首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the vaccinia virus DNA polymerase is inherently distributive, a highly processive form of the enzyme exists within the cytoplasm of infected cells (W. F. McDonald, N. Klemperer, and P. Traktman, Virology 234:168-175, 1997). In the accompanying report we outline the purification of the 49-kDa A20 protein as a stoichiometric component of the processive polymerase complex (N. Klemperer, W. McDonald, K. Boyle, B. Unger, and P. Traktman, J. Virol. 75:12298-12307, 2001). To complement this biochemical analysis, we undertook a genetic approach to the analysis of the structure and function of the A20 protein. Here we report the application of clustered charge-to-alanine mutagenesis of the A20 gene. Eight mutant viruses containing altered A20 alleles were isolated using this approach; two of these, tsA20-6 and tsA20-ER5, have tight temperature-sensitive phenotypes. At the nonpermissive temperature, neither virus forms macroscopic plaques and the yield of infectious virus is <1% of that obtained at the permissive temperature. Both viruses show a profound defect in the accumulation of viral DNA at the nonpermissive temperature, although both the A20 protein and DNA polymerase accumulate to wild-type levels. Cytoplasmic extracts prepared from cells infected with the tsA20 viruses show a defect in processive polymerase activity; they are unable to direct the formation of RFII product using a singly primed M13 template. In sum, these data indicate that the A20 protein plays an essential role in the viral life cycle and that viruses with A20 lesions exhibit a DNA(-) phenotype that is correlated with a loss in processive polymerase activity as assayed in vitro. The vaccinia virus A20 protein can, therefore, be considered a new member of the family of proteins (E9, B1, D4, and D5) with essential roles in vaccinia virus DNA replication.  相似文献   

2.
The vaccinia virus E9 protein, the catalytic subunit of the DNA polymerase holoenzyme, is inherently distributive under physiological conditions, although infected cells contain a highly processive form of the enzyme. The viral A20 protein was previously characterized as a stoichiometric component of the processivity factor, and an interaction between A20 and E9 was documented in vivo. A20 has been shown to interact with D4, the virally encoded uracil DNA glycosylase (UDG), by yeast-two hybrid and in vitro analysis. Here we confirm that UDG and A20 interact in vivo and show that temperature-sensitive viruses with lesions in the D4R gene show a profound defect in DNA synthesis at the non-permissive temperature. Moreover, cytoplasmic extracts prepared from these infections lack processive polymerase activity in vitro, implicating D4 in the assembly or activity of the processive polymerase. Upon overexpression of 3xFLAG-UDG, A20, and E9 in various combinations, we purified dimeric and trimeric UDG-A20 and UDG-A20-polymerase complexes, respectively. These complexes are stable in 750 mm NaCl and can be further purified by Mono Q chromatography. Notably, the trimeric complex displays robust processive polymerase activity, and the dimeric complex can confer processivity on purified E9. Consistent with previous reports that the catalytic activity of UDG is dispensable for virus replication in tissue culture, we find that the role of UDG role in the polymerase complex is not diminished by mutations targeting residues involved in uracil recognition or excision. Our cumulative data support the conclusion that A20 and UDG form a heterodimeric processivity factor that associates with E9 to comprise the processive polymerase holoenzyme.  相似文献   

