首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nine-day-old decapitated females injected with different doses of Hez-PBAN produced significantly less pheromone than 1-day-old individuals, suggesting that the age-related decline in the pheromone titre of Choristoneura fumiferana and C. rosaceana virgin females was primarily the result of a reduced ability of the glands to produce pheromone. In C. fumiferana, lower pheromonotropic activity of the Br-SEG may also contribute to the pheromone decline with age but not in C. rosaceana, as the pheromonotropic activity of the Br-SEG remained constant throughout the females' life. In both Choristoneura species, mating also suppressed pheromone production (pheromonostasis) after 24 h. The Br-SEG of mated females contained PBAN but there was no indication that its concentration changed with time post-mating since Br-SEG homogenates obtained from different-aged mated females showed the same level of pheromonotropic activity in both Choristoneura species. However, as observed in virgins, pheromone glands of older mated females were less sensitive to PBAN than those of younger ones. This suggests that the probability of Choristoneura females to attract a second mate may decrease with an increase in the refractory period following the first mating.  相似文献   

2.
The diel periodicity of calling behavior and pheromone production are synchronous in virgin females of both Choristoneura fumiferana and C. rosaceana (Lepidoptera: Tortricidae). Newly emerged females decapitated prior to scotophase produced no or very little pheromone 24 h later. However, injection of PBAN or Br-SEG homogenates, obtained from donors of the same or the other species, stimulated pheromone production to normal levels. Transection of the ventral nerve cord (VNC) or extirpation of the terminal abdominal ganglion (TAG) did not affect pheromone production in control females. Similarly, injections of PBAN or Br-SEG homogenates into decapitated females reactivated pheromone production to normal levels, whether or not the VNC was intact or the TAG present. Furthermore, octopamine was not effective in stimulating pheromone production in decapitated females. Taken together, these results indicate that the regulation of pheromone production is not neurally mediated in either Choristoneura species. However, there was no evidence that hemolymph collected from pheromone-producing females contained pheromonotropic activity. Similarly, isolated glands incubated with PBAN did not produce pheromone. The presence of the bursa copulatrix was required to produce pheromone in both tortricids as production was not restored in decapitated bursa-less females injected with PBAN or a Br-SEG homogenate. However, an extract of the bursa copulatrix did not elicit pheromonotropic activity in decapitated females or incubated glands of either species. The bursa copulatrix is only involved in pheromone production of some species of tortricids but our results do not support the current explanation for such interspecific differences. We postulate that the relative importance of a bursa factor may be related to the evolution of different desaturation systems used for pheromone biosynthesis in the Tortricidae. Arch.  相似文献   

3.
We assessed the effects of age and mating status on in vitro juvenile hormone (JH) biosynthesis, oocyte growth, egg production and vitellogenin (Vg) accumulation in the tortricid moths, Choristoneura fumiferana and C. rosaceana. To determine whether vitellogenesis is dependent on the presence of JH, we also examined the effects of decapitation and JH analog treatments on egg production. In both species, the corpora allata (CA) of adult females released fmol quantities of JH, with JH II being the major homolog produced. The CA began producing detectable quantities of JH around the time of emergence. Full activation of the CA was observed a few hours sooner in C. fumiferana than in C. rosaceana. In pharate adults and young virgin females of both species, growth of the basal oocyte reflected changes in CA activity. Decapitation of newly emerged females significantly reduced egg production, but treatment of decapitated females with the JH analog methoprene resulted in egg production that was similar to (C. fumiferana) or greater than (C. rosaceana) that of controls, indicating that JH is required for oocyte maturation. Vg was first observed in the hemolymph before the presumptive time of CA activation, suggesting that the synthesis of this protein is not dependent on JH. The presence of normal quantities of Vg in the hemolymph of pupae decapitated before CA activation confirmed this hypothesis. The Vg titer underwent a transient decline following CA activation and was significantly lower in mated than in virgin females of both species 3 and 5 days after copulation. Since CA activation at emergence and mating are both expected to cause a rise in the JH titer, we suggest that the declines in the levels of Vg result from JH-enhanced Vg uptake by the developing oocytes. Mating induced a significant increase in egg production but had no measurable impact on rates of JH biosynthesis in vitro.  相似文献   

