首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
The use of mutant mice expressing a normal MHC class II molecule surface level but a severely restricted self-peptide diversity (H-2Malpha(-/-)) previously revealed that T cells carrying the Ealpha(52-68)-I-A(b) complex-specific 1H3.1 TCR rely on self-peptide(s) recognition for both their peripheral persistence in irradiated hosts and their intrathymic positive selection. Here, we identify Ealpha(52-68) structurally related self-peptide(s) as a major contributor to in vivo positive selection of 1H3.1 TCR-transgenic thymocytes in I-A(b+)/I-Ealpha(-) mice. This is demonstrated by the drastic and specific reduction of the TCR high thymocyte population in 1H3.1 TCR-transgenic (Tg) mice treated with the Ealpha(52-68)-I-A(b) complex-specific Y-Ae mAb. Self-peptide(s) recognition is also driving the maturation of T cells carrying a distinct MHC class II-restricted specificity (the Ealpha(6) alphass TCR), since positive selection was also deficient in Ealpha(6) TCR Tg H-2Malpha(-/-) thymi. Such a requirement for recognition of self-determinants was mirrored in the periphery; Ealpha(6) TCR Tg naive T cells showed an impaired persistence in both H-2Malpha(-/-) and I-A(b)ss(-/-) irradiated hosts, whereas they persisted and slowly cycled in wild-type recipients. This moderate self-peptide(s)-dependent proliferation was associated with a surface phenotype intermediate between those of naive and activated/memory T cells; CD44 expression was up-regulated, but surface expression of other markers such as CD62L remained unaltered. Collectively, these observations indicate that maturation and maintenance of naive MHC class II-restricted T cells are self-oriented processes.  相似文献   

3.
4.
5.
Presentation of a protein antigen to T cells is believed to follow its intracellular breakdown by the antigen-presenting cell, with the fragments constituting the trigger of immune recognition. It should then be expected that T-cell recognition of protein antigens in vitro will be independent of protein conformation. Three T-cell lines were made by passage in vitro with native lysozyme of T cells from two mouse strains (B10.BR and DBA/1) that had been primed with the same protein. These cell lines responded well to native lysozyme and very poorly to unfolded (S-sulphopropyl) lysozyme. The response of the T-cell lines to the antigen was major histocompatibility complex (MHC)-restricted. A line from B10.BR was selected for further studies. This line responded to the three surface-simulation synthetic sites of lysozyme (representing the discontinuous antigenic, i.e. antibody binding, sites) and analogues that were extended to a uniform size by a nonsense sequence. T-cell clones prepared from this line were specific to native lysozyme and did not respond to the unfolded derivative. Furthermore, several of these clones showed specificity to a given surface-simulation synthetic site. The exquisite dependency of the recognition by the clones on the conformation of the protein antigen and their ability to recognize the surface-simulation synthetic sites indicate that the native (unprocessed) protein was the trigger of MHC-restricted T-cell recognition.  相似文献   

6.
Two types of insulin-reactive T cell hybridomas expressing TCR-alpha beta were derived from nonresponder H-2b mice immunized with pork insulin. One type had characteristics of conventional class II-restricted Th cells. These CD4+ CD8- I-Ab-restricted T cells recognized a self determinant, present within the insulin B-chain. This determinant was distinct from the immunodominant A-chain loop determinant that is recognized by the majority of T cells induced after immunization with normally immunogenic beef insulin. Our results suggest that this determinant is readily generated during immunologic processing of insulins, including nonimmunogenic pork insulin and self insulin. A second type of T cell lacking CD4 and CD8 recognized a distinct B-chain determinant of insulin in a class II-dependent, but MHC unrestricted, fashion. These cells may represent a novel subpopulation which has bypassed conventional selection during development in the thymus.  相似文献   

7.
8.
The structure-function relationship of individual coding regions of class I mouse major histocompatibility complex proteins was studied by a combination of recombinant DNA, gene transfer techniques, and serologic and functional characterization. To examine the role of alpha 1 and alpha 2 regions in antibody and CTL recognition, the third exon of H-2Dd, Kd, and Ld transplantation antigen genes was replaced by the homologous coding region of the Qa-2-coded class I gene, Q6. We have chosen to carry out the exon shuffling experiments between these two different types of class I genes, because they are structurally similar and did not evolve to carry out identical functions. Therefore, it is less likely that the hybrid proteins will fortuitously recreate alpha 1-alpha 2 controlled functionally important determinants. The replacement of H-2 alpha 2 coding region with its Q6 counterpart had different effects on the expression of the three genes. The mutant H-2Dd gene transfected into L cells was expressed at high levels and retained several of the serologic determinants found on parental H-2Dd and Q6 domains. The serologic epitopes on the mutant H-2Kd-transfected cells were detectable at very low levels, whereas the product of the mutant H-2Ld gene could not be identified at all. Analysis of cells transfected with mutant H-2Dd gene with alloreactive and minor antigen(s)-restricted cytotoxic T cells indicated that the hybrid proteins lost the ability to be recognized by T cells. Our data suggest that cytotoxic T cells recognize conformational determinants composed of amino acids from alpha 1 and alpha 2 regions. Alternatively, it could be proposed that T cell recognition sites located in a single alpha 1 or alpha 2 protein region are susceptible to distortion upon alpha 1-alpha 2 interactions. Such susceptibility to conformational changes of the amino-terminal domain of transplantation antigens could be of functional importance for H-2-restricted antigen presentation.  相似文献   

