首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A variety of nonphotic influences on circadian rhythms have been documented in mammals. In hamsters, one such influence, running in a novel wheel, is mediated in part by the pathway extending from neuropeptide-Y (NPY)-containing cells within the intergeniculate leaflet (IGL) of the thalamus to the hypothalamic suprachiasmatic nucleus (SCN). Arvicanthis niloticus is a species in which all individuals are diurnal with respect to general activity and body temperature when they are housed without a running wheel, but access to a running wheel induces a subset of individuals to become nocturnal. In the first study, the authors evaluated the possibility that nocturnal and diurnal patterns of wheel running in Arvicanthis are correlated with differences in IGL function. Adult male Arvicanthis housed in a 12:12 light-dark (LD) cycle were monitored in wheels, classified as nocturnal or diurnal, and then perfused either 4 h after lights-on or 4 h after lights-off. Sections through the intergeniculate leaflet were processed for immunohistochemical labeling of Fos and NPY. The percentage of NPY cells that expressed Fos was significantly influenced by an interaction between time of day and phenotype such that it rose from night to day in diurnal animals, and from day to night in nocturnal animals. In the second experiment, the authors established that running in a wheel actually induces Fos in the IGL of Arvicanthis. Specifically, the proportion of NPY cells expressing Fos was increased by access to wheels in nocturnal animals at night and in diurnal animals during the day. In the third experiment, the authors established that lesions of the IGL eliminate NPY fibers within the SCN, suggesting that these IGL cells project to the SCN in this species as has been established in other rodents. Together, these data demonstrate a clear difference in NPY cell function in nocturnal and diurnal Arvicanthis that appears to be caused, at least in part, by the differences in their wheel-running patterns, and that NPY cells within the IGL project to the SCN in Arvicanthis.  相似文献   

2.
The underlying neural causes of the differences between nocturnal and diurnal animals with respect to their patterns of rhythmicity have not yet been identified. These differences could be due to differences in some subpopulation of neurons within the suprachiasmatic nucleus (SCN) or to differences in responsiveness to signals emanating from the SCN. The experiments described in this article were designed to address the former hypothesis by examining Fos expression within vasopressin (VP) neurons in the SCN of nocturnal and diurnal rodents. Earlier work has shown that within the SCN of the diurnal rodent Arvicanthis niloticus, approximately 30% of VP-immunoreactive (IR) neurons express Fos during the day, whereas Fos rarely is expressed in VP-IR neurons in the SCN of nocturnal rats. However, in earlier studies, rats were housed in constant darkness and pulsed with light, whereas Arvicanthis were housed in a light:dark (LD) cycle. To provide data from rats that would permit comparisons with A. niloticus, the first experiment examined VP/Fos double labeling in the SCN of rats housed in a 12:12 LD cycle and perfused 4 h into the light phase or 4 h into the dark phase. Fos was significantly elevated in the SCN of animals sacrificed during the light compared to the dark phase, but virtually no Fos at either time was found in VP-IR neurons, confirming that the SCN of rats and diurnal Arvicanthis are significantly different in this regard. The authors also evaluated the relationship between this aspect of SCN function and diurnality by examining Fos-IR and VP-IR in diurnal and nocturnal forms of Arvicanthis. In this species, most individuals exhibit diurnal wheel-running rhythms, but some exhibit a distinctly different and relatively nocturnal pattern. The authors have bred their laboratory colony for this trait and used animals with both patterns in this experiment. They examined Fos expression within VP-IR neurons in the SCN of both nocturnal and diurnal A. niloticus kept on a 12:12 LD cycle and perfused 4 h into the light phase or 4 h into the dark phase, and brains were processed for immunohistochemical identification of Fos and VP. Both the total number of Fos-IR cells and the proportion of VP-IR neurons containing Fos (20%) were higher during the day than during the night. Neither of these parameters differed between nocturnal and diurnal animals. The implications of these findings are discussed.  相似文献   