4.
We used a radioimmunoassay (RIA) to assess the effect of mating on juvenile hormone (JH) titer in females of the tortricid moths Choristoneura fumiferana and C. rosaceana. Virgins had undetectable levels of JH in their hemolymph on the 5th day of the pupal stage but titers rose to 1-4 and 0.2-0.5 ng JH II eq./ml, respectively, after emergence. On days 1, 3 and 5 following copulation, females of both species had higher JH titers than virgins of the same ages, with the greatest difference between virgin and mated females observed on day 3 for C. fumiferana and on day 5 for C. rosaceana. This increase was apparently not the result of a male-to-female transfer of JH during copulation since: (i) the accessory sex glands (ASGs) of males of both species displayed a very limited ability to convert JH acid into JH, (ii) ASGs produced no JH when incubated in vitro in the presence of L-[methyl-(3)H]-methionine, (iii) ASGs of males injected with L-[methyl-(3)H]-methionine 24 h prior to dissection contained no JH-associated radioactivity, and (iv) freshly formed spermatophores dissected out of females mated to similarly injected males contained no trace of radioactive JH. In addition, the JH content of ASGs and spermatophores, as measured by RIA, was not higher than that of virgin-female hemolymph, on a per-mg basis. However, in contrast with earlier findings in other species of moths, the CA of male C. fumiferana and C. rosaceana maintained in vitro in the presence of tritiated methionine produced and released JH I, JH II and JH III in quantities and proportions similar to those reported for female glands.  相似文献   

5.
In the oblique-banded leafroller, Choristoneura rosaceana, and the spruce budworm, C. fumiferana, male reproductive performance decreases with consecutive matings. While the onset time of mating did not vary, the time spent mating was longer in mated than in virgin males. Furthermore, a decline observed in the spermatophore mass with successive matings was associated with a concomitant decline in its apyrene and eupyrene spermatozoa content. In the hours following mating, spermatozoa migrate from the spermatophore, located in the bursa copulatrix, to the spermatheca. Regardless of the male's previous mating history, the number of apyrene sperm dropped rapidly in the days following mating whereas the number of eupyrene spermatozoa declined gradually. As the temporal pattern of sperm movement was similar in all treatments, females mated with previously-mated males would suffer from sperm shortage sooner than those mated with virgins. Large C. rosaceana females stored more apyrene spermatozoa in their spermatheca than small ones, irrespective of the time after mating or male mating history, while only large females mated with once-mated males received more apyrene sperm and accessory gland secretions than small ones mated with virgin or twice-mated males. The results obtained in this study are discussed in relation with their potential impact on the reproductive success of both sexes.  相似文献   

6.
In Lepidoptera, a number of humoral and neural cues are involved in post-mating pheromonostasis, including the presence of sperm in the spermatheca. However, as there are two types of sperm, apyrene and eupyrene, they may play different roles in pheromonostasis, an aspect not considered in previous studies. As a first step to examine this possibility, we determined the quantity of sperm transferred by the male at the time of mating and the temporal migration of both sperm types from the bursa copulatrix to the spermatheca in the spruce budworm, Choristoneura fumiferana, and the obliquebanded leafroller, C. rosaceana. While the mass of the ejaculate was positively correlated to male body mass, there was no relation between ejaculate mass and sperm numbers. In both species, the migration of the two sperm types was asynchronous, with the apyrene sperm migrating before the eupyrene type. There were, however, some interspecific temporal differences in the migration of both sperm types. Eupyrene sperm would not serve as a direct signal for pheromonostasis in either species as it does not reach the spermatheca for at least 7 h while the neural message for pheromonostasis in both tortricids occurs within 3 h of mating. Given the time apyrene sperm arrives in the spermatheca (between 3 and 5 h post-mating), it could serve as a direct cue for pheromonostasis in C. fumiferana but not in C. rosaceana. However, considering that these two Choristoneura species have similar pheromone physiologies, it seems somewhat unlikely that apyrene sperm would be involved in one species and not the other.  相似文献   

