首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide, with elevated intraocular pressure as an important risk factor. Increased resistance to outflow of aqueous humor through the trabecular meshwork causes elevated intraocular pressure, but the specific mechanisms are unknown. In this study, we used genome-wide SNP arrays to map the disease gene in a colony of Beagle dogs with inherited POAG to within a single 4 Mb locus on canine chromosome 20. The Beagle POAG locus is syntenic to a previously mapped human quantitative trait locus for intraocular pressure on human chromosome 19. Sequence capture and next-generation sequencing of the entire canine POAG locus revealed a total of 2,692 SNPs segregating with disease. Of the disease-segregating SNPs, 54 were within exons, 8 of which result in amino acid substitutions. The strongest candidate variant causes a glycine to arginine substitution in a highly conserved region of the metalloproteinase ADAMTS10. Western blotting revealed ADAMTS10 protein is preferentially expressed in the trabecular meshwork, supporting an effect of the variant specific to aqueous humor outflow. The Gly661Arg variant in ADAMTS10 found in the POAG Beagles suggests that altered processing of extracellular matrix and/or defects in microfibril structure or function may be involved in raising intraocular pressure, offering specific biochemical targets for future research and treatment strategies.  相似文献   

2.
The increased intraocular pressure (IOP) has been considered to be an increased resistance of the aqueous humor outflow through the inner wall of Schlemm's canal (SC) and/or the juxtacanalicular tissue (JCT). The Rho GTPase-regulated actomyosin organization appears to be an important mechanistic determinant of aqueous humor outflow facility. Therefore, in this study, we have evaluated the effects of modulating Rho GTPase activity on actomyosin cytoskeletal organization, monolayer permeability/barrier function of human SC cells, and aqueous humor outflow facility in enucleated porcine eyes ex vivo. Human SC cells, isolated from cadaver eyes, were treated with either Rho GTPase activators such as thrombin and lysophosphatidic acid (LPA), or a specific inhibitor (C3-exoenzyme) of Rho GTPases. Treatment of SC cells with thrombin and LPA led to increased formation of stress fibers, focal adhesion, and increased myosin light chain phosphorylation, whereas treatment with C3-exoenzyme showed the opposite effects like H-7 and ECA, known for increasing the outflow facility in porcine eyes. The findings presented here suggest that LPA and thrombin, presumably through activation of Rho GTPase-mediated actomyosin cytoskeletal reorganization in SC cells, cause a decrease in monolayer permeability of SC cells as well as a decrease in outflow facility of porcine eyes in ex vivo. Our results suggest that decrease in aqueous humor outflow may be correlated better with the changes in cytoskeletal organizations of SC, which could be the prime locus of the outflow resistance.  相似文献   

3.
Glaucoma is a group of progressive optic neuropathies in which the axons in the optic nerve are injured, retinal ganglion cell numbers are reduced and vision is gradually and permanently lost. The only approved and effective way to treat glaucoma is to reduce the intraocular pressure (IOP). This is usually accomplished by surgical and/or pharmacological means. Drugs designed to reduce IOP target one or more of the parameters that maintain it. These parameters (collectively known as aqueous humor dynamics) are the production rate of aqueous humor, the pressure in the episcleral veins and the drainage of aqueous humor through the trabecular or uveoscleral outflow pathways. Intraocular pressure lowering drugs can be classified as inflow or outflow depending on whether they reduce aqueous humor inflow into the anterior chamber or improve aqueous humor outflow from the anterior chamber. Inflow drugs, like β adrenergic antagonists and carbonic anhydrase inhibitors, reduce the rate of aqueous humor production. Outflow drugs, like prostaglandin analogs, cholinergic agonists and sympathomimetics, increase the rate of drainage through the uveoscleral outflow pathway and/or increase the facility of outflow through the trabecular meshwork. Some drugs have mixed inflow/outflow effects. This review summarizes the pharmacological treatments for glaucoma in use today and some new drugs showing potential for use in the future.  相似文献   

4.
Intraocular pressure is directly dependent on aqueous humor flow into, and resistance to flow out of, the eye. Adenosine has complex effects on intraocular pressure. Stimulation of A1 and A2A adenosine receptors changes intraocular pressure oppositely, likely through opposing actions on the outflow of aqueous humor. While the cellular sites regulating outflow resistance are unknown, the cells lining the inner wall of Schlemm's canal (SC) are a likely regulatory site. We applied selective adenosine receptor agonists to SC cells in vitro to compare the responses to A1 and A2A stimulation. Parallel studies were conducted with human inner-wall SC cells isolated by a novel enzyme-assisted technique and with cannula-derived mixed inner- and outer-wall SC cells. A1 agonists increased whole cell currents of both inner-wall and cannula-derived SC cells. An A2A agonist reduced currents most consistently in specifically inner-wall SC cells. Those currents were also increased by A2B, but not consistently affected by A3, stimulation. A1, A2A, and A3 agonists all increased SC-cell intracellular Ca2+. The electrophysiological results are consistent with the possibility that inner-wall SC cells may mediate the previously reported modulatory effects of adenosine on outflow resistance. The results are also consistent with the presence of functional A2B, as well as A1, A2A, and A3 adenosine receptors in SC cells. intraocular pressure; aqueous humor outflow; ion transport; adenosine agonists  相似文献   