3.
Little is known about the differences in the neural substrates of circadian rhythms that are responsible for the maintenance of differences between diurnal and nocturnal patterns of activity in mammals. In both groups of animals, the suprachiasmatic nucleus (SCN) functions as the principal circadian pacemaker, and surprisingly, several correlates of neuronal activity in the SCN show similar daily patterns in diurnal and nocturnal species. In this study, immunocytochemistry was used to monitor daily fluctuations in the expression of the nuclear phosphoprotein Fos in the SCN and in hypothalamic targets of the SCN axonal outputs in the nocturnal laboratory rat and in the diurnal murid rodent, Arvicanthis niloticus. The daily patterns of Fos expression in the SCN were very similar across the two species. However, clear species differences were seen in regions of the hypothalamus that receive inputs from the SCN including the subparaventricular zone. These results indicate that differences in the circadian system found downstream from the SCN contribute to the emergence of a diurnal or nocturnal profile in mammals.  相似文献   

4.
This article describes the phase response curve (PRC), the effect of light on Fos immunoreactivity (Fos-IR) in the suprachiasmatic nucleus (SCN), and the effect of SCN lesions on circadian rhythms in the murid rodent, Arvicanthis niloticus. In this species, all individuals are diurnal when housed without a running wheel, but running in a wheel induces a nocturnal pattern in some individuals. First, the authors characterized the PRC in animals with either the nocturnal or diurnal pattern. Both groups of animals were less affected by light during the middle of the subjective day than during the night and were phase delayed and phase advanced by pulses in the early and late subjective night, respectively. Second, the authors characterized the Fos response to light at circadian times 5, 14, or 22. Light induced an increase in Fos-IR within the SCN during the subjective night but not subjective day; this effect was especially pronounced in the ventral SCN, where retinal inputs are most concentrated, but was also evident in other regions. Both light and time influenced Fos-IR within the lower subparaventricular area. Third, SCN lesions caused animals to become arrhythmic when housed in a light-dark cycle as well as constant darkness. In summary, Arvicanthis appear to be very similar to nocturnal rodents with respect to their PRC, temporal patterns of light-induced Fos expression in the SCN, and the effects of SCN lesions on activity rhythms.  相似文献   

5.
Laboratory populations of grass rats (Arvicanthis niloticus) housed with a running wheel show considerable variation in patterns of locomotor activity. At the extremes are "day-active" (DA) animals with a monophasic distribution of running throughout the light phase and "night-active" (NA) animals exhibiting a biphasic pattern with an extended peak at the beginning of the dark phase and a brief peak shortly before lights-on. Here, the authors use this intraspecific variation to explore interactions between circadian and homeostatic influences on sleep and the effects of these interactions on the activity of brain regions involved in sleep regulation. Male animals were singly housed with running wheels in a 12:12 LD cycle, videotaped for 24 h, and perfused at ZT 4 or 16. Behavioral sleep was scored from the videotapes, and brains were processed for cFos immunoreactivity (cFos-ir). Sleep duration within the light and dark phases was higher in NA and DA animals, respectively, but these groups did not differ with respect to total sleep. In both groups, sleep bouts were shortest in the light phase and longest between ZT 20 and ZT 23. In the ventrolateral preoptic area (VLPO), cFos-ir was higher at ZT 16 than at ZT 4 in DA but not NA grass rats, and it was correlated with behavioral sleep at ZT 16 but not ZT 4. In OXA neurons, cFos-ir was high at ZT 4 in DA grass rats and at ZT 16 in NA grass rats, and it was correlated with behavioral sleep at both times. In the lower subparaventricular zone (LSPV), cFos-ir was higher at ZT 16 in both DA and NA animals, and it was unrelated to behavioral sleep. Thus, patterns of cFos-ir in the LSPV and OXA neurons were most tightly linked to time and sleep, respectively, whereas cFos-ir in the VLPO was influenced by an interaction between these 2 variables.  相似文献   