7.
Normal mating lasts approximately 3 h in Choristoneura fumiferana and C. rosaceana. Data generated from interrupted matings showed that the act of mating did not suppress pheromone production (pheromonostasis) in either species although, in C. rosaceana, pheromone titre declined slightly the night following mating. In both species the migration of sperm to the spermatheca (SP) occurred several hours after mating, and coincided with a significant and permanent depression in pheromone titre, as well as egg fertilisation and oviposition. However, disrupting matings within 2 h of the onset resulted in oviposition patterns similar to virgins in both species, with mostly infertile eggs being laid by C. fumiferana females while oviposition was totally inhibited in C. rosaceana. The transection of the ventral nerve cord (VNC) 1 h post-mating did not result in the depression of pheromone titres the following night in either species but if the VNC was transected 3 h post-mating, pheromonostasis was observed. While 25% of C. fumiferana females had sperm in their SP 2 h after mating, it took at least 4 h in C. rosaceana. This suggests that while the physical presence of sperm in the SP may play some role in the termination of pheromone production in C. fumiferana, other factors must trigger the neural signal that elicits pheromonostasis in both species. A better understanding of the temporal dynamics of both apyrene and eupyrene sperm within the different parts of the female reproductive system might clarify these interspecific differences.  相似文献   

8.
Abstract.  The first objective of the present study is to test the hypothesis that the decrease in the number of eupyrene spermatozoa in the spermatheca is directly associated with the resumption of sexual receptivity in female moths, an aspect that has not been examined in previous studies. The obliquebanded leafroller, Choristoneura rosaceana , is used and females mated with previously mated males have a shorter refractory period than those mated with virgins. This difference is associated with a faster rate of movement of sperm from the spermatheca. Overall, the length of the female refractory period coincides with the mean time required for the number of eupyrene sperm in the spermatheca to drop to approximately 3000, regardless of male mating history. Although such a decline in sperm numbers may be a factor responsible for the resumption of sexual receptivity, this is clearly not the only one because more than 40% of females remate even though sperm numbers in the spermatheca are well above this threshold. Virgin males do not vary the mass or the content of their ejaculate as a function of the female's reproductive status and this may increase the risk of sperm competition if the female is previously mated. The second objective of this study is to examine the effect of previous male mating history on female reproductive potential. Females mated with previously mated males have a significantly lower fecundity than those mated with virgin males. However, in all treatments, remating increases both female longevity and lifetime fecundity. There is also a significant effect of female mass on the length of the refractory period and on lifetime fecundity, with large females resuming sexual receptivity sooner and laying more eggs than small ones, regardless of male mating history.  相似文献   

9.
《Journal of Asia》2002,5(1):43-48
This study was undertaken to clarify the suppression phenomenon of sex pheromone production after mating and its relationship to the physiological mechanism in adult females of Helicoverpa assulta, and determine the mating factor from males causing depletion of sex pheromonc production. Sex pheromone production of H. assulta females was mostly terminated in 3 hours after mating. Mated females maintained with a low titer of sex pheromone until 3 days when it started to increase again, which showed a characteristic of species mating more than once. The mated female again produced pheromone upon injection of pheromone biosynthesis activating neuropeptide (PBAN) or extracts of brain-suboesophageal ganglion complexes (Br-Sg) of mated female, which were shown similar pheromonotropic activities as compared with virgin females. These results indicated that the mating did not inhibit the receptivity of pheromone gland itself and PBAN biosynthesis in suboesophageal ganglion of the mated females. And it seems to support that the depletion of sex pheromone production is responsible for blocking of PBAN release from head. To investigate the mating factor from adult males, when extracts of reproductive organs of male were injected into hemocoel of virgin females evoking depletion of sex pheromone production as shown in mated female. The results suggest that a chemical substance(s) from the male reproductive organs could be responsible for the loss of sex pheromone biosynthesis in H. assulta.  相似文献   

