotaxis in this setup. Furthermore, a gradient of FGF2 was able to attract venular but not arterial endothelial cells, albeit less efficiently than VEGFA165. Notably, constant levels of VEGFA165, but not of FGF2, were shown to efficiently reduce chemokinesis. Systematic exploration of different gradient shapes led to the identification of a minimal gradient steepness required for efficient cell guidance. Finally, analysis of cell migration in different regions of the applied gradients showed that chemotaxis is reduced when cells reach the high end of the gradient. Our findings suggest that chemotactic growth factor gradients may instruct endothelial cells to shift toward a nonmigratory phenotype when approaching the growth factor source.  相似文献   

10.
Although a wealth of knowledge about chemotaxis has accumulated in the past 40 years, these studies have been hampered by the inability of researchers to generate simple linear gradients instantaneously and to maintain them at steady state. Here we describe a device microfabricated by soft lithography and consisting of a network of microfluidic channels that can generate spatially and temporally controlled gradients of chemotactic factors. When human neutrophils are positioned within a microchannel, their migration in simple and complex interleukin-8 (IL-8) gradients can be tested. The cells exhibit strong directional migration toward increasing concentrations of IL-8 in linear gradients. Neutrophil migration halts abruptly when cells encounter a sudden drop in the chemoattractant concentration to zero ("cliff" gradient). When neutrophils are challenged with a gradual increase and decrease in chemoattractant ("hill" gradient), however, the cells traverse the crest of maximum concentration and migrate further before reversing direction. The technique described in this paper provides a robust method to investigate migratory cells under a variety of conditions not accessible to study by earlier techniques.  相似文献   

11.
Neutrophils constitute the largest class of white blood cells and are the first responders in the innate immune response. They are able to sense and migrate up concentration gradients of chemoattractants in search of primary sites of infection and inflammation through a process known as chemotaxis. These chemoattractants include formylated peptides and various chemokines. While much is known about chemotaxis to individual chemoattractants, far less is known about chemotaxis towards many. Previous studies have shown that in opposing gradients of intermediate chemoattractants (interleukin-8 and leukotriene B4), neutrophils preferentially migrate toward the more distant source. In this work, we investigated neutrophil chemotaxis in opposing gradients of chemoattractants using a microfluidic platform. We found that primary neutrophils exhibit oscillatory motion in opposing gradients of intermediate chemoattractants. To understand this behavior, we constructed a mathematical model of neutrophil chemotaxis. Our results suggest that sensory adaptation alone cannot explain the observed oscillatory motion. Rather, our model suggests that neutrophils employ a winner-take-all mechanism that enables them to transiently lock onto sensed targets and continuously switch between the intermediate attractant sources as they are encountered. These findings uncover a previously unseen behavior of neutrophils in opposing gradients of chemoattractants that will further aid in our understanding of neutrophil chemotaxis and the innate immune response. In addition, we propose a winner-take-all mechanism allows the cells to avoid stagnation near local chemical maxima when migrating through a network of chemoattractant sources.  相似文献   

12.
The directed migration of cells towards chemical stimuli incorporates simultaneous changes in both the concentration of a chemotactic agent and its concentration gradient, each of which may influence cell migratory response. In this study, we utilized a microfluidic system to examine the interactions between epidermal growth factor (EGF) concentration and EGF gradient in stimulating the chemotaxis of connective tissue-derived fibroblast cells. Cells seeded within microfluidic devices were exposed to concentration gradients established by EGF concentrations that matched or exceeded those required for maximum chemotactic responses seen in transfilter migration assays. The migration of individual cells within the device was measured optically after steady-state gradients had been experimentally established. Results illustrate that motility was maximal at EGF concentration gradients between .01- and 0.1-ng/(mL.mm) for all concentrations used. In contrast, the number of motile cells continually increased with increasing gradient steepness for all concentrations examined. Microfluidics-based experiments exposed cells to minute changes in EGF concentration and gradient that were in line with the acute EGFR phosphorylation measured. Correlation of experimental data with established mathematical models illustrated that the fibroblasts studied exhibit an unreported chemosensitivity to minute changes in EGF concentration, similar to that reported for highly motile cells, such as macrophages. Our results demonstrate that shallow chemotactic gradients, while previously unexplored, are necessary to induce the rate of directed cellular migration and the number of motile cells in the connective tissue-derived cells examined.  相似文献   

