首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Covelo  Felisa  Gallardo  Antonio 《Plant and Soil》2004,259(1-2):267-276
Intraspecific variation in polyphenols may be important both for the resistance of plants to herbivory and for nutrient cycling in terrestrial ecosystems. The spatial pattern and scale of polyphenol concentration in natural populations are practically unknown, despite multiple evidence that resources influencing leaf phenolics (such as light or nutrient availability) show spatial dependence at the scale of meters to tens of meters. By using geostatistical methods, we evaluated the spatial variability in polyphenol concentration in green and senescent leaves in a pedunculate oak (Quercus robur L.) population of 125 individuals. The spatial pattern of light and nutrient availability for plants was also evaluated. Leaf polyphenols were more variable than other leaf properties, and green polyphenols were significantly correlated with radiation, leaf mass per unit area and leaf N concentration. Both green and senescent leaf polyphenol concentration showed spatial dependence at distances below 6 to 10 m, with structural (spatial) variance explaining between 50 and 80% of the total variance. The variance not explained by space was assumed to be due to individual genotypic variability. Stochastic maps of leaf phenolics in the area showed that the probability of finding high phenolics level was not random. These findings may be important to understand the spatial heterogeneity of plant-herbivore interactions, leaf litter decomposition and mineralization rate.  相似文献   

2.
The convergent evolution of polyphenol-rich plant communities has occurred on highly acidic and infertile soils throughout the world. The pygmy forest in coastal northern California is an example of an ecosystem on an extremely infertile soil that has exceptionally high concentrations of polyphenols. Many negative feedbacks have been identified whereby plants degrade fertile soils through production of polyphenol-rich litter, sequestering soil nutrients into unavailable form and creating unfavorable conditions for seed germination, root growth, and nutrient uptake. But in the context of plant-litter-soil interactions in ecosystems adapted to soils that are inherently acidic and infertile (such as the pygmy forest), there are also many positive feedbacks that result from polyphenol production. By inhibiting decomposition, polyphenols regulate the formation of a mor-humus litter layer, conserving nutrients and creating a more favorable medium for root growth. Polyphenols shift the dominant pathway of nitrogen cycling from mineral to organic forms to minimize potential N losses from the ecosystem and maximize litter-N recovery by mycorrhizal symbionts. Polyphenol complexation of Al, Mn and Fe reduce potential Al toxicity and P fixation in soil. Polyphenols regulate organic matter dynamics, leading to the accumulation of organic matter with cation exchange capacity to minimize leaching of nutrient cations. Humic substances derived from polyphenolic precursors coat rhizosphere soil surfaces, improving physical and chemical conditions for root growth and nutrient cycling. Although their long-accepted adaptive value for antiherbivore defense is now in doubt, polyphenol alteration of soil conditions and regulation of nutrient cycling illustrate how fitness can be influenced by the extended phenotype in plant-litter-soil interactions.  相似文献   

3.
In nutrient-poor ecosystems high polyphenol concentrations in plant litter have been proposed to influence soil nutrient availability in benefit of the plants. We addressed the question whether litter polyphenol concentrations vary across a soil chronosequence of almost identical geology, climate and plant species composition, but of a wide range in nitrogen (N) and phosphorus (P) availability in the Hawaiian Islands. Concentrations of total phenolics (TPh) and proanthocyanidins (PA) in leaf litter of the dominant tree species Metrosideros polymorpha were higher at the oldest, P-limited site compared to the youngest, N-limited site, with intermediate values at the two relatively fertile sites co-limited by N and P. Polyphenol concentrations in fine root litter differed considerably from those observed in leaf litter and varied differently across the soil age gradient. Long-term fertilization did not significantly alter polyphenol concentrations in Metrosideros litter at either site. Moreover, green leaves and leaf litter of Metrosideros showed similar relative differences among sites when compared between natural populations and plants from the same populations but grown in a common garden. These results suggest that polyphenol concentrations inherently vary among populations of the dominant tree species in Hawaiian montane forests possibly indicating an adaptation to ecosystem properties such as substrate age related differences in soil fertility. The combined above- and below-ground input rate of TPh ranged from 62.4 to 170.8 g/m2/yr and was significantly higher at the P-limited than at the N-limited site. Root-derived polyphenols contributed a much higher absolute and relative amount of phenolic input at the N-limited than at the P-limited site. The differences in amount, quality, and pathways of input might suggest specific interactions with soil processes and nutrient cycling among the Hawaiian rainforests studied here.  相似文献   