3.
Genome replication is inefficient without processivity factors, which tether DNA polymerases to their templates. The vaccinia virus DNA polymerase E9 requires two viral proteins, A20 and D4, for processive DNA synthesis, yet the mechanism of how this tricomplex functions is unknown. This study confirms that these three proteins are necessary and sufficient for processivity, and it focuses on the role of D4, which also functions as a uracil DNA glycosylase (UDG) repair enzyme. A series of D4 mutants was generated to discover which sites are important for processivity. Three point mutants (K126V, K160V, and R187V) which did not function in processive DNA synthesis, though they retained UDG catalytic activity, were identified. The mutants were able to compete with wild-type D4 in processivity assays and retained binding to both A20 and DNA. The crystal structure of R187V was resolved and revealed that the local charge distribution around the substituted residue is altered. However, the mutant protein was shown to have no major structural distortions. This suggests that the positive charges of residues 126, 160, and 187 are required for D4 to function in processive DNA synthesis. Consistent with this is the ability of the conserved mutant K126R to function in processivity. These mutants may help unlock the mechanism by which D4 contributes to processive DNA synthesis.Poxviruses are large, double-stranded DNA viruses that replicate exclusively in the cell cytoplasm in granular structures known as virosomes (31). Separated from the host nucleus, they rely on their own encoded gene products for DNA synthesis and replication (43). To efficiently synthesize its ∼200,000-base genome, the poxvirus DNA polymerase must be tethered to the DNA template by its processivity factor. DNA processivity factors are proteins that stabilize polymerases onto their templates for effective genome replication (1, 22). Processivity factors are synthesized by nearly all replicating systems, ranging from bacteriophages to eukaryotes, yet each one is specific to its cognate polymerase. In the presence of these factors, polymerases are able to incorporate a great number of nucleotides per template binding event; in their absence, polymerases detach from their templates too frequently to successfully replicate the genome (14, 20). E9, the DNA polymerase of the prototypical poxvirus, vaccinia virus, synthesizes approximately 10 nucleotides before dissociating from the viral DNA template (28). However, it can incorporate thousands of nucleotides when it is associated with its processivity factor (29). This extended strand synthesis, known as processivity, is necessary for vaccinia virus to effectively replicate its 192-kb genome.The protein A20 was first reported to be a component of the vaccinia virus processive DNA polymerase (19, 37), yet we were unable to establish processivity in vitro using only A20 and E9. To identify which other proteins were required for processivity, we assessed six in vitro-synthesized proteins known to be involved in vaccinia virus replication (E9, A20, B1, D4, D5, and H5). We found that the protein D4, a uracil DNA glycosylase (UDG), was required in addition to A20 and E9 and that these three proteins are both necessary and sufficient for vaccinia virus processivity. Indeed, A20 and D4 have been shown to interact with each other (15, 26), and our finding supports a report identifying A20 and D4 as forming a heterodimeric processivity factor for E9 (41). Here, we use mutational analysis to examine the role of D4 in processive DNA synthesis. We report the finding of three D4 mutants which are unable to function in processivity yet retain their UDG enzymatic activity and their ability to bind both A20 and DNA.  相似文献   

4.
The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ~1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N' terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site.  相似文献   

5.
6.
We have shown by activity gel that overexpression in E. coli of a yeast chromosome 3 open reading frame (ORF) designated YCR14C and bearing homology to mammalian DNA polymerases beta results in a new DNA polymerase in the host cells. The molecular mass of this enzyme corresponded to the YCR14C-predicted 67 kDa protein, and NH2-terminal amino acid sequencing confirmed that the expressed protein was encoded by the yeast ORF. This new yeast DNA polymerase was purified to homogeneity from E.coli. In a fashion similar to that of mammalian beta-polymerases, the purified yeast enzyme exhibited distributive DNA synthesis on DNA substrate with a single-stranded template and processive gap-filling synthesis on a short-gapped DNA substrate. Activity of this yeast beta-polymerase-like enzyme was sensitive to the beta-polymerase inhibitor ddNTP and resistant to both 1 mM NEM and neutralizing antibody to E. coli DNA polymerase I. These results, therefore, indicate that YCR14C encodes a DNA beta-polymerase-like enzyme in yeast, and we name it DNA polymerase IV. Yeast strains harboring a deletion mutation of the pol IV gene are viable, they exhibit no increase in sensitivity to ultraviolet light, ionizing radiation or alkylating agents, and sporulation and spore viability are not affected in the mutant.  相似文献   