6.
The time of day at which mating occurs is dramatically different in diurnal compared to nocturnal rodents. We used a diurnal murid rodent, Arvicanthis niloticus, to determine if inverted rhythms in responsiveness to hormones contribute to this difference. Male and hormone-primed female grass rats were tested for mating behavior at four different times of day (ZT 5, 11, 17, 23; ZT 0=lights-on). In females, there was considerable inter-individual variability with respect to patterns of responsiveness to hormones. Overall, the lordosis quotient (LQ) was rhythmic with a single peak just before lights-on (ZT 23); however, while roughly half of the females (7/15) exhibited this clear daily rhythm, the remaining animals (8/15) had relatively high LQs that did not change as a function of time. Males had their shortest ejaculation latencies and their highest number of ejaculations at ZT 23. Rhythms in mount frequency and post-ejaculatory refractory period were bimodal, with peaks around lights-on and -off (ZT 23 and 11). This temporal pattern of mounting behavior closely parallels previously documented patterns of general activity, whereas rhythms in the more reflexive components of sex behavior (LQ and ejaculation) had more restricted peaks that coincided with just the onset of rhythms in general activity. These rhythms in sexual behavior are essentially reversed relative to those previously documented in lab rats.  相似文献   

7.
The electrical activity of the rat suprachiasmatic nucleus (SCN) was examined in anesthetized rats in vivo using single-unit electrophysiological techniques. The present data confirm the daily variation in the electrical activity of the SCN previously reported in vitro and in vivo using multiple-unit recording techniques. They further suggest that subpopulations of suprachiasmatic neurons with different neural connections have a different daily rhythm of activity. Neurons in the SCN region showed a significant rhythm of activity (p = 0.034; Kruskall-Wallis analysis of variance [KW-ANOVA]). The greatest activity occurred during the second part of the light period (ZT 10-12), and the lowest activity occurred in the early part of the light period (ZT 0-2). The subgroup of cells in the suprachiasmatic region with output projections to the arcuate nucleus (ARC) and/or supraoptic nucleus (SON) regions also showed a significant rhythm (p = 0.001; K-W ANOVA). Their activity appeared to show two peaks near the light-dark (ZT 10-12) and dark-light (ZT 22-24) transition periods with the lowest activity at ZT 16-18. This rhythm was significantly different (p = 0.016) from that of neurons without an output projection to the ARC and/or SON. Retinorecipient suprachiasmatic neurons appeared to have a less robust daily rhythm in their activity. The change in the firing behavior of the cells was not reflected simply by changes in mean firing rate. Examination of the coefficient of variation of the interspike interval distribution of cells at different times of day revealed changes in the firing pattern of cells in the SCN region that did not have output projections (p = 0.032; K-W ANOVA). The present results thus suggest that the SCN is composed of a heterogeneous population of neurons and that different rhythms of activity are expressed by neurons with different neural connections. There were changes in both firing pattern and firing rate.  相似文献   

8.
Arvicanthis niloticus is a diurnal murid rodent from sub-Saharan Africa. Here we report on processes associated with mating in this species in an attempt to elucidate how the neural mechanisms governing temporal organization differ in nocturnal and diurnal species. First, we systematically mapped the distribution of GnRH neurons in adult females. Second, we tested the hypothesis that Arvicanthis differ from nocturnal murid rodents with respect to the timing of the LH surge and the associated increase in Fos expression in GnRH-immunoreactive (IR) neurons. We examined these events around a postpartum estrus. When parturition occurred between zeitgeber time (ZT) 2 and 17 (lights on at ZT 0 and off at ZT 12; there are 24 ZT units a day, each equivalent to 1 standard hour), we collected blood and perfused females at ZT 17, 20, 23, or 2. A sharp peak in plasma LH occurred at ZT 20, and a 10-fold increase in the percentage of GnRH-IR neurons that expressed Fos-IR occurred between ZT 17 and 20. By contrast, this rise occurs in nocturnal rodents during the last few hours of the light period. This is the first indication of a difference between nocturnal and diurnal animals with respect to neural mechanisms associated with a precisely timed event of known significance.  相似文献   