10.
Insect males produce accessory gland (MAG) factors that are transferred in the seminal fluid to females during copulation, and elicit changes in the mated female's behavior and physiology. Our previous studies showed that the injection of synthetic Drosophila melanogaster sex-peptide (DrmSP) into virgin females of the moth Helicoverpa armigera causes a significant inhibition of pheromone production. In this and other moth species, pheromone production, correlated with female receptivity, is under neuroendocrine control due to the circadian release of the neuropeptide PBAN. In this study, we show that PBAN, present in the hemolymph during the scotophase in females, is drastically reduced after mating. We also identify 4 DrmSP-like HPLC peaks (Peaks A, S1, S2, and B) in MAGs, with increasing levels of DrmSP immunoreactivity during the scotophase, when compared to their levels observed during the photophase. In H. armigera MAGs, a significant reduction in the pheromonostatic peak (Peak B) was already evident after 15 min of copulation, and depletion of an additional peak (Peak S2) was evident after complete mating. Peak A is also detected in female brains, increasing significantly 1 h after mating, at which time inhibition of pheromone biosynthesis also occurs. However, changes corresponding to the other MAG peaks were not detected in mated female tissues.  相似文献   

11.
Sex pheromone titers in females of two tortricid moths, Epiphyas postvittana and Planotortrix octo, did not significantly vary between the scotophase and photophase. Pheromone production in these two species is controlled by a factor located in the head of the respective females, probably the pheromone biosynthesis-activating neuropeptide (PBAN). Unlike that reported for the related tortricid, Argyrotaenia velutinana, the bursa copulatrix in female E. postvittana and P. octo does not appear to contain a factor that stimulates pheromone production. After mating, female E. postvittana permanently shut down pheromone production. In contrast, pheromone titer in mated P. octo females is reduced to a level approximately half that of similar-age virgins. While the abdominal nervous system is involved in the inactivation of pheromone production in mated E. postvittana females and probably acts to stop release of PBAN from the corpora cardiaca, the abdominal nervous system is not involved in effecting the decreased pheromone titers of mated P. octo females. It is possible that in the latter species, a humoral factor(s) is responsible for effecting the decreased pheromone titers, possibly through affecting the release of PBAN from the corpora cardiaca. Bioassaying head extracts allowed changes in PBAN titer in female E. postvittana to be inferred. PBAN titers remain roughly constant in virgins but increase after mating. This suggests that PBAN is biosynthesized throughout the life of an adult virgin female at approximately the same rate as it is released. Furthermore, it appears that the decline in pheromone titer observed in older E. postvittana females is probably due to a decline in competency of the gland to produce pheromone rather than to a decrease in PBAN titer in older females. © 1994 Wiley-Liss, Inc.  相似文献   

12.

Background

Mating decreases female receptivity and terminates sex pheromone production in moths. Although significant progress has been made in elucidating the mating-regulated inactivation of pheromone biosynthesis-activating neuropeptide (PBAN) secretion, little is known about the mating induced gene expression profiles in pheromone glands (PGs). In this study, the associated genes involved in Bombyx mori mating were identified through digital gene expression (DGE) profiling and subsequent RNA interference (RNAi) to elucidate the molecular mechanisms underlying the mating-regulated gene expression in PGs.

Results

Eight DGE libraries were constructed from the PGs of mated and virgin females: 1 h mating (M1)/virgin (V1) PGs, 3 h mating (M3)/virgin (V3) PGs, 24 h mating (M24)/virgin (V24) PGs and 48 h mating (M48)/virgin (V48) PGs (M48 and V48). These libraries were used to investigate the gene expression profiles affected by mating. DGE profiling revealed a series of genes showing differential expression in each set of mated and virgin female samples, including immune-associated genes, sex pheromone synthesis-associated genes, juvenile hormone (JH) signal-associated genes, etc. Most interestingly, JH signal was found to be activated by mating. Application of the JH mimics, methoprene to the newly-emerged virgin females leaded to the significant reduction of sex pheromone production. RNAi-mediated knockdown of putative JH receptor gene, Methoprene tolerant 1 (Met1), in female pupa resulted in a significant decrease in sex pheromone production in mature females, suggesting the importance of JH in sex pheromone synthesis.