7.
Members of the novel vaccinia related kinase (VRK) protein family are characterized by notable sequence homology to the vaccinia virus-encoded B1 kinase (vvB1). vvB1 plays an essential role in viral DNA replication, and Boyle and Traktman have demonstrated that VRK1 enzymes complement the replication defect of a temperature-sensitive viral mutant defective in vvB1 (Boyle, K., and Traktman, P. (2004) J. Virol. 78, 1992-2005). This mammalian kinase family comprises three members, VRK1, VRK2, and VRK3. We have annotated the gene structure for the members of this family and have characterized the enzyme activity and subcellular localization for the human and mouse proteins. VRK1 enzymes show robust autophosphorylation activity and will phosphorylate casein; VRK2 enzymes show modest autophosphorylation activity and will also phosphorylate casein. The VRK3 proteins have key amino acid substitutions that disrupt invariant motifs required for catalytic activity, rendering them enzymatically inert. The VRK1 and VRK2 proteins contain COOH-terminal extracatalytic sequences that mediate intracellular localization. VRK1 proteins possess a basic nuclear localization signal and are indeed nuclear; the extreme C termini of the VRK2 proteins are highly hydrophobic, and the proteins are membrane-associated and colocalize with markers of the endoplasmic reticulum. The NH(2)-terminal region of the VRK3s contains a bipartite nuclear localization signal, which directs these proteins to the nucleus. Our findings provide the basis for further studies of the structure and function of this newly discovered family of protein kinases.  相似文献   

8.
The Epstein-Barr virus (EBV) DNA polymerase catalytic subunit (BALF5 protein) and its accessory subunit (BMRF1 protein) have been independently overexpressed and purified (T. Tsurumi, A. Kobayashi, K. Tamai, T. Daikoku, R. Kurachi, and Y. Nishiyama, J. Virol. 67:4651-4658, 1993; T. Tsurumi, J. Virol. 67:1681-1687, 1993). In an investigation of the molecular basis of protein-protein interactions between the subunits of the EBV DNA polymerase holoenzyme, we compared the DNA polymerase activity catalyzed by the BALF5 protein in the presence or absence of the BMRF1 polymerase accessory subunit in vitro. The DNA polymerase activity of the BALF5 polymerase catalytic subunit alone was sensitive to high ionic strength on an activated DNA template (80% inhibition at 100 mM ammonium sulfate). Addition of the polymerase accessory subunit to the reaction greatly enhanced DNA polymerase activity in the presence of high concentrations of ammonium sulfate (10-fold stimulation at 100 mM ammonium sulfate). Optimal stimulation was obtained when the molar ratio of BMRF1 protein to BALF5 protein was 2 or more. The DNA polymerase activity of the BALF5 protein along with the BMRF1 protein was neutralized by a monoclonal antibody to the BMRF1 protein, whereas that of the BALF5 protein alone was not, suggesting a specific interaction between the BALF5 protein and the BMRF1 protein in the reaction. The processivity of nucleotide polymerization of the BALF5 polymerase catalytic subunit on singly primed M13 single-stranded DNA circles was low (approximately 50 nucleotides). Addition of the BMRF1 polymerase accessory subunit resulted in a strikingly high processive mode of deoxynucleotide polymerization (> 7,200 nucleotides). These findings strongly suggest that the BMRF1 polymerase accessory subunit stabilizes interaction between the EBV DNA polymerase and primer template and functions as a sliding clamp at the growing 3'-OH end of the primer terminus to increase the processivity of polymerization.  相似文献   

9.
Successful viruses engage in a dynamic interplay with their hosts, where both utilize diverse strategies to impose their supremacy. In this issue of Cell Host & Microbe, Wiebe and Traktman describe a novel interaction between vaccinia virus and mammalian cells. A host protein called BAF can bind ectopic cytoplasmic DNA and block viral DNA replication, whereas vaccinia in turn counteracts this inhibition with a virus-encoded serine threonine kinase that inactivates BAF.  相似文献   