5.
马嵘  徐光尧 《生理学报》1991,43(5):489-493
The effect of electrical stimulation of hypothalamic arcuate nucleus (ARC) on intragastric pressure (IGP) was observed on 80 Wistar rats anaesthetized with urethan. The main results are as follows: (1) Electrical stimulation of ARC could cause an obvious decrease of IGP. (2) The reduction of IGP induced by electrical stimulation of ARC was not affected by intracerebroventricular injection of naloxone. (3) After lesioning of locus coeruleus or dorsal raphe, the effect of ARC stimulation was depressed. The results suggest that the locus coeruleus and dorsal raphe nucleus may be involved in the reduction of IGP induced by ARC stimulation, but without the involvement of beta-endorphinergic neurons.  相似文献   

6.
本文研究了蓝斑核对迷走-迷走抑胃反射的影响。实验结果表明,单独刺激迷走神经中枢端抑制胃电和胃运动,胃电慢波的振幅和胃内压分别下降到对照值的60.9%和45.7%,与对照值相比有明显的统计学意义(P<0.05)。刺激迷走神经中枢端的同时,以弱刺激刺激蓝斑核时,胃电慢渡的振幅和胃内压分别下降到对照值的42.1%和34.1%,与单独刺激迷走神经的效果相比较有非常显著的差异(P<0.01)。本文结果提示:蓝斑核的兴奋加强迷走-迷走抑胃反射。  相似文献   

7.
实验用家兔36只,采用低频(5-8Hz)和高频(50-100Hz)电流刺激颈部迷走神经中枢端(VAS),建立迷走-减压和迷走-升压反射,两种频率电刺激均导致肾交感神经传出活动(RSA)减少。以迷走-血压反射和迷走-交感反射为指标,连续电流刺激蓝斑(LC)或LC微量注射谷氨酸钠均抑制迷走-血压反射和迷走-交感反射。而连续电流刺激LC或LC微量注射谷氨酸钠本身均引起平均动脉血压升高和RSA增加。本文对新近提出的对LC整体功能认识的理论,结合本文的结果进行了讨论  相似文献   

8.
Our hypothesis is that the proteins in aqueous humor may be involved in the regulation of outflow facility through the trabecular meshwork and uveoscleral meshwork. In this study, we analyzed the profile of heparin-binding proteins present in porcine aqueous humor to identify and characterize secretory proteins with a binding affinity for heparin. A single step involving heparin-sepharose affinity chromatography of porcine aqueous humor yielded a approximately 60 kDa protein as the major heparin-binding species. This protein was specifically eluted from the column by heparin. The N-terminal sequence and immunological cross reactivity of this protein confirmed its identity as antithrombin III. Aqueous humor from different species, as well as cells from human trabecular meshwork, Schlemm's canal, and lens epithelium, contained detectable amounts of antithrombin III. Based on its known anticoagulative function in endothelial cells and effects on the production of prostacyclin, it is reasonable to speculate that antithrombin III present in aqueous humor might influence the physiology of the trabecular and uveoscleral meshwork and thereby regulate intraocular pressure.  相似文献   

9.
Experiments on cats anesthetized with chloralose showed that repetitive stimulation of the locus coeruleus is accompanied by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons. The effect appeared 600 msec after the beginning of stimulation and reached its maximum after 1500–2000 msec. Repetitive stimulation of the locus coeruleus did not change the membrane potential and did not affect EPSPs or IPSPs evoked by stimulation of low-threshold muscle afferents; EPSPs due to activation of high-threshold cutaneous and muscle afferents likewise remained unchanged. Repetitive stimulation of more central regions of the brain stem was accompanied not only by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons, but also by a decrease in amplitude of EPSPs arising in response to stimulation of these same afferents in flexor motoneurons. These effects were not connected with activation of monoaminergic structures, for unlike effects arising during stimulation of the locus coeruleus, they were also found in previously reserpinized animals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 51–59, January–February, 1982.  相似文献   