4.
目的初步探讨苹果多酚作微生态调节剂抑制变形链球菌,扶持血链球菌生长的实验研究,为龋病的防治提供一定的依据。方法采用抑菌环实验观察苹果多酚对变形链球菌和血链球菌生长的影响,检测其对变形链球菌产酸的变化,并通过扫描电镜观察对变形链球菌在玻片粘附情况的影响。结果苹果多酚能够明显抑制变形链球菌的生长,阻止其对玻片的粘附,降低其产酸能力,但对血链球菌生长没有明显的抑制作用。对变形链球菌与血链球菌的影响比较差异有统计学意义。结论苹果多酚具有调整窝沟致龋菌的作用,进一步研究很可能是一良好的窝沟菌群的微生态调节剂。  相似文献   

5.
To assess effects of the environmental stress on polyphenol compounds (polyphenols) in plants, the polyphenol contents were investigated in the seedlings of safflower (Carthamus tinctrius L.) and cucumber (Cucumis sativus L.) grown under three types of growth conditions: control; light stress, irradiated with strong light in the visible wavelength range; and light/water stress, irradiated with strong visible light with a limited water supply. The total polyphenol contents and the amounts of the major polyphenols, especially luteolin 7-O-glucoside in safflower cotyledons, and luteolin 7-O-glucoside and luteolin in safflower foliage leaves, increased in response to both stresses. The polyphenol increasing effect of light/water stress was clearly observed in safflower compared to cucumber, suggesting that plants that are resistant to these stresses can accumulate substantial amounts of polyphenols compared to the plants which respond weakly to the stresses.  相似文献   

6.
Using young plants of Lycopersicum esculentum Mill., we attempt to define a system for a new evaluation of the physiological role of polyphenols, particularly of their regulating properties on growth and development, Exogenously supplied qoinic acid causes an important increase of the phenolic content and a reduced growth of the plants. The decrease in size is proportional to the stimulation of the phenolic pool and is equally obtained using other precursors of aromatic compounds like phenylalanine and cinnamic acid. Non-precursors of polyphenols structurally related to quinic acid are ineffective. It appears from these data that polyphenol levels and growth could be related in tomato plant and that this material would be convenient for studies on interactions between growth and polyphenols.  相似文献   

7.
叶位整形是一项促进烟叶生长和品质提高的栽培管理措施,为明确不同叶位整形模式对白肋烟生长及多酚物质含量的影响,我们在白肋烟主产区—湖北省恩施州研究了不同叶位整形模式下不同生育期白肋烟的叶面积、叶绿素含量(CCI值)、各器官生物量和上下位叶片中多酚物质含量。结果表明:叶位整形显著影响了白肋烟生长和烟叶多酚物质含量,不但增大了不同叶位烟叶的叶面积及CCI值,还协调了各器官生物量、营养物质的合理分配以及不同叶位烟叶中多酚物质的含量;但不同叶位整形模式对白肋烟的生长影响不同,即旺长期整形(WZ)处理对白肋烟整株的促进作用较好,而团棵后期整形(TH)处理仅对上位叶效果较好。本研究采用的叶位整形栽培管理技术在保证白肋烟产量的同时,可在一定程度上促进白肋烟生长及烟叶品质的提高。  相似文献   

8.
The process of nutrient retranslocation from plant leaves during senescence subsequently affects both plant growth and soil nutrient cycling; changes in either of these could potentially feed back to climate change. Although elemental nutrient resorption has been shown to respond modestly to temperature and precipitation, we know remarkably little about the influence of increasing intensities of drought and warming on the resorption of different classes of plant metabolites. We studied the effect of warming and altered precipitation on the production and resorption of metabolites in Quercus rubra. The combination of warming and drought produced a higher abundance of compounds that can help to mitigate climatic stress by functioning as osmoregulators and antioxidants, including important intermediaries of the tricarboxylic acid (TCA) cycle, amino acids including proline and citrulline, and polyamines such as putrescine. Resorption efficiencies (REs) of extractable metabolites surprisingly had opposite responses to drought and warming; drought treatments generally increased RE of metabolites compared to ambient and wet treatments, while warming decreased RE. However, RE of total N differed markedly from that of extractable metabolites such as amino acids; for instance, droughted plants resorbed a smaller fraction of elemental N from their leaves than plants exposed to the ambient control. In contrast, plants in drought treatment resorbed amino acids more efficiently (>90%) than those in ambient (65–77%) or wet (42–58%) treatments. Across the climate treatments, the RE of elemental N correlated negatively with tissue tannin concentration, indicating that polyphenols produced in leaves under climatic stress could interfere with N resorption. Thus, senesced leaves from drier conditions might have a lower nutritive value to soil heterotrophs during the initial stages of litter decomposition despite a higher elemental N content of these tissues. Our results suggest that N resorption may be controlled not only by plant demand, but also by climatic influences on the production and resorption of plant metabolites. As climate–carbon models incorporate increasingly sophisticated nutrient cycles, these results highlight the need to adequately understand plant physiological responses to climatic variables.  相似文献   