9.
Golden hamsters and thirteen-lined ground squirrels were maintained individually in a thermal gradient (14°C to 33°C) for several weeks under a 14L: 10D light-dark cycle. Animals of both species showed robust daily rhythms of body temperature and locomotor activity with acrophases consistent with the habits of the species (diurnal acrophases in the diurnal squirrels and nocturnal acrophases in the nocturnal hamsters). Hamsters showed a robust daily rhythm of temperature selection 180° out of phase with the rhythms of body temperature and locomotor activity. Squirrels did not show a daily rhythm of temperature selection. These results raise the hypothesis that a daily rhythm of temperature selection is exhibited by nocturnal but not by diurnal endotherms.  相似文献   

10.
Most of the biochemical, physiological and behavioural events in living organisms show diurnal fluctuations, normally synchronized with 24-h environmental rhythms, such as the light-dark cycle. The suprachiasmatic nucleus (SCN) of the hypothalamus is considered to be a pacemaker of the circadian rhythms in several mammals. The light-dark cycle is the primary synchronizing agent for many of the circadian rhythms which are regulated by the SCN. The photic information reaches the SCN also through a neuropeptide Y(NPY)-like immunoreactive pathway from the ventro-lateral geniculate nucleus. We found that in 12-h-dark and 12-h-light housed rats the NPY-like immunoreactive innervation of the ventro-lateral part of the SCN shows a 24 h rhythm with values rising gradually during the light phase and falling during the dark phase. Besides this rhythm, we found two peaks corresponding to the switching on and switching off of the light. The average level of NPY-like immunoreactivity, as assessed by means of semiquantitative immunocytochemistry and expressed in 'arbitrary units', is reduced in rats housed in total darkness for 2 weeks. These results confirm the physiological role of NPY in the timing of the circadian activity of the SCN.  相似文献   

11.
The term masking refers to immediate responses to stimuli that override the influence of the circadian timekeeping system on behavior and physiology. Masking by light and darkness plays an important role in shaping an organism's daily pattern of activity. Nocturnal animals generally become more active in response to darkness (positive masking) and less active in response to light (negative masking), and diurnal animals generally have opposite patterns of response. These responses can vary as a function of light intensity as well as time of day. Few studies have directly compared masking in diurnal and nocturnal species, and none have compared rhythms in masking behavior of diurnal and nocturnal species. Here, we assessed masking in nocturnal mice (Mus musculus) and diurnal grass rats (Arvicanthis niloticus). In the first experiment, animals were housed in a 12:12 light-dark (LD) cycle, with dark or light pulses presented at 6 Zeitgeber times (ZTs; with ZT0 = lights on). Light pulses during the dark phase produced negative masking in nocturnal mice but only at ZT14, whereas light pulses resulted in positive masking in diurnal grass rats across the dark phase. In both species, dark pulses had no effect on behavior. In the 2nd experiment, animals were kept in constant darkness or constant light and were presented with light or dark pulses, respectively, at 6 circadian times (CTs). CT0 corresponded to ZT0 of the preceding LD cycle. Rhythms in masking responses to light differed between species; responses were evident at all CTs in grass rats but only at CT14 in mice. Responses to darkness were observed only in mice, in which there was a significant increase in activity at CT 22. In the 3rd experiment, animals were kept on a 3.5:3.5-h LD cycle. Surprisingly, masking was evident only in grass rats. In mice, levels of activity during the light and dark phases of the 7-h cycle did not differ, even though the same animals had responded to discrete photic stimuli in the first 2 experiments. The results of the 3 experiments are discussed in terms of their methodological implications and for the insight they offer into the mechanisms and evolution of diurnality.  相似文献   