Conclusion

A series of differentially expressed genes in PGs in response to mating was identified. This study improves our understanding of the role of JH signaling on the mating-elicited termination of sex pheromone production.  相似文献   

13.
The circadian variation of pheromone production in the turnip moth, Agrotis segetum, was characterized by quantifying (Z)-7-dodecenyl acetate (Z7-12:OAc), the most abundant pheromone component produced by female turnip moth, at different times of day. Under 17:7 h light-dark cycle (LD), the peak of Z7-12:OAc production occurred around 4 h into the scotophase, while there was very little pheromone production during the photophase. When females were maintained under constant darkness (DD), the periodicity of pheromone production was sustained for 3 consecutive days. Furthermore, the rhythm in pheromone production could be entrained to a shifted LD. These results demonstrate that the pheromone production in the turnip moth is regulated endogenously by a circadian clock. To understand how the circadian rhythm of pheromone production is generated, circadian variation of pheromone- biosynthesis-activating neuropeptide (PBAN)-like activity in the brain-suboesophageal ganglion complexes (Br-SOG), hemolymph, and ventral nerve cord (VNC) was also examined. Under both LD and DD, only the VNC displayed a circadian variation in the PBAN-like activity, which was significantly higher during the late-photophase than that in the scotophase. In addition, the present study showed that removal of VNC in isolated abdomen did not affect PBAN stimulation of pheromone production, while severing the VNC impaired normal pheromone production. The role of Br-SOG, VNC, and hemolymph in the regulation of the periodicity of pheromone production is discussed.  相似文献   

14.
A mating duration of more than 6 h was necessary to permanently terminate the production of the sex pheromone (bombykol) in the silkworm moth, Bombyx mori L. (Lepidoptera: Bombycidae), although the female formed a bursa copulatrix including a spermatophore and laid fertilized eggs even after mating for only 0.5 h. The 6-h mated female again produced bombykol if given an injection of synthetic pheromonotropic neuropeptide (PBAN), which is known to activate pheromone biosynthesis in a virgin female. Extracts of brain-suboesophageal ganglion (SG) complexes, which were removed from 6- and 24-h mated females, showed strong pheromonotropic activities. These results indicated that the pheromone gland of the mated female maintained its ability to biosynthesize bombykol; however, it could not produce pheromone due to a suppression of PBAN secretion from the SG. Furthermore, bombykol titers did not decrease after mating in females with a transected ventral nerve cord, even after the injection of a spermatophore extract, suggesting that the suppression of PBAN secretion was mediated by a neural signal and not by a substance in the spermatophore. The mated females accumulated (10E, 12Z)-10,12-hexadecadienoic acid, a precursor of bombykol biosynthesis, in their pheromone glands as did decapitated females. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Mating in the redbanded leafroller moth, Argyrotaenia velutinana, causes a permanent decline in pheromone titers. Three hours following the termination of mating, phermone titers were significantly decreased from premating levels, and titers remained low for at least four days after mating. Pheromone titers were similar in females that had been decapitated or mated for twenty-four hours. In the redbanded leafroller moth, two peptides control pheromone production. The pheromone biosynthesis activating neuropeptide is produced in the brain and the pheromonotropic bursa peptide is produced in the corpus bursae. Both peptides stimulated pheromone biosynthesis in mated females and extracts prepared from brains and bursae of mated females contained pheromonotropic activity. However, severing the ventral nerve cord before mating prevented the decline in pheromone titer that occurred in mated females. Hemolymph collected during scotophase from mated females did not have pheromonotropic activity, whereas hemolymph collected during scotophase from virgin females contained activity. These results indicate that mating produces a signal sent by the ventral nerve cord to the brain to stop the release of pheromone biosynthesis activating neuropeptide. © 1993 Wiley-Liss, Inc.  相似文献   