10.
11.
Elevated intraocular pressure is the main risk factor in primary open-angle glaucoma, involving an increased resistance to aqueous humor outflow in the juxtacanalicular region of the conventional outflow pathway which includes the trabecular meshwork (TM) and the inner wall of Schlemm's canal (SC). Previously, sphingosine-1-phosphate (S1P) was shown to decrease outflow facility in porcine and human eyes, thus increasing outflow resistance and intraocular pressure. Owing to S1P's known effect of increasing barrier function in endothelial cells and the robust expression of the S1P? receptor on the inner wall of SC, we hypothesized that S1P? receptor activation promotes junction formation and decreases outflow facility. The effects of subtype-specific S1P receptor compounds were tested in human and porcine whole-eye perfusions and human primary cultures of SC and TM cells to determine the receptor responsible for S1P effects on outflow resistance. The S1P?-specific agonist SEW2871 failed to both mimic S1P effects in paired human eye perfusions, as well as increase myosin light chain (MLC) phosphorylation in cell culture, a prominent outcome in S1P-treated SC and TM cells. In contrast, the S1P? antagonist JTE-013, but not the S1P? or S1P?,? antagonists, blocked the S1P-promoted increase in MLC phosphorylation. Moreover, JTE-013 prevented S1P-induced decrease in outflow facility in perfused human eyes (P < 0.05, n = 6 pairs). Similarly, porcine eyes perfused with JTE-013 + S1P did not differ from eyes with JTE-013 alone (P = 0.53, n = 3). These results demonstrate that S1P? , and not S1P? or S1P?, receptor activation increases conventional outflow resistance and is a potential target to regulate intraocular pressure.  相似文献   

12.
Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (C(t)). Modulation of "inflow" and "outflow" pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in C(t) with no effect on inflow. In mice deficient in sAC IOP is elevated, and C(t) is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or C(t) in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate C(t) and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure.  相似文献   

13.
Both amitriptyline and nortriptyline applied conjunctivally produced pupil size enlargement, intraocular pressure decrease and a fall in aqueous humor formation. Phenoxybenzamine and superior cervical sympathetic ganglionectomy prevented the amitriptyline or nortriptyline inducing intraocular pressure changes. Either systemic administered or conjunctivally applied amitriptyline or nortriptyline, potentiated the effects on the pupil and intraocular pressure of exogenously norepinephrine.  相似文献   

14.
Electrical stimulation of the locus coeruleus in anesthetized rats evoked a biphasic pressor response consisting of an initial sharp rise in blood pressure at the onset of stimulation, followed by a second elevation after cessation of the stimulus. This response, which was accompanied by an increase in plasma noradrenaline and adrenaline levels, was stable and could be easily reproduced over time. Sympathectomy by administration of guanethidine selectively abolished the primary pressor response. beta-Adrenergic blockade by intravenous administration of sotalol enhanced the secondary pressor response without affecting the primary component. Adrenal demedullation performed 24-48 h before the experiments selectively prevented the secondary pressor component. In contrast, acute adrenalectomy carried out during the experiment to impair the adrenomedullary secretions eliminated the secondary pressor response to stimulation of the locus coeruleus only in sympathectomized or in sotalol-treated rats but not in intact rats in which the response persisted. The latter, however, could be abolished by the administration of either guanethidine or sotalol, and it disappeared following repeated stimulation of the locus coeruleus. The study demonstrates that similar poststimulatory pressor responses with different underlying mechanisms can be elicited on excitation of the locus coeruleus before and after acute adrenalectomy in the rat. The results also suggest that intraneuronal adrenaline may be involved in the response evoked in acutely adrenalectomized animals.  相似文献   

15.
Impaired drainage of aqueous humor through the trabecular meshwork (TM) culminating in increased intraocular pressure is a major risk factor for glaucoma, a leading cause of blindness worldwide. Regulation of aqueous humor drainage through the TM, however, is poorly understood. The role of RhoA GTPase-mediated actomyosin organization, cell adhesive interactions, and gene expression in regulation of aqueous humor outflow was investigated using adenoviral vector-driven expression of constitutively active mutant of RhoA (RhoAV14). Organ-cultured anterior segments from porcine eyes expressing RhoAV14 exhibited significant reduction of aqueous humor outflow. Cultured TM cells expressing RhoAV14 exhibited a pronounced contractile morphology, increased actin stress fibers, and focal adhesions and increased levels of phosphorylated myosin light chain (MLC), collagen IV, fibronectin, and laminin. cDNA microarray analysis of RNA extracted from RhoAV14-expressing human TM cells revealed a significant increase in the expression of genes encoding extracellular matrix (ECM) proteins, cytokines, integrins, cytoskeletal proteins, and signaling proteins. Conversely, various ECM proteins stimulated robust increases in phosphorylation of MLC, paxillin, and focal adhesion kinase and activated Rho GTPase and actin stress fiber formation in TM cells, indicating a potential regulatory feedback interaction between ECM-induced mechanical strain and Rho GTPase-induced isometric tension in TM cells. Collectively, these data demonstrate that sustained activation of Rho GTPase signaling in the aqueous humor outflow pathway increases resistance to aqueous humor outflow through the trabecular pathway by influencing the actomyosin assembly, cell adhesive interactions, and the expression of ECM proteins and cytokines in TM cells.  相似文献   