12.
Internal synchrony among external cycles and internal oscillators allows adaptation of physiology to cyclic demands for homeostasis. Night work and shift work lead to a disrupted phase relationship between external time cues and internal rhythms, also losing internal coherence among oscillations. This process results in internal desynchrony (ID) in which behavioral, hormonal, and metabolic variables cycle out of phase. It is still not clear whether ID originates at a peripheral or at a central level. In order to determine the possible role of hypothalamic oscillators in ID, we explored with a rat model of "night work" daily rhythms of activity and clock gene expression in the hypothalamus. This study provides evidence that wakefulness and activity during the normal resting phase lead to a shift in the diurnal rhythms of c-Fos and induce a rhythm of PER1 in the arcuate and dorsomedial nucleus of the hypothalamus, both associated with metabolism and regulation of the sleep/wake cycle. Moreover, the number of orexin (ORX)-positive neurons and c-Fos in the perifornical area increased during the working period, suggesting a relevant switch of activity in this brain region induced by the scheduled activity; however, the colocalization of c-Fos in ORX-positive cells was not increased. In contrast, the suprachiasmatic nucleus and the paraventricular nucleus remained locked to the light/dark cycle, resulting in ID in the hypothalamus. Present data suggest that ID occurs already at the level of the first output projections from the SCN, relaying nuclei that transmit temporal signals to other brain areas and to the periphery.  相似文献   

13.
Photic induction of immediate early genes including c-fos in the suprachiasmatic nucleus (SCN) has been well demonstrated in the nocturnal rodents. On the other hand, in diurnal rodents, no data is available whether the light can induce c-fos or Fos in the SCN. We therefore examined whether 60 min light exposure induces Fos-like immunoreactivity (Fos-lir) in the SCN cells of diurnal chipmunks and whether the induction is phase dependent, comparing with the results in nocturnal hamsters. We also examined an effect of light on the locomotor activity rhythm under continuous darkness. Fos-lir was induced in the chipmunk SCN. The induction was clearly phase dependent. The light during the subjective night induced strong expression of Fos-lir. This phase dependency is similar to that in hamsters. However, unlike in hamsters, the Fos-lir was induced in some SCN cells of chipmunks exposed to light during the subjective day. In the locomotor rhythm, on the other hand, the light pulse failed to induce the phase shift at phases at which the Fos-lir was induced. These results suggest that the photic induction of Fos-lir in the diurnal chipmunks is gated by a circadian oscillator as well as in the nocturnal hamsters. However, the functional role of Fos protein may be different in the diurnal rodents from in the nocturnal rodents.  相似文献   

14.
The circadian rhythmicity of hormone secretion, body temperature, and sleep/wakefulness results from an endogenous rhythm of neural activity generated by clock genes in the suprachiasmatic nucleus (SCN). One of these genes, Clock, has been considered essential for the generation of cellular rhythmicity centrally and in the periphery; however, melatonin-proficient Clock(Delta19) + MEL mutant mice retain melatonin rhythmicity, suggesting that their central rhythmicity is intact. Here we show that melatonin production in these mutants was rhythmic in constant darkness and could be entrained by brief single daily light pulses. Under normal light-dark conditions, per2 and prokineticin2 (PK2) mRNA expression was rhythmic in the SCN of Clock(Delta19) + MEL mice. Expression of Bmal1 and npas2 was not altered, whereas per1 expression was arrhythmic. In contrast to the SCN, per1 and per2 expression, as well as Bmal1 expression in liver and skeletal muscle, together with plasma corticosterone, was arrhythmic in Clock(Delta19) + MEL mutant mice in normal light-dark conditions. npas2 mRNA was also arrhythmic in liver but rhythmic in muscle. The Clock(Delta19) mutation does not abolish central rhythmicity and light entrainment, suggesting that a functional Clock homolog, possibly npas2, exists in the SCN. Nevertheless, the SCN of Clock(Delta19) + MEL mutant mice cannot maintain liver and muscle rhythmicity through rhythmic outputs, including melatonin secretion, in the absence of functional Clock expression in the tissues. Therefore, liver and muscle, but not SCN, have an absolute requirement for CLOCK, with as yet unknown Clock-independent factors able to generate the latter.  相似文献   

15.
Kodama T  Usui S  Honda Y  Kimura M 《Peptides》2005,26(4):631-638
To investigate whether a diurnal animal possesses the orexinergic system implicating vigilance and behavior, we examined Fos immunoreactivity (IR) in orexinergic neurons of Korean chipmunks raised under 12h light-dark cycles. Brain tissue, collected at four different zeitgeber times (ZT), was double-labeled with Fos and orexin-A antibodies. There was no difference in the number of orexin-IR neurons in the hypothalamus across all ZTs. However, more orexin-IR neurons expressing Fos-IR were found at ZTs 3 and 9 than ZTs 15 and 21. The results demonstrate circadian variations in the activation of orexin neurons corresponding with locomotor cycles, similarly seen in nocturnal rodents.  相似文献   