10.
DNA polymerase III (delta) of Saccharomyces cerevisiae is purified as a complex of at least two polypeptides with molecular masses of 125 and 55 kDa as judged by SDS-PAGE. In this paper we determine partial amino acid sequences of the 125 and 55 kDa polypeptides and find that they match parts of the amino acid sequences predicted from the nucleotide sequence of the CDC2 and HYS2 genes respectively. We also show by Western blotting that Hys2 protein co-purifies with DNA polymerase III activity as well as Cdc2 polypeptide. The complex form of DNA polymerase III activity could not be detected in thermosensitive hys2 mutant cell extracts, although another form of DNA polymerase III was found. This form of DNA polymerase III, which could also be detected in wild-type extracts, was not associated with Hys2 protein and was not stimulated by addition of proliferating cell nuclear antigen (PCNA), replication factor A (RF-A) or replication factor C (RF-C). The temperature-sensitive growth phenotype of hys2-1 and hys2-2 mutations could be suppressed by the CDC2 gene on a multicopy plasmid. These data suggest that the 55 kDa polypeptide encoded by the HYS2 gene is one of the subunits of DNA polymerase III complex in S.cerevisiae and is required for highly processive DNA synthesis catalyzed by DNA polymerase III in the presence of PCNA, RF-A and RF-C.  相似文献   

11.
P D Gershon  B Moss 《The EMBO journal》1993,12(12):4705-4714
VP55, the catalytic subunit of vaccinia virus poly(A) polymerase, has the remarkable property of adding 30-35 adenylates to RNA 3' ends in a rapid processive burst before an abrupt transition to slow, non-processive adenylate addition. Here, we demonstrate that this property results from the affinity of the enzyme for uridylate residues within the 3' 31-40 nt of the RNA primer. At physiological salt concentrations, both polyadenylation and stable VP55 binding required the presence of multiple uridylates within a 31-40 nt length of RNA, though specific RNA sequences were not necessary. Even DNA in which the deoxythymidylate residues were replaced with ribouridylates, could be polyadenylated in a processive manner. Both the unmethylated pyrimidine ring and a 2'-OH on the associated sugar are features of ribouridylates that are important for priming. The abrupt termination of processive polyadenylation was attributed to translocation of VP55 along the nascent poly(A) tail, which lacks uridylates for stable binding. As evidence for translocation and interaction with newly synthesized RNA, other homopolymer tails were synthesized by VP55 in the presence of Mn2+, which relaxes its donor nucleotide specificity. Only during poly(U) tail synthesis did processive nucleotide addition fail to terminate.  相似文献   

12.
DNA polymerase gamma and mitochondrial DNA polymerase were isolated from brain nuclei and synaptosomes respectively. The presence of a single DNA polymerase in synaptosomal mitochondria was established by chromatography on DEAE-cellulose, phosphocellulose and DNA-cellulose, as well as by sedimentation analysis and isoelectric focusing. A great similarity between the purified nuclear DNA polymerase gamma and the mitochondrial enzyme was found by the following criteria: chromatographic behaviour in three column systems; essentially complete inhibition by N-ethyl-maleimide (2 mM); optimal requirements of Mn2+ (0.1 mM), Mg2+ (5 mM) and pH (8.0); template preferences, poly(A) - (dT)20-25 larger than activated DNA larger than poly(dA) - (dT)12-18; lack of activity on single-stranded polynucleotides and (dT)12-primed mRNA; molecular weight (180000), sedimentation (9.2 S) and isoelectric point (pI 5.4). We therefore conclude that brain nuclear DNA polymerase gamma and synaptosomal mitochondrial DNA polymerase are closely related and may even be identical.  相似文献   

13.
We have previously demonstrated that the addition of a stoichiometric excess of the beta subunit of Escherichia coli DNA polymerase III holoenzyme to DNA polymerase III or holoenzyme itself can lead to an ATP-independent increase in the processivity of these enzyme forms (Crute, J. J., LaDuca, R. J., Johanson, K. O., McHenry, C. S., and Bambara, R. A. (1983) J. Biol. Chem. 258, 11344-11349). Here, we show that the beta subunit can interact directly with the catalytic core of the holoenzyme, DNA polymerase III, generating a new form of the enzyme with enhanced catalytic and processive capabilities. The addition of saturating levels of the beta subunit to the core DNA polymerase III enzyme results in as much as a 7-fold stimulation of synthetic activity. Two populations of DNA products were generated by the DNA polymerase III X beta enzyme complex. Short products resulting from the addition of 5-10 nucleotides/primer fragment were generated by DNA polymerase III in the presence and absence of added beta subunit. A second population of much longer products was generated only in beta-supplemented DNA polymerase III reactions. The DNA polymerase III-beta reaction was inhibited by single-stranded DNA binding protein and was unaffected by ATP, distinguishing it from the holoenzyme-catalyzed reaction. Complex formation of the DNA polymerase III core enzyme with beta increased the residence time of the enzyme on synthetic DNA templates. Our results demonstrate that the beta stimulation of DNA polymerase III can be attributed to a more efficient and highly processive elongation capability of the DNA polymerase III X beta complex. They also prove that at least part of beta's normal contribution to the DNA polymerase III holoenzyme reaction takes place through interaction with DNA polymerase III core enzyme components to produce the essential complex necessary for efficient elongation in vivo.  相似文献   

