首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Inhibitor of Growth (ING) proteins represent a type II tumor suppressor family comprising five conserved genes, ING1 to ING5. While ING1, ING2 and ING3 proteins are stable components of the mSIN3a-HDAC complexes, the association of ING1, ING4 and ING5 with HAT protein complexes was also reported. Among these the ING1 and ING2 have been analyzed more deeply. Similar to other tumor suppressor factors the ING proteins are also involved in many cellular pathways linked to cancer and cell proliferation such as cell cycle regulation, cellular senescence, DNA repair, apoptosis, inhibition of angiogenesis and modulation of chromatin. A common structural feature of ING factors is the conserved plant homeodomain (PHD), which can bind directly to the histone mark trimethylated lysine of histone H3 (H3K4me3). PHD mutants lose the ability to undergo cellular senescence linking chromatin mark recognition with cellular senescence. ING1 and ING2 are localized in the cell nucleus and associated with chromatin modifying enzymes, linking tumor suppression directly to chromatin regulation. In line with this, the expression of ING1 in tumors is aberrant or identified point mutations are mostly localized in the PHD finger and affect histone binding. Interestingly, ING1 protein levels increase in replicative senescent cells, latter representing an efficient pathway to inhibit cancer proliferation. In association with this, suppression of p33ING1 expression prolongs replicative life span and is also sufficient to bypass oncogene-induced senescence. Recent analyses of ING1- and ING2-deficient mice confirm a tumor suppressive role of ING1 and ING2 and also indicate an essential role of ING2 in meiosis. Here we summarize the activity of ING1 and ING2 as tumor suppressors, chromatin factors and in development.  相似文献   

4.
5.
6.
The ING (inhibitor of growth) protein family includes a group of homologous nuclear proteins that share a highly conserved plant homeodomain (PHD) finger domain at their carboxyl termini. Members of this family are found in multiprotein complexes that posttranslationally modify histones, suggesting that these proteins serve a general role in permitting various enzymatic activities to interact with nucleosomes. There are three members of the ING family in Saccharomyces cerevisiae: Yng1p, Yng2p, and Pho23p. Yng1p is a component of the NuA3 histone acetyltransferase complex and is required for the interaction of NuA3 with chromatin. To gain insight into the function of the ING proteins, we made use of a genetic strategy to identify genes required for the binding of Yng1p to histones. Using the toxicity of YNG1 overexpression as a tool, we showed that Yng1p interacts with the amino-terminal tail of histone H3 and that this interaction can be disrupted by loss of lysine 4 methylation within this tail. Additionally, we mapped the region of Yng1p required for overexpression of toxicity to the PHD finger, showed that this region capable of binding lysine 4-methylated histone H3 in vitro, and demonstrated that mutations of the PHD finger that abolish binding in vitro are no longer toxic in vivo. These results identify a novel function for the Yng1p PHD finger in promoting stabilization of the NuA3 complex at chromatin through recognition of histone H3 lysine 4 methylation.  相似文献   

7.
8.
The inhibitor of growth (ING) family of zinc-finger plant homeodomain (PHD)-containing chromatin remodeling protein controls gene expression and has been implicated in the regulation of cell proliferation and death. However, the role of ING proteins in cell differentiation remains largely unexplored. Here, we identify an essential function for ING2 in muscle differentiation. We find that knockdown of ING2 by RNA interference (RNAi) blocks the differentiation of C2C12 cells into myotubes, suggesting that ING2 regulates the myogenic differentiation program. We also characterize a mechanism by which ING2 drives muscle differentiation. In structure-function analyses, we find that the leucine zipper motif of ING2 contributes to ING2-dependent muscle differentiation. By contrast, the PHD domain, which recognizes the histone H3K4me3 epigenetic mark, inhibits the ability of ING2 to induce muscle differentiation. We also find that the Sin3A-HDAC1 chromatin remodeling complex, which interacts with ING2, plays a critical role in ING2-dependent muscle differentiation. These findings define a novel function for ING2 in muscle differentiation and bear significant implications for our understanding of the role of the ING protein family in cell differentiation and tumor suppression.  相似文献   

9.
Histone covalent modifications regulate many, if not all, DNA-templated processes, including gene expression and DNA damage response. The biological consequences of histone modifications are mediated partially by evolutionarily conserved "reader/effector" modules that bind to histone marks in a modification- and context-specific fashion and subsequently enact chromatin changes or recruit other proteins to do so. Recently, the Plant Homeodomain (PHD) finger has emerged as a class of specialized "reader" modules that, in some instances, recognize the methylation status of histone lysine residues, such as histone H3 lysine 4 (H3K4). While mutations in catalytic enzymes that mediate the addition or removal of histone modifications (i.e., "writers" and "erasers") are already known to be involved in various human diseases, mutations in the modification-specific "reader" proteins are only beginning to be recognized as contributing to human diseases. For instance, point mutations, deletions or chromosomal translocations that target PHD fingers encoded by many genes (such as recombination activating gene 2 (RAG2), Inhibitor of Growth (ING), nuclear receptor-binding SET domain-containing 1 (NSD1) and Alpha Thalassaemia and Mental Retardation Syndrome, X-linked (ATRX)) have been associated with a wide range of human pathologies including immunological disorders, cancers, and neurological diseases. In this review, we will discuss the structural features of PHD fingers as well as the diseases for which direct mutation or dysregulation of the PHD finger has been reported. We propose that misinterpretation of the epigenetic marks may serve as a general mechanism for human diseases of this category. Determining the regulatory roles of histone covalent modifications in the context of human disease will allow for a more thorough understanding of normal and pathological development, and may provide innovative therapeutic strategies wherein "chromatin readers" stand as potential drug targets.  相似文献   