9.
Murine T lymphocytes recognize nominal Ag presented by class I or class II MHC molecules. Most CD8+ T cells recognize Ag presented in the context of class I molecules, whereas most CD4+ cells recognize Ag associated with class II molecules. However, it has been shown that a proportion of T cells recognizing class I alloantigens express CD4 surface molecules. Furthermore, CD4+ T cells are sufficient for the rejection of H-2Kbm10 and H-2Kbm11 class I disparate skin grafts. It has been suggested that the CD4 component of an anti-class I response can be ascribed to T cells recognizing class I determinants in the context of class II MHC products. To examine the specificity and effector functions of class I-specific HTL, CD4+ T cells were stimulated with APC that differed from them at a class I locus. Specifically, a MLC was prepared involving an allogeneic difference only at the Ld region. CD4+ clones were derived by limiting dilution of bulk MLC cells. Two clones have been studied in detail. The CD4+ clone 46.2 produced IL-2, IL-3, and IFN-gamma when stimulated with anti-CD3 mAb, whereas the CD4+ clone 93.1 secreted IL-4 in addition to IL-2, IL-3, and IFN-gamma. Cloned 46.2 cells recognized H-2Ld directly, whereas recognition of Ld by 93.1 apparently was restricted by class II MHC molecules. Furthermore, cytolysis by both clones 46.2 and 93.1 was inhibited by the anti-CD4 mAb GK1.5. These results demonstrate that CD4+ T cells can respond to a class I difference and that a proportion of CD4+ T cells can recognize class I MHC determinants directly as well as in the context of class II MHC molecules.  相似文献   

10.
T cells (CD8+) with specific suppressor activity against anti-dsDNA antibody (16/6 Id+) were generated in vitro. The cells were established from BALB/c-enriched T cells exposed in vitro to silica beads coated with the pathogenic anti-DNA idiotype, 16/6. The idiotype specificity of the suppressor cells was demonstrated by (a) specific induction of a decrease in proliferative response of T helper cell lines specific for the pathogenic idiotype (16/6 Id), when exposed to the idiotype, with no effect on T cell lines with other specificities, e.g., against human IgM or synthetic polypeptide. (b) Effectively suppressing in vitro antibody production of anti-16/6 antibody, employing 16/6-primed B cells and specific helper T cell line. The 16/6 Id-specific Ts cells were found to be MHC restricted. Weekly intravenous injections of 10(7) 16/6 Id-specific Ts cells given to BALB/c mice at different stages of experimental SLE disease prevented the clinical, serological, and pathological manifestations. This effect was characterized by decreased titers of autoantibodies (e.g., anti-DNA, anti-Sm antibodies) in the sera, by abolishment of the proteinuria, leukopenia, and the increased ESR, followed by decreased immunoglobulin deposition in the kidneys. Treating the mice with control IgM-specific T cells did not affect the above parameters. These studies demonstrate the ability to generate Ts cells specific for pathogenic idiotypes. The method might be employed therapeutically to modulate the course of autoimmune conditions.  相似文献   

11.
We have shown previously that specific Ag presentation is prevented by the inhibition of protein synthesis but nonspecific presentation is not. In the present paper, Ag presentation by Ag-specific B cells was examined for sensitivity to brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum. A20-HL B lymphoma expressing surface receptors specific for TNP was used as a B cell, and TNP-OVA was used as a specific Ag. The presence of BFA during pulsing of A20-HL cells with TNP-OVA inhibited the ability of the pulsed cells to stimulate 42-6A T cell clone, specific for OVA323-339 and Iad. The inhibition was not due to nonspecific toxicity of BFA, because the presence of BFA during pulsing of A20-HL cells with OVA323-339 did not affect their APC function. Ag binding to the receptor on A20-HL cells and internalization by the cells were observed in the presence of BFA. Thus, BFA might inhibit intracellular processing of specific Ag or intracellular complex formation of antigenic peptide from specific Ag with MHC class II molecules. Nonspecific Ag presentation by A20-HL cells, however, was resistant to BFA. A20-HL cells pulsed with OVA in the presence of BFA, even after fixation, could stimulate 42-6A cells to produce IL-2, although the IL-2 production was lower than that induced by A20-HL cells pulsed in the absence of BFA. These results suggest that the processing pathways for specific Ag and nonspecific Ag are different from each other, at least partly, in A20-HL cells.  相似文献   