16.
The mass of the spermatophore transferred by a previously mated Choristoneura rosaceana male increases with time elapsed since the last mating but, even after 4 days, it never reaches the mass of the spermatophore of a virgin male. However, spermatophore mass is clearly not a good indicator of the male reproductive investment as the quantity of sperm in the second ejaculate of a previously mated male is the same as that of his first, if he is allowed a 2 (eupyrene sperm) to 3 day (apyrene sperm) recovery period. The interval between the first two matings had no influence on female fecundity or longevity but significantly affected fertility if the male had only 1 day to recover. The length of the post-copulatory refractory period was also shorter in females mated with previously mated males than in those mated with virgins, regardless of the male's remating interval. Furthermore, a significant variation in the eupyrene sperm content of the spermatophore transferred by virgin males had no influence on the length of the female refractory period. Globally, these results support the hypothesis that a factor, other than sperm numbers in the spermatheca, is responsible for maintaining the inhibition of pheromone production in this species.  相似文献   

17.
The maturation of corpora allata (CA) and the competence of pheromone glands in the adult moth Helicoverpa armigera, are both age-related and appear to be correlated. Sex pheromone glands of pharate adults do not produce sex pheromone independently, nor do they respond to exogenous PBAN. Newly emerged moths produce significantly less pheromone than day one moths. JH (juvenile hormone) II was found to be the main JH form produced by CA in vitro. JH II primed pheromone glands of pharate adults to respond to PBAN. In addition, injection or topical application of JH II to newly-emerged females induced pheromone production in the presence of PBAN. Our findings suggest that JH is involved in the initiation of pheromone production of Helicoverpa armigera.  相似文献   

18.
Species‐specific pheromone blends of nocturnal female moths, derived from fatty acid precursors, are produced and released for mate‐finding, and are initiated by the circadian, trophic hormone, Pheromone Biosynthesis Activating Neuropeptide (PBAN). PBAN, produced in the sub‐oesophageal ganglion, is a 33 amino acid neuropeptide with a minimum active core in its FXPRLamide C‐terminal. PBAN acts directly on pheromone gland cells of mature females by binding to a specific G‐protein‐coupled membrane receptor (GPCR), and thereby initiating a signal transduction cascade involving calcium and cAMP. This discussion will review recent developments concerning the identification of the PBAN GPCR, its regulation by juvenile hormone (JH), and its mode of action at the level of the pheromone biosynthetic pathway. The discussion will also include recent developments concerning events occurring as a result of the transfer of pheromonostatic compounds of male origin after mating.  相似文献   

19.
In a previous study we showed that juvenile hormone (JH) or its analog, fenoxycarb (FX), is involved in the up-regulation of pheromone biosynthesis-activating neuropeptide (PBAN) competence. JH causes induction of binding to a putative PBAN-receptor (PBAN-R) and the subsequent pheromone production by pheromone glands of pharate females. The present study demonstrates that pheromone production by the adult female is age-dependent. The pheromonotropic response increased to reach a maximum at 4 days, after which a decreased response was observed. Binding of the PBAN-R was also age-dependent. Treatment with FX inhibited both binding of PBAN to the PBAN-R and the pheromonotropic response as reflected by the production of the main pheromone component, Z-11-hexadecenal. Thus, in contrast to its up-regulatory role in pharate females, FX treatment of adult females causes down-regulation of both pheromone production and specific binding to the PBAN-R. In addition, behavioural observations showed that calling behaviour, mating success and subsequent egg-fertility are affected by treating females with FX.  相似文献   

20.
The present study investigates the effects of age and mating status on the circadian variations of gland sex pheromone titre in female Spodoptera litura Fabricius. Similar to other nocturnal moths, S. litura females exhibit circadian variations of gland sex pheromone contents, with higher levels during scotophase and lower levels during photophase. The sex pheromone titre in the glands peaks during the first scotophase after eclosion and sharply declines afterwards. Higher pheromone contents during scotophase may facilitate female reproductive activities, and the negative relationship between pheromone titre and female calling is likely the result of pheromone release during female calling. Interestingly, the present study demonstrates that mated S. litura females have significantly higher sex pheromone titre in their pheromone glands (PGs) than virgin females. This finding contrasts with all previous studies of other insect species, in which mating generally reduces the sex pheromone titre in female PGs. In S. litura, mating and male accessory gland fluids can suppress female calling behaviours and re‐matings. These results suggest that the suppression of female calling behaviours by mating and male accessory gland fluids may significantly reduce the release of sex pheromones and thus result in higher sex pheromone titre in the PGs of mated females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号