16.
In mammals, sleep is regulated by circadian and homeostatic mechanisms. The circadian component, residing in the suprachiasmatic nucleus (SCN), regulates the timing of sleep, whereas homeostatic factors determine the amount of sleep. It is believed that these two processes regulating sleep are independent because sleep amount is unchanged after SCN lesions. However, because such lesions necessarily damage neuronal connectivity, it is preferable to investigate this question in a genetic model that overcomes the confounding influence of circadian rhythmicity. Mice with disruption of both mouse Period genes (mPer)1 and mPer2 have a robust diurnal sleep-wake rhythm in an entrained light-dark cycle but lose rhythmicity in a free-run condition. Here, we examine the role of the mPer genes on the rhythmic and homeostatic regulation of sleep. In entrained conditions, when averaged over the 24-h period, there were no significant differences in waking, slow-wave sleep (SWS), or rapid eye movement (REM) sleep between mPer1, mPer2, mPer3, mPer1-mPer2 double-mutant, and wild-type mice. The mice were then kept awake for 6 h (light period 6-12), and the mPer mutants exhibited increased sleep drive, indicating an intact sleep homeostatic response in the absence of the mPer genes. In free-run conditions (constant darkness), the mPer1-mPer2 double mutants became arrhythmic, but they continued to maintain their sleep levels even after 36 days in free-running conditions. Although mPer1 and mPer2 represent key elements of the molecular clock in the SCN, they are not required for homeostatic regulation of the daily amounts of waking, SWS, or REM sleep.  相似文献   

17.
Circadian rhythms are still expressed in animals that display daily torpor, implying a temperature compensation of the pacemaker. Nevertheless, it remains unclear how the clock works in hypothermic states and whether torpor itself, as a temperature pulse, affects the circadian system. To reveal changes in the clockwork during torpor, we compared clock gene and neuropeptide expression by in situ hybridization in the suprachiasmatic nucleus (SCN) and pineal gland of normothermic and torpid Djungarian hamsters (Phodopus sungorus). Animals from light-dark (LD) 8ratio16 were sacrificed at 8 time points throughout 24 h. To investigate the effect of a previous torpor episode on the clock, we sacrificed a group of normothermic hamsters 1 day after torpor. In normothermic animals, Per1 peaked at zeitgeber time (ZT)4; whereas, Bmal1 reached maximal expression between ZT16 and ZT19. AVP mRNA in the SCN showed highest levels at ZT7. On the day of torpor, the levels of all mRNAs investigated, except for AVP mRNA, were increased during the torpor bout. Moreover, the Bmal1 rhythm was advanced. On the day after the hypothermia, Bmal1 and AVP rhythms showed severely depressed amplitude. Those distinct amplitude changes of Bmal1 and AVP on the day after a torpor episode expression suggests that torpor affects the circadian system, probably by altered translational processes that might lead to a modified protein feedback on gene expression. In the pineal gland, an important clock output, Aanat expression, peaked between ZT16 and ZT22 in normothermic animals. Aanat levels were significantly advanced on the day of hypothermia, an effect which was still visible 1 day afterward. In summary, this study showed that daily torpor affects the phase and amplitude of rhythmic clock gene and clock-controlled gene expression in the SCN. Furthermore, the rhythmic gene expression in a peripheral oscillator, the pineal gland, is also affected.  相似文献   