14.
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201–50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201–50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 μm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action.  相似文献   

15.
Recombinant vaccinia viruses that express the bacteriophage T3 RNA polymerase (VV-T3pol) or the Escherichia coli lac repressor (VV-lacI) under control of the early-late vaccinia promoter P7.5 were constructed. To determine whether phage polymerase and lac repressor can function in the nucleus of mammalian cells, the bacterial chloramphenicol acetyltransferase (CAT) gene was cloned downstream of a T3 promoter (PT3-CAT) or downstream of a T3 promoter-lac operator fusion element (PT3Olac-CAT), and these reporter gene cassettes were introduced stably into NIH 3T3 or Ltk- cells. Infection of 3T3/PT3-CAT or Ltk-/PT3-CAT cells by VV-T3pol led to rapid expression of CAT (greater than 20 ng of CAT protein per 10(6) cells). The presence of hydroxyurea (which blocks virus DNA replication) did not prevent CAT production. When 3T3/PT3Olac-CAT cells were infected with both VV-T3pol and VV-lacI (multiplicities of infection of 2.5 and 10, respectively), greater than 30-fold repression of CAT gene activity by lac repressor was observed. This could be reversed to unrepressed levels by the presence of 10 mM o-nitrophenyl-beta-D-galactoside (IPTG) in the medium. Regulated expression of the target gene was observed with cell lines that had been maintained for over 1 year (greater than 50 passages in culture), and Southern blot analysis revealed the presence of the CAT gene only in the nuclear fraction in these cells, demonstrating the stability of the target gene. These results indicate that vaccinia virus-encoded proteins can function in the mammalian nucleus and provide the basis for a genetic system in which essential vaccinia virus genes, placed in the chromosome of a cell, can be used to complement defective virus particles. This approach may prove useful for other virus systems.  相似文献   

16.
The DNA polymerase encoded by herpes simplex virus 1 consists of a single polypeptide of Mr 136,000 that has both DNA polymerase and 3'----5' exonuclease activities; it lacks a 5'----3' exonuclease. The herpes polymerase is exceptionally slow in extending a synthetic DNA primer annealed to circular single-stranded DNA (turnover number approximately 0.25 nucleotide). Nevertheless, it is highly processive because of its extremely tight binding to a primer terminus (Kd less than 1 nM). The single-stranded DNA-binding protein from Escherichia coli greatly stimulates the rate (turnover number approximately 4.5 nucleotides) by facilitating the efficient binding to and extension of the DNA primers. Synchronous replication by the polymerase of primed single-stranded DNA circles coated with the single-stranded DNA-binding protein proceeds to the last nucleotide of available 5.4-kilobase template without dissociation, despite the 20-30 min required to replicate the circle. Upon completion of synthesis, the polymerase is slow in cycling to other primed single-stranded DNA circles. ATP (or dATP) is not required to initiate or sustain highly processive synthesis. The 3'----5' exonuclease associated with the herpes DNA polymerase binds a 3' terminus tightly (Km less than 50 nM) and is as sensitive as the polymerase activity to inhibition by phosphonoacetic acid (Ki approximately 4 microM), suggesting close communication between the polymerase and exonuclease sites.  相似文献   