13.
Chemotaxis is the migration of cells in gradients of chemoeffector molecules. Although multiple, competing gradients must often coexist in nature, conventional approaches for investigating bacterial chemotaxis are suboptimal for quantifying migration in response to gradients of multiple signals. In this work, we developed a microfluidic device for generating precise and stable gradients of signaling molecules. We used the device to investigate the effects of individual and combined chemoeffector gradients on Escherichia coli chemotaxis. Laminar flow-based diffusive mixing was used to generate gradients, and the chemotactic responses of cells expressing green fluorescent protein were determined using fluorescence microscopy. Quantification of the migration profiles indicated that E. coli was attracted to the quorum-sensing molecule autoinducer-2 (AI-2) but was repelled from the stationary-phase signal indole. Cells also migrated toward higher concentrations of isatin (indole-2,3-dione), an oxidized derivative of indole. Attraction to AI-2 overcame repulsion by indole in equal, competing gradients. Our data suggest that concentration-dependent interactions between attractant and repellent signals may be important determinants of bacterial colonization of the gut.Bacteria sense chemoeffectors using cell surface receptors (13, 29). Cells constantly monitor the concentration of specific molecules, comparing the current concentration to the concentration detected a few seconds earlier. This comparison determines the net direction of movement (6, 22). Chemotaxis allows bacteria to approach sources of attractant chemicals or to avoid sources of repellent chemicals. Natural habitats for Escherichia coli, such as the gastrointestinal (GI) tract, are typically heterogeneous and contain multiple chemoeffectors with potentially opposing effects. The integrated chemotactic response in such environments is thus likely to be an important factor in bacterial colonization.Conventional approaches for investigating bacterial chemotaxis, such as the swim plate and capillary (1) assays, are not ideal for quantifying bacterial migration. Chemotactic-ring formation in semisolid agar requires metabolizable attractants and is subject to multiple factors, and both it and the traditional capillary assay are poorly designed to investigate repellent taxis. Mao et al. (23) were the first to investigate bacterial taxis in a microfluidic flow cell. In their device, a concentration gradient is formed by the diffusive mixing of two inlet streams. However, the exposure to a fully developed gradient in this device is limited because it takes time for the gradient to develop.Variations of this technique, such as three-channel microfluidic devices (7, 8) in which a linear gradient is generated in the absence of flow or a T-channel device that monitors chemotaxis perpendicular to the direction of fluid flow (18), were developed subsequently. The T-channel system has many of the limitations of the device developed by Mao et al. (23), and nonflow systems, like the capillary assay (1), suffer from a lack of temporal stability of the gradients.Here, we report a flow-based microfluidic chemotaxis device that is coupled to a gradient generator. Bacteria are exposed to precise and temporally stable concentration gradients of chemoeffectors over the length of the microfluidic channel. This device was used to quantify E. coli chemotaxis in response to the canonical chemoeffectors l-aspartate and Ni2+. The device was also used to investigate chemotaxis toward cell-cell communication signals such as autoinducer-2 (AI-2), indole, and isatin that are likely to be present in the in vivo microenvironment in which E. coli is present (e.g., the human GI tract). The data obtained reinforce the idea that concentration-dependent interactions between different chemical signals could be important determinants of bacterial colonization in natural environments.  相似文献   

14.
Constant levels of amino acids enhanced the velocity of Bacillus subtilis 60015 cells about 2-fold and stimulated the response in motility assays. The stimulation of velocity did not occur via the receptors for chemotaxis. Cysteine and methionine, general inhibitors of chemotaxis, both completely inhibited the smooth response in a temporal gradient of attractant. After methionine starvation B. subtilis 60015 showed no measurable response in a temporal gradient of attractant, this in contrast to the effect observed with some other bacteria. Addition of methionine to starved cells restored the response toward attractant. Revertants of B. subtilis 60015 for methionine requirement could not be starved and showed a normal behavior toward temporal gradients of attractant.Abbreviation O.D.600 optical density measured at 600 nm  相似文献   

15.

Background

Effective tools for measurement of chemotaxis are desirable since cell migration towards given stimuli plays a crucial role in tumour metastasis, angiogenesis, inflammation, and wound healing. As for now, the Boyden chamber assay is the longstanding "gold-standard" for in vitro chemotaxis measurements. However, support for live cell microscopy is weak, concentration gradients are rather steep and poorly defined, and chemotaxis cannot be distinguished from migration in a single experiment.