9.
Extracellular phenoloxidase enzymes play an important role in the stability of soil carbon storage by contributing to the cycling of complex recalcitrant phenolic compounds. Climate warming could affect peatland functioning through an alteration of polyphenol/phenoloxidase interplay, which could lead them to becoming weaker sinks of carbon. Here, we assessed the seasonal variability of total phenolics and phenoloxidases subjected to 2–3 °C increase in air temperature using open‐top chambers. The measurements were performed along a narrow fen–bog ecological gradient over one growing season. Climate warming had a weak effect on phenoloxidases, but reduced phenolics in both fen and bog areas. Multivariate analyses revealed a split between the areas and also showed that climate warming exacerbated the seasonal variability of polyphenols, culminating in a destabilization of the carbon cycle. A negative relationship between polyphenols and phenoloxidases was recorded in controls and climate treatments suggesting an inhibitory effect of phenolics on phenoloxidases. Any significant decrease of phenolics through repeatedly elevated temperature would greatly impact the ecosystem functioning and carbon cycle through an alteration of the interaction of polyphenols with microbial communities and the production of extracellular enzymes. Our climate treatments did not have the same impact along the fen–bog gradient and suggested that not all the peatland habitats would respond similarly to climate forcing.  相似文献   

10.
Musetti R  Favali MA  Pressacco L 《Cytobios》2000,102(401):133-147
The alterations of cell walls and the localization of several compounds such as polyphenols, suberin, lignin, in plum and apple plants infected with plum leptonecrosis (PLN) and apple proliferation (AP) phytoplasmas respectively, were investigated. Catharanthus roseus plants, infected with AP or PLN were also studied. The 4,6-diamidino-2-phenylindole (DAPI) test and transmission electron microscopy showed the presence of phytoplasmas in all infected plants. Specific histological stainings for cutinized/suberinized cell walls, tannin deposits and vacuolar polyphenol inclusions, performed on leaf and stem tissues, revealed an increase of these substances in infected plum and apple plants. No differences occurred in C. roseus. Total polyphenol analysis confirmed a strong increase (3-fold) in the polyphenol content in infected tissues, particularly in plum leaves. From the data obtained it appears that polyphenols can be considered as defence-related metabolites in plum and apple plants infected by phytoplasmas. Further investigations are necessary to determine whether these compounds play a specific role in the development of all phytoplasma/host interactions and in the defence-related processes.  相似文献   

11.
Plant and Soil - Leaf litter decomposition is closely linked to nutrient cycling and driven by environmental conditions, species-specific leaf chemistry, and here in particular by polyphenols...  相似文献   

12.
Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants'' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively), we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles.  相似文献   

13.
研究了甲醇水溶液浓度和浸提时间、品种/基因型、培养时间对柑橘胚性愈伤组织总多酚含量的影响。结果表明,用40%的甲醇溶液在55℃水浴条件下浸提30min,柑橘胚性愈伤组织总多酚的得率最高;总多酚含量受品种/基因型的影响,在所比较的6个柑橘品种/基因型暗柳橙、椪柑、默科特橘橙、无酸甜橙、锦橙和红马叙葡萄柚中,暗柳橙胚性愈伤组织的总多酚含量最高;总多酚含量随培养时间的改变而变化,在培养40d时各品种/基因型胚性愈伤组织的总多酚含量均达到最大值。  相似文献   

14.
Kraus  T.E.C.  Zasoski  R.J.  Dahlgren  R.A. 《Plant and Soil》2004,262(1-2):95-109
Plant and Soil - Plant secondary compounds such as polyphenols and tannins are purported to influence nutrient cycling by affecting organic matter degradation, mineralization rates, N availability...  相似文献   

15.
Several hundred somaclones established from plants regenerated from embryogenic callus cultures of six high tannin sorghum lines were screened for variants with altered levels of polyphenols in the grain. Grain from over 6000 plants including the R 1 (primary), R2, and R3 generations were analyzed for total phenols, flavan-4-ols, and proanthocyanidins (condensed tannins). Although many variants which had lost the ability to synthesize chlorophyll were found, none of the somaclones tested had lost or greatly reduced the ability to synthesize any of the polyphenols assayed. However, we did observe statistically significant differences in polyphenol concentration between tissue culture-derived R1 plants and the parental controls. In the R2 generation the proportion of somaclones which differed significantly from the parents varied from 47% to 68% depending upon genotype. The average somaclonal variation rate and somaclonal variant frequency estimated in the tested population for the three polyphenol characteristics ranged from 37.3% to 40.7% and 5.3% to 7.8%, respectively. Variants with decreased levels of polyphenols were usually epigenetic and reverted back to normal levels in subsequent generations, but those with increased levels usually persisted after two meiotic cycles, indicating they are heritable. Variants with polyphenol levels increased up to 80% or decreased by 30% were selected for in the R3 generation.  相似文献   