17.
The vaccinia virus (VV) I3L gene product is a single-stranded DNA-binding protein made early in infection that localizes to the cytoplasmic sites of viral DNA replication (S. C. Rochester and P. Traktman, J. Virol. 72:2917-2926, 1998). Surprisingly, when replication was blocked, the protein localized to distinct cytoplasmic spots (A. Domi and G. Beaud, J. Gen. Virol. 81:1231-1235, 2000). Here these I3L-positive spots were characterized in more detail. By using an anti-I3L peptide antibody we confirmed that the protein localized to the cytoplasmic sites of viral DNA replication by both immunofluorescence and electron microscopy (EM). Before replication had started or when replication was inhibited with hydroxyurea or cytosine arabinoside, I3L localized to distinct cytoplasmic punctate structures of homogeneous size. We show that these structures are not incoming cores or cytoplasmic sites of VV early mRNA accumulation. Instead, morphological and quantitative data indicate that they are specialized sites where the parental DNA accumulates after its release from incoming viral cores. By EM, these sites appeared as complex, electron-dense structures that were intimately associated with the cellular endoplasmic reticulum (ER). By double labeling of cryosections we show that they contain DNA and a viral early protein, the gene product of E8R. Since E8R is a membrane protein that is able to bind to DNA, the localization of this protein to the I3L puncta suggests that they are composed of membranes. The results are discussed in relation to our previous data showing that the process of viral DNA replication also occurs in close association with the ER.  相似文献   

18.
P Laquel  S Litvak    M Castroviejo 《Plant physiology》1993,102(1):107-114
Multiple DNA polymerases have been described in all organisms studied to date. Their specific functions are not easy to determine, except when powerful genetic and/or biochemical tools are available. However, the processivity of a DNA polymerase could reflect the physiological role of the enzyme. In this study, analogies between plant and animal DNA polymerases have been investigated by analyzing the size of the products synthesized by wheat DNA polymerases A, B, CI, and CII as a measure of their processivity. Thus, incubations have been carried out with poly(dA)-oligo(dT) as a template-primer under varying assay conditions. In the presence of MgCl2, DNA polymerase A was highly processive, whereas DNA polymerases B, CI, and CII synthesized much shorter products. With MnCl2 instead of MgCl2, DNA polymerase A was highly processive, DNA polymerases B and CII were moderately processive, and DNA polymerase CI remained strictly distributive. The effect of calf thymus proliferating cell nuclear antigen (PCNA) on wheat polymerases was studied as described for animal DNA polymerases. The high processivity of DNA polymerase A was PCNA independent, whereas both enzyme activity and processivity of wheat DNA polymerases B and CII were significantly stimulated by PCNA. On the other hand, DNA polymerase CI was not stimulated by PCNA and, like animal DNA polymerase beta, was distributive in all cases. From these results, we propose that wheat DNA polymerase A could correspond to a DNA polymerase alpha, DNA polymerases B and CII could correspond to the delta-like enzyme, and DNA polymerase CI could correspond to DNA polymerase beta.  相似文献   

19.
20.
Rep protein as a helicase combines its actions with those of gene A protein and single-stranded DNA binding protein to separate the strands of phi X174 duplex DNA and thereby can generate and advance a replication fork (Scott, J. F., Eisenberg, S., Bertsch, L. L., and Kornberg, A. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 193-197). Tritium-labeled rep protein is bound in an active gene A protein. phi X174 closed circular duplex supercoiled DNA complex in a 1:1 ratio. Catalytic separation of the strands of the duplex by rep protein, as measured by incorporation of tritium-labeled single-stranded DNA binding protein, requires ATP at a Km value of 8 microM, and hydrolyzes two molecules of ATP for every base pair melted. When coupled to replication in the synthesis of single-strand viral circles, a "looped" rolling-circle intermediate is formed that can be isolated in an active form containing gene A protein, rep protein, single-stranded DNA binding protein, and DNA polymerase III holoenzyme. Unlike the binding of rep protein to single-stranded DNA, where its ATPase activity is distributive, binding to the replicating fork is not affected by ATP, further suggesting a processive action linked to gene A protein. Limited tryptic hydrolysis of rep protein abolishes its replicative activity without affecting significantly its binding of ATP and its ATPase action on single-stranded DNA. These results augment earlier findings by describing the larger role of rep proteins as a helicase, linked in a complex ith other proteins, at the replication fork of a duplex DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号