12.
The Ag receptor (TCR) on T lymphocytes has been shown to be specific for foreign antigenic peptides bound to MHC-encoded molecules. During T cell differentiation in the thymus this same TCR mediates the recognition of MHC molecules in the absence of foreign Ag, a process termed positive selection. To analyze the structural relationship between MHC-restricted Ag recognition and positive selection, we characterized two different transgenic lines of mice bearing TCR specific for pigeon cytochrome c and the Ek class II MHC molecule. The two TCR expressed in these animals differed by only one amino acid in the V-J junction of the alpha-chain. In vitro, we find that this TCR difference alters Ag fine specificity. Analysis of transgenic animals demonstrates that this change in the putative third complementarity determining region of the TCR also alters the specificity of positive selection in the thymus. These results suggest that the diversity of a TCR region that can be shown to affect the specificity of foreign Ag recognition may be influenced by selection in the thymus. The findings presented here are discussed in relation to the possible role of self-peptides in positive selection.  相似文献   

13.
The envelope glycoprotein of HIV gp120 is a T cell Ag in experimental animals and in humans infected with HIV or deliberately immunized with gp120 in various forms. Inasmuch as T cell responses result from the interaction of Ag processed and presented by APC with the unprimed T cell repertoire, we have investigated the human T cell repertoire specific for gp120 in seronegative, normal individuals. T cell lines and clones specific for HIV gp120 were generated by repeated in vitro stimulation of peripheral blood T lymphocytes with gp120-pulsed APC, followed by IL-2 expansion. We observed that the T cell response to whole gp120 involved single restricted immunodominant epitopes in gp120 that differ between responding individuals. Focusing of the response to limited regions of gp120 when the whole Ag is used for priming suggests that one or more adjacent epitopes are immunodominant and mask responses to "immunorecessive" epitopes. We have been able to generate primary in vitro responses to recessive epitopes by stimulation in vitro with synthetic peptides of gp120. The results indicate that a much broader T repertoire can be detected when individual peptides are used for priming in vitro rather than gp120. This information has important implications for the development of vaccination protocols aimed at eliciting diverse immune responses to "immunorecessive" regions of envelope glycoprotein.  相似文献   

14.
15.
Pathogenic T cells in organ-specific autoimmune diseases use a limited number of TCR alpha- and beta-chains. In experimental autoimmune encephalomyelitis (EAE) induced in Lewis rats by immunization with myelin basic protein, encephalitogenic T cells mainly use Vbeta8.2 TCR and clonal expansion of the Vbeta8.2 spectratype containing the EAE-specific complementarity-determining region 3 (CDR3) sequence, DSSYEQYFGPG, is found in the spinal cord throughout the course of clinical EAE. In the present study we performed temporal and spatial analyses of Vbeta8.2 spectratype expansion by CDR3 spectratyping and subsequent DNA hybridization with a probe specific for the encephalitogenic CDR3 sequence to elucidate the kinetics of encephalitogenic T cells during the induction phase after neuroantigen sensitization. It was demonstrated that Vbeta8.2 spectratype expansion and/or the positive signal in Southern blot were first detected in the regional lymph nodes as early as day 3 postimmunization and was disseminated over the lymphoid organs by day 6. Because perfusion of immunized rats with PBS erased the positive signals on day 3 postimmunization, the majority of Vbeta8.2-positive encephalitogenic T cells at the very early stage would reside within the lymphatic or blood vessels. Furthermore, removal of the draining lymph node 1, 3, and 6 days after immunization in the foot pad did not ameliorate clinical EAE. These findings strongly suggest that encephalitogenic T cells disseminate throughout the whole body very rapidly after sensitization. Analysis of pathogenic T cells at the clonal level provides useful information for designing effective immunotherapy.  相似文献   

16.
In this study we have investigated the mechanism by which spatial growth is regulated by monitoring 3T3 cells, introduced into the developing mouse limb using exo utero surgery. The 3T3 cells were labeled with a human cell surface glycoprotein, CD8, and injected into stage 7-9 mouse limbs. At 24 and 48 hr after injection embryos were labeled with [3H]thymidine and processed for immunohistochemistry and autoradiography. The labeling index of CD8 positive cells was compared to that of neighboring limb bud cells and also to the position of the injection site within the limb. We find that the labeling index of 3T3 cells is in accord with that of the limb cells that immediately surround them; 3T3 cells display a high labeling index in limb regions of high growth and a low labeling index in limb regions of low growth. In addition, we find that both limb bud cells and injected 3T3 cells display a general proximal (low) to distal (high) gradient of growth at the stages analyzed. We conclude from these results that position-specific regulation of growth occurs in a non-cell autonomous manner and is likely to be mediated by mitogenic signals that are localized within the limb environment. In addition, our results demonstrate the usefulness of utilizing established cell lines as in vivo probes to monitor developmental mechanisms.  相似文献   