Results

Here, we describe a novel all-in-one chamber system for long-term analysis of chemotaxis in vitro that improves upon many of the shortcomings of the Boyden chamber assay. This chemotaxis chamber was developed to provide high quality microscopy, linear concentration gradients, support for long-term assays, and observation of slowly migrating cells via video microscopy. AlexaFluor 488 dye was used to demonstrate the establishment, shape and time development of linear chemical gradients. Human fibrosarcoma cell line HT1080 and freshly isolated human umbilical vein endothelial cells (HUVEC) were used to assess chemotaxis towards 10% fetal calf serum (FCS) and FaDu cells' supernatant. Time-lapse video microscopy was conducted for 48 hours, and cell tracking and analysis was performed using ImageJ plugins. The results disclosed a linear steady-state gradient that was reached after approximately 8 hours and remained stable for at least 48 hours. Both cell types were chemotactically active and cell movement as well as cell-to-cell interaction was assessable.

Conclusions

Compared to the Boyden chamber assay, this innovative system allows for the generation of a stable gradient for a much longer time period as well as for the tracking of cell locomotion along this gradient and over long distances. Finally, random migration can be distinguished from primed and directed migration along chemotactic gradients in the same experiment, a feature, which can be qualified via cell morphology imaging.  相似文献   

16.
Leukocytes navigate through complex chemoattractant arrays, and in so doing, they must migrate from one chemoattractant source to another. By evaluating directional persistence and chemotaxis during neutrophil migration under agarose, we show that cells migrating away from a local chemoattractant, against a gradient, display true chemotaxis to distant agonists, often behaving as if the local gradient were without effect. We describe two interrelated properties of migrating cells that allow this to occur. First, migrating leukocytes can integrate competing chemoattractant signals, responding as if to the vector sum of the orienting signals present. Second, migrating cells display memory of their recent environment: cells' perception of the relative strength of orienting signals is influenced by their history, so that cells prioritize newly arising or newly encountered attractants. We propose that this cellular memory, by promoting sequential chemotaxis to one attractant after another, is in fact responsible for the integration of competitive orienting signals over time, and allows combinations of chemoattractants to guide leukocytes in a step-by-step fashion to their destinations within tissues.  相似文献   

17.
Tumor suppressor PTEN mediates sensing of chemoattractant gradients   总被引:41,自引:0,他引:41  
Iijima M  Devreotes P 《Cell》2002,109(5):599-610
Shallow gradients of chemoattractants, sensed by G protein-linked signaling pathways, elicit localized binding of PH domains specific for PI(3,4,5)P3 at sites on the membrane where rearrangements of the cytoskeleton and pseudopod extension occur. Disruption of the PI 3-phosphatase, PTEN, in Dictyostelium discoideum dramatically prolonged and broadened the PH domain relocation and actin polymerization responses, causing the cells lacking PTEN to follow a circuitous route toward the attractant. Exogenously expressed PTEN-GFP localized to the surface membrane at the rear of the cell. Membrane localization required a putative PI(4,5)P2 binding motif and was required for chemotaxis. These results suggest that specific phosphoinositides direct actin polymerization to the cell's leading edge and regulation of PTEN through a feedback loop plays a critical role in gradient sensing and directional migration.  相似文献   

18.
The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient.  相似文献   

19.
BACKGROUND: Chemotaxis is the process by which organisms migrate toward nutrients and favorable environments and away from toxins and unfavorable environments. In many species of bacteria, this occurs when extracellular signals are detected by transmembrane receptors and relayed to flagellar motors, which control the cell's swimming behavior. RESULTS: We used a molecularly detailed reaction-kinetics model of the chemotaxis pathway in Escherichia coli coupled to a graphical display based on known swimming parameters to simulate the responses of bacteria to 2D gradients of attractants. The program gives the correct phenotype of over 60 mutants in which chemotaxis-pathway components are deleted or overexpressed and accurately reproduces the responses to pulses and step increases of attractant. In order to match the known sensitivity of bacteria to low concentrations of attractant, we had to introduce a set of "infectivity" reactions based on cooperative interactions between neighboring chemotaxis receptors in the membrane. In order to match the impulse response to a brief stimulus and to achieve an effective accumulation in a gradient, we also had to increase the activities of the adaptational enzymes CheR and CheB at least an order of magnitude greater than published values. Our simulations reveal that cells develop characteristic levels of receptor methylation and swimming behavior at different positions along a gradient. They also predict a distinctive "volcano" profile in some gradients, with peaks of cell density at intermediate concentrations of attractant. CONCLUSIONS: Our results display the potential use of computer-based bacteria as experimental objects for exploring subtleties of chemotactic behavior.  相似文献   

20.
A Role for Cdc42 in Macrophage Chemotaxis   总被引:26,自引:0,他引:26       下载免费PDF全文
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

We conclude that Rho and Rac are required for the process of cell migration, whereas Cdc42 is required for cells to respond to a gradient of CSF-1 but is not essential for cell locomotion.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号