18.
Previous studies have shown that clock genes are expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus, other brain regions, and peripheral tissues. Various peripheral oscillators can run independently of the SCN. However, no published studies have reported changes in the expression of clock genes in the rat central nervous system and peripheral blood mononuclear cells (PBMCs) after withdrawal from chronic morphine treatment. Rats were administered with morphine twice daily at progressively increasing doses for 7 days; spontaneous withdrawal signs were recorded 14 h after the last morphine administration. Then, brain and blood samples were collected at each of eight time points (every 3 h: ZT 9; ZT 12; ZT 15; ZT 18; ZT 21; ZT 0; ZT 3; ZT 6) to examine expression of rPER1 and rPER2 and rCLOCK . Rats presented obvious morphine withdrawal signs, such as teeth chattering, shaking, exploring, ptosis, and weight loss. In morphine-treated rats, rPER1 and rPER2 expression in the SCN, basolateral amygdala, and nucleus accumbens shell showed robust circadian rhythms that were essentially identical to those in control rats. However, robust circadian rhythm in rPER1 expression in the ventral tegmental area was completely phase-reversed in morphine-treated rats. A blunting of circadian oscillations of rPER1 expression occurred in the central amygdala, hippocampus, nucleus accumbens core, and PBMCs and rPER2 expression occurred in the central amygdala, prefrontal cortex, nucleus accumbens core , and PBMCs in morphine-treated rats compared with controls. rCLOCK expression in morphine-treated rats showed no rhythmic change, identical to control rats. These findings indicate that withdrawal from chronic morphine treatment resulted in desynchronization from the SCN rhythm, with blunting of rPER1 and rPER2 expression in reward-related neurocircuits and PBMCs.  相似文献   

19.
Evidence demonstrates that rodents learn to associate a foot shock with time of day, indicating the formation of a fear related time-stamp memory, even in the absence of a functioning SCN. In addition, mice acquire and retain fear memory better during the early day compared to the early night. This type of memory may be regulated by circadian pacemakers outside of the SCN. As a first step in testing the hypothesis that clock genes are involved in the formation of a time-stamp fear memory, we exposed one group of mice to fox feces derived odor (TMT) at ZT 0 and one group at ZT 12 for 4 successive days. A separate group with no exposure to TMT was also included as a control. Animals were sacrificed one day after the last exposure to TMT, and PER2 and c-Fos protein were quantified in the SCN, amygdala, hippocampus, and piriform cortex. Exposure to TMT had a strong effect at ZT 0, decreasing PER2 expression at this time point in most regions except the SCN, and reversing the normal rhythm of PER2 expression in the amygdala and piriform cortex. These changes were accompanied by increased c-Fos expression at ZT0. In contrast, exposure to TMT at ZT 12 abolished the rhythm of PER2 expression in the amygdala. In addition, increased c-Fos expression at ZT 12 was only detected in the central nucleus of the amygdala in the TMT12 group. TMT exposure at either time point did not affect PER2 or c-Fos in the SCN, indicating that under a light-dark cycle, the SCN rhythm is stable in the presence of repeated exposure to a fear-inducing stimulus. Taken together, these results indicate that entrainment to a fear-inducing stimulus leads to changes in PER2 and c-Fos expression that are detected 24 hours following the last exposure to TMT, indicating entrainment of endogenous oscillators in these regions. The observed effects on PER2 expression and c-Fos were stronger during the early day than during the early night, possibly to prepare appropriate systems at ZT 0 to respond to a fear-inducing stimulus.  相似文献   

20.
The suprachiasmatic nucleus (SCN) of the hypothalamus is implicated in the timing of a wide variety of circadian processes. Since the environmental light-dark cycle is the main zeitgeber for many of the rhythms, photic information may have a synchronizing effect on the endogenous clock of the SCN by inducing periodic changes in the biological activity of certain groups of neurons. By studying the brains obtained at autopsy of human subjects, marked diurnal oscillations were observed in the neuropeptide content of the SCN. Vasopressin, for example, one of the most abundant peptides in the human SCN, exhibited a diurnal rhythm, with low values at night and peak values during the early morning. However, with advancing age, these diurnal fluctuations deteriorated, leading to a disrupted cycle with a reduced amplitude in elderly people. These findings suggest that the synthesis of some peptides in the human SCN exhibits an endogenous circadian rhythmicity, and that the temporal organization of these rhythms becomes progressively disturbed in senescence. (Chronobiology International, 17(3), 245-259, 2000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号