17.
Nine independent pigeon cytochrome c-specific T cell clones were analyzed by using a panel of antigenic peptide analogs presented in association with three allelic IE-encoded MHC glycoproteins. Eight of the T cell clones expressed a TCR composed of a unique alpha- and beta-chain amino acid sequence, and concordantly, each of these T cell clones exhibited a unique Ag specificity. This was true for several clones which differed only in TCR V-J junctional regions. Interestingly, for a given clone, the response to some of the peptide analogs depended to a large extent on the allelic form of the presenting MHC molecule. A simple interpretation of these data would suggest that certain positions of the peptide Ag are most important for Ag-MHC molecule interactions, and that these specific interactions can influence the antigenic epitope recognized by the TCR. We suggest that an antigenic peptide binds to an MHC glycoprotein in a distinct way, but may retain a measure of flexibility.  相似文献   

18.
T cell expression of class II MHC/peptide complexes may be important for maintenance of peripheral self-tolerance, but mechanisms underlying the genesis of class II MHC glycoproteins on T cells are not well resolved. T cell APC (T-APC) used herein were transformed IL-2-dependent clones that constitutively synthesized class II MHC glycoproteins. When pulsed with myelin basic protein (MBP) and injected into Lewis rats, these T-APC reduced the severity of experimental autoimmune encephalomyelitis, whereas unpulsed T-APC were without activity. Normal MBP-reactive clones cultured without APC did not express class II MHC even when activated with mitogens and exposed to IFN-gamma. However, during a 4-h culture with T-APC or macrophage APC, recognition of MBP or mitogenic activation of responder T cells elicited high levels of I-A and I-E expression on responders. Acquisition of class II MHC glycoproteins by responders was resistant to the protein synthesis inhibitor cycloheximide, coincided with transfer of a PKH26 lipophilic dye from APC to responders, and resulted in the expression of syngeneic and allogeneic MHC glycoproteins on responders. Unlike rested I-A- T cell clones, rat thymic and splenic T cells expressed readily detectable levels of class II MHC glycoproteins. When preactivated with mitogens, naive T cells acquired APC-derived MHC class II molecules and other membrane-associated proteins when cultured with xenogeneic APC in the absence of Ag. In conclusion, this study provides evidence that APC donate membrane-bound peptide/MHC complexes to Ag-specific T cell responders by a mechanism associated with the induction of tolerance.  相似文献   

19.
A stretch of 16 amino acid residues within the nominal phosphoprotein of rabies virus was shown to carry an immunodominant epitope for class I- and class II-restricted T cells. The nominal phosphoprotein of rabies virus is thought to be heterogeneously phosphorylated at multiple serine and threonine residues. The synthetic peptide that expressed the T-cell epitope contained a single serine residue corresponding to position 196 of the protein. Phosphorylation of this serine within the synthetic peptide caused a significant decrease of the antigenic potency of the peptide. A similar effect was seen if the serine was replaced by an alanine or if the peptide was glycosylated at its acidic residues. These data suggest that T-cell-mediated recognition of antigen presented by major histocompatibility complex class I- or II-positive cells is impaired not only by point mutations but also by posttranslational side chain modifications of residues within viral epitopes.  相似文献   

20.
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that causes life-threatening disease in patients who are immunosuppressed for bone marrow or tissue transplantation or who have AIDS (ref. 1). HCMV establishes lifelong latent infections and, after periodic reactivation from latency, uses a panel of immune evasion proteins to survive and replicate in the face of robust, fully primed host immunity. Monocyte/macrophages are important host cells for HCMV, serving as a latent reservoir and as a means of dissemination throughout the body. Macrophages and other HCMV-permissive cells, such as endothelial and glial cells, can express MHC class II proteins and present antigens to CD4+ T lymphocytes. Here, we show that the HCMV protein US2 causes degradation of two essential proteins in the MHC class II antigen presentation pathway: HLA-DR-alpha and DM-alpha. This was unexpected, as US2 has been shown to cause degradation of MHC class I (refs. 5,6), which has only limited homology with class II proteins. Expression of US2 in cells reduced or abolished their ability to present antigen to CD4+ T lymphocytes. Thus, US2 may allow HCMV-infected macrophages to remain relatively 'invisible' to CD4+ T cells, a property that would be important after virus reactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号