16.
Compositions of phenolic substances were studied in leaves of 21 species of medicinal plants. Flavonoid levels varied from 1.94 to 5.42%, whereas total amounts of monomeric polyphenols and hydroxybenzoic acids were estimated as 0.27 to 0.57%, and hydroxycinnamic acids and their esters with quinic acid, 0.09 to 0.18%. Condensed and polymerized polyphenols were detected in amounts of 0.41 to 1.20%. Qualitative compositions of flavonoids in leaves of seven plants studied were presented. The developed analytical procedures may be useful for plant polyphenol studies and as the basis of hemotaxonomy.  相似文献   

17.
Polyphenols represent a large family of plant secondary metabolites implicated in the prevention of various diseases such as cancers and cardiovascular diseases. The potato is a significant source of polyphenols in the human diet. In this study, we examined the expression of thirteen genes involved in the biosynthesis of polyphenols in potato tubers using real-time RT-PCR. A selection of five field grown native Andean cultivars, presenting contrasting polyphenol profiles, was used. Moreover, we investigated the expression of the genes after a drought exposure. We concluded that the diverse polyphenolic profiles are correlated to variations in gene expression profiles. The drought-induced variations of the gene expression was highly cultivar-specific. In the three anthocyanin-containing cultivars, gene expression was coordinated and reflected at the metabolite level supporting a hypothesis that regulation of gene expression plays an essential role in the potato polyphenol production. We proposed that the altered sucrose flux induced by the drought stress is partly responsible for the changes in gene expression. This study provides information on key polyphenol biosynthetic and regulatory genes, which could be useful in the development of potato varieties with enhanced health and nutritional benefits.  相似文献   

18.
Compositions of phenolic substances were studied in the leaves of 21 species of medicinal plants. Flavonoid levels varied from 1.94 to 5.42%, whereas total amounts of monomeric polyphenols and hydroxybenzoic acids were estimated as 0.27 to 0.57%; hydroxycinnamic acids and their esters with quinic acid, 0.09 to 0.18%. Condensed and polymerized polyphenols were detected in amounts of 0.41 to 1.20%. Qualitative compositions of flavonoids in leaves of the seven plants studied were presented. The developed analytical procedures may be useful for plant polyphenol studies and as a basis for hemotaxonomy.  相似文献   

19.
Growing interest in possible global climate change has underlined the need for better information concerning the way in which carbon partitioning between ecosystem components is influenced by constraints on nutrient availability. Micro-organisms play a fundamental role in the cycling of carbon and nutrients in all ecosystems but the role of fungi in particular is pivotal in boreal forest ecosystems. Traditional models of nutrient cycling are based on methods and concepts developed in agricultural systems where microorganisms are considered primarily as nutrient processors providing plants with inorganic nutrients. The filamentous nature of fungi, their ability to translocate carbon and nutrients between different substrates and the capacity of ectomycorrhizal fungi to utilise organic nutrients have all been largely ignored. In this article, a new model is suggested which emphasises competition for organic nutrients between decomposer organisms and plants, with the plants depending on their associated mycorrhizal fungi for nutrient acquisition. Antagonistic interactions involving nutrient transfer between decomposer and mycorrhizal fungi are proposed as important pathways in nutrient cycling. Due to the nutrient conservative features of decomposer fungi, inorganic nutrients are considered less important for plant nutrition. The implications of the new nutrient cycling model on the carbon balance of boreal forests are discussed.  相似文献   

20.
Polyphenols are natural compounds found in plants, fruits, chocolate, and beverages such as tea and wine. To date, the majority of polyphenol research shows them to have anticancer activity in cell lines and animal models. Some human clinical trials also indicate possible anticancer benefits are associated with polyphenols. A problem with polyphenols is their short half-life and low bioavailability; thus the use of nanoparticles to enhance their delivery is a new research field. A Pubmed search was conducted to find in vitro, in vivo, and human clinical trials done within the past 10 years involving the use of polyphenols against different cancer types, and for studies done within the past 5 years on the use of nanoparticles to enhance polyphenol delivery. Based on the studies found, it is observed that polyphenols may be a potential alternative or additive therapy against cancer, and the use of nanoparticles to enhance their delivery to tumors is a promising approach. However, further human clinical trials are necessary to better understand the use of polyphenols as well as their nanoparticle-mediated delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号