10.
p33ING2 belongs to the ING-gene family that is involved in tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. Most functions are dependent on the tumor suppressor p53. p33ING2 was also shown to bind to trimethylated lysine 4 of histone H3. Here, we show that p33ING2 contains a transferable silencing function, which is independent of p53. p33ING2-mediated gene silencing is resistant to the HDAC-inhibitor trichostatin A indicating that p33ING2 uses a non-HDAC class I or II pathway for gene repression in reporter assays. In line with that we show that p33ING2 is associated with histone methyltransferase (HMT) activity in vitro and in vivo, methylating specifically histone H3. Interestingly, the specificity is distinct from the MeCP2-recruited HMT. Mutation or methylation of lysine 9, a mark well known for repression, abrogates histone methylation by MeCP2 but not by the p33ING2 complex. Instead, the ING2-associated HMT shows an increased methylation activity if lysine 9 is methylated. In contrast, mutation or methylation of lysine 4, a methylation preferentially detected at active genes, led to a reduction of the ING2-associated HMT. Notably, also p33ING1 recruits HMT activity suggesting a more general biochemical interaction between members of p33ING family and HMT activity. Deletion analyses revealed that the ING2 C-terminus recruits HMT activity, which correlates with silencing function.  相似文献   

11.
12.
13.
14.
15.
Five members of the KMT2 family of lysine methyltransferases, originally named the mixed lineage leukemia (MLL1-5) proteins, regulate gene expression during embryogenesis and development. Each KMT2A-E contains a catalytic SET domain that methylates lysine 4 of histone H3, and one or several PHD fingers. Over the past few years a growing number of studies have uncovered diverse biological roles of the KMT2A-E PHD fingers, implicating them in binding to methylated histones and other nuclear proteins, and in mediating the E3 ligase activity and dimerization. Mutations in the PHD fingers or deletion of these modules are linked to human diseases including cancer and Kabuki syndrome. In this work, we summarize recently identified biological functions of the KMT2A-E PHD fingers, discuss mechanisms of their action, and examine preference of these domains for histone and non-histone ligands.  相似文献   

16.
17.
Regulation of global chromatin acetylation is important for chromatin remodeling. A small family of Jade proteins includes Jade-1L, Jade-2, and Jade-3, each bearing two mid-molecule tandem plant homology domain (PHD) zinc fingers. We previously demonstrated that the short isoform of Jade-1L protein, Jade-1, is associated with endogenous histone acetyltransferase (HAT) activity. It has been found that Jade-1L/2/3 proteins co-purify with a novel HAT complex, consisting of HBO1, ING4/5, and Eaf6. We investigated a role for Jade-1/1L in the HBO1 complex. When overexpressed individually, neither Jade-1/1L nor HBO1 affected histone acetylation. However, co-expression of Jade-1/1L and HBO1 increased acetylation of the bulk of endogenous histone H4 in epithelial cells in a synergistic manner, suggesting that Jade1/1L positively regulates HBO1 HAT activity. Conversely, small interfering RNA-mediated depletion of endogenous Jade resulted in reduced levels of H4 acetylation. Moreover, HBO1-mediated H4 acetylation activity was enhanced severalfold by the presence of Jade-1/1L in vitro. The removal of PHD fingers affected neither binding nor mutual Jade-1-HBO1 stabilization but completely abrogated the synergistic Jade-1/1L- and HBO1-mediated histone H4 acetylation in live cells and in vitro with reconstituted oligonucleosome substrates. Therefore, PHDs are necessary for Jade-1/1L-induced acetylation of nucleosomal histones by HBO1. In contrast to Jade-1/1L, the PHD zinc finger protein ING4/5 failed to synergize with HBO1 to promote histone acetylation. The physical interaction of ING4/5 with HBO1 occurred in the presence of Jade-1L or Jade-3 but not with the Jade-1 short isoform. In summary, this study demonstrates that Jade-1/1L are crucial co-factors for HBO1-mediated histone H4 acetylation.  相似文献   

18.
19.
20.
Inhibitor of growth 1 (ING1) is implicated in oncogenesis, DNA damage repair, and apoptosis. Mutations within the ING1 gene and altered expression levels of ING1 are found in multiple human cancers. Here, we show that both DNA repair and apoptotic activities of ING1 require the interaction of the C-terminal plant homeodomain (PHD) finger with histone H3 trimethylated at Lys4 (H3K4me3). The ING1 PHD finger recognizes methylated H3K4 but not other histone modifications as revealed by the peptide microarrays. The molecular mechanism of the histone recognition is elucidated based on a 2.1 Å-resolution crystal structure of the PHD-H3K4me3 complex. The K4me3 occupies a deep hydrophobic pocket formed by the conserved Y212 and W235 residues that make cation-π contacts with the trimethylammonium group. Both aromatic residues are essential in the H3K4me3 recognition, as substitution of these residues with Ala disrupts the interaction. Unlike the wild-type ING1, the W235A mutant, overexpressed in the stable clones of melanoma cells or in HT1080 cells, was unable to stimulate DNA repair after UV irradiation or promote DNA-damage-induced apoptosis, indicating that H3K4me3 binding is necessary for these biological functions of ING1. Furthermore, N216S, V218I, and G221V mutations, found in human malignances, impair the ability of ING1 to associate with H3K4me3 or to induce nucleotide repair and cell death, linking the tumorigenic activity of ING1 with epigenetic regulation. Together, our findings reveal the critical role of the H3K4me3 interaction in mediating cellular responses to genotoxic stresses and offer new insight into the molecular mechanism underlying the tumor suppressive activity of ING1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号