16.
蓝斑对迷走—心血管反射的影响   总被引:1,自引:0,他引:1  
实验用家兔36只,采用低频和高频电流刺激颈部迷走神经中枢端,建立迷走-减压和迷走-升压反射,两种频率电刺激均导致肾交感神经传出活动减少。以迷走-血压反射和迷走-交感反射为指标,连续电流刺激蓝斑或LC微量注射谷氨酸钠均抑制迷走-血压反射和迷走-交感反射。  相似文献   

17.
To test the hypothesis that all locus coeruleus projections are simultaneously activated when the locus coeruleus cells fire, the norepinephrine metabolite 3-methoxy-4-hydroxyphenethyleneglycol was assayed in four regions of the central nervous system innervated by the locus coeruleus after three treatments designed to increase locus coeruleus firing in rats. Electrical stimulation of the locus coeruleus, intraperitoneal piperoxan treatment, and electric footschock all significantly increased MHPG levels in rat cerebral cortex, cerebellum, hippocampus, and spinal cord. The magnitude of MHPG increase was greater after locus coeruleus stimulation than after footshock or piperoxan. No significant differences between increases in the above brain regions were found within each treatment group.  相似文献   

18.
The levels of cyclic AMP in the rat brain were studied in vivo following destruction or stimulation of the noradrenergic pathway originating in the locus coeruleus. After chronic lesion of the locus coeruleus no alterations in cyclic AMP content were found. Electrical stimulation of the locus coeruleus produced an elevation of cyclic AMP in the cerebral cortex of chloral hydrate anaesthetized rats of 30%. Maximal increases were found after 15–60 s stimulation at a frequency of 30–100 Hz. This maximal response was slightly inhibited by phenoxybenzamine, an α-adrenergic blocking agent, and by the β-blocker propranolol. When the α and β blockers were administered together a highly significant decrease in cyclic AMP response was observed. Pretreatment of the rats with reserpinc +α methyl-p-tyrosine prevented the cyclic AMP response. In addition to the effect in the cerebral cortex, cyclic AMP-levels were also enhanced in the hippocampus, in the striatum and in the hypothalamus. These results suggest that the locus coeruleus regulates a small fraction of cerebral cyclic AMP levels, by both α- and β-adrenergic receptors.  相似文献   

19.
Locus coeruleus from fetal donors was homologously grafted to the anterior eye chambers of adult rats whose eyes were sympathetically denervated. After intraocular maturation, outgrowth of noradrenaline-containing fibres from the locus coeruleus neurons on the host iris was studied by Falck--Hillarp fluorescence histochemistry.In control animals locus coeruleus grafts produce a halo of noradrenaline-containing nerve fibres around the graft, covering approximately one third of the surface of the host iris. Sensory denervation of host eyes carrying maturated locus coeruleus grafts was produced by intracranial lesions of the trigeminal nerve. Such lesions induced a rapid growth response in the grafted locus coeruleus neurons, leading within three weeks to complete innervation of the host iris. It was concluded that removal of non-sympathetic, non-parasympathetic nerve fibres on the host iris elicits a strong fibre-growth response in the grafted locus coeruleus.  相似文献   

20.
Effects of repetitive stimulation of the locus coeruleus on spinal responses to activation of cortico-, reticulo-, and vestibulospinal tracts were studied in decerebellate cats anesthetized with chloralose. Descending influences of these structures were assessed from changes in amplitude of extensor and flexor monosynaptic discharges or from the magnitude of postsynaptic potentials recorded from the corresponding motoneurons. Stimulation of the motor cortex or modullary reticular formation as a rule evoked two-component inhibitory responses in extensor motoneurons and excitatory-inhibitory responses in flexor motoneurons. Stimulation of locus coeruleus effectively depressed the amplitude of the late component and, to a lesser degree, that of the early component of inhibition arising after stimulation of the cerebral cortex or reticular formation. During stimulation of the locus coeruleus no marked changes were found in inhibitory responses evoked by vestibulospinal influences in flexor motoneurons, and also in excitatory responses arising after stimulation of the above-mentioned descending pathways in both groups of motoneurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号