首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Limited proteolysis of glutamine synthetase from Escherichia coli has been studied under nondenaturing conditions (pH 7.6, 20 degrees C). Trypsin cleaves the polypeptide chain of glutamine synthetase into two principal fragments, Mr = about 32,000 and 18,000. The covalently bound AMP group is attached to the larger fragment and its presence does not affect cleavage. Although the cleaved polypeptide chain does not dissociate under nondenaturing conditions, catalytic activity is lost. Chymotrypsin and Staphylococcus aureus protease produce similar cleavages in glutamine synthetase. The substrate L-glutamate retards tryptic as well as chymotryptic digestion. Tryptic digestion is also retarded by some of the feedback inhibitors of glutamine synthetase including CTP, L-alanine, L-serine, L-histidine, and glucosamine 6-phosphate. An implication of these findings is that there is a region of the glutamine synthetase polypeptide chain that is particularly susceptible to proteolysis. Either the glutamate and inhibitor sites are formed partly by this suceptible peptide or the binding of glutamate and some inhibitors induces conformational changes within the E. coli glutamine synthetase molecule in the region of the susceptible peptide.  相似文献   

3.
A highly purified preparation of glutamine synthetase from chlorella grown on a medium containing nitrate as a sole source of nitrogen, was isolated and characterized by disc-electrophoresis and analytical ultracentrifugation. The N-terminal amino acid of glutamine synthetase is glycine. The molecular weight of glutamine synthetase is 32.000; its activity in the presence of Mg2+ was 150 mkmol o-phosphate per min per mg protein. The molecular weight of subunits of the enzyme, equal to 53.000 was determined by disc-electrophoresis in polyacrylamide gel in the presence of sodium dodecyl sulfate. Electron microscopy of negatively contrasted enzyme preparations revealed 6 subunits in the enzyme molecule, arranged in a point symmetry group 32.  相似文献   

4.
The purL gene of Escherichia coli encoding the enzyme formylglycinamidine ribonucleotide (FGAM) synthetase which catalyzes the conversion of formylglycinamide ribonucleotide (FGAR), glutamine, and MgATP to FGAM, glutamate, ADP, and Pi has been cloned and sequenced. The mature protein, as deduced by the structural gene sequence, contains 1628 amino acids and has a calculated Mr of 141,418. Comparison of the purL control region to other pur loci control regions reveals a common region of dyad symmetry which may be the binding site for the "putative" repressor protein. Construction of an overproducing strain permitted purification of the protein to homogeneity. N-Terminal sequence analysis and comparison of glutamine binding domain sequences (Ebbole & Zalkin, 1987) confirm the amino acid sequence deduced from the gene sequence. The purified protein exhibits glutaminase activity of 0.02% the normal turnover, and NH3 can replace glutamine as a nitrogen donor with a Km = 1 M and a turnover of 3 min-1 (2% glutamine turnover). The enzyme forms an isolable (1:1) complex with glutamine: t1/2 is 22 min at 4 degrees C. This isolated complex is not chemically competent to complete turnover when FGAR and ATP are added, demonstrating that ammonia and glutamine are not covalently bound as a thiohemiaminal available to complete the chemical conversion to FGAM. hydroxylamine trapping experiments indicate that glutamine is bound covalently to the enzyme as a thiol ester. Initial velocity and dead-end inhibition kinetic studies on FGAM synthetase are most consistent with a sequential mechanism in which glutamine binds followed by rapid equilibrium binding of MgATP and then FGAR. Incubation of [18O]FGAR with enzyme, ATP, and glutamine results in quantitative transfer of the 18O to Pi.  相似文献   

5.
The enzyme glutamine synthetase (GS) has been isolated from a mutant strain of Salmonella typhimurium, constructed by Kustu, which lacks the enzymatic activity for adenylylation of glutamine synthetase. Thus the purified GS is uniformly unadenylylated, as confirmed by gel electrophoresis and enzyme assays. It crystallizes readily in many morphologies, at least six of which are distinct polymorphs. The most favorable crystal form for structural studies belongs to space group C2, with unit cell dimensions a = 235.5 A, b = 134.5 A, c = 200.1 A, beta = 102.8 degrees, and with one GS molecule per asymmetric unit. The crystals diffract to about 2.8 A resolution in rotation X-ray photographs and thus appear suitable for structural studies at moderate resolution. These crystals are isomorphous with crystalline GS from Escherichia coli in both adenylylated and unadenylylated states, suggesting that the enzymes from the two bacteria are similar molecules, and that adenylylation does not greatly affect the conformation of the molecule.  相似文献   

6.
Crystallization of diphtheria toxin.   总被引:4,自引:0,他引:4  
Two new crystal forms (forms III and IV) have been grown of diphtheria toxin (DT), which kills susceptible cells by catalyzing the ADP-ribosylation of elongation factor 2, thereby stopping protein synthesis. Forms III and IV diffract to 2.3 A and 2.7 A resolution, respectively. Both forms belong to space group C2; the unit cell parameters for form III are a = 107.3 A, b = 91.7 A, c = 66.3 A and beta = 94.7 degrees and those for form IV are a = 108.3 A, b = 92.3 A, c = 66.1 A and beta = 90.4 degrees. Both forms have one protein chain per asymmetric unit with the dimeric molecule on a twofold axis of symmetry. Form IV is exceptional among all crystal forms of DT in that it can be grown reproducibly. Thus the form IV crystals should yield a crystallographic structure giving insight into the catalytic, receptor-binding and membrane-insertion properties of DT.  相似文献   

7.
The luminescence of Tb(III) was used to explore the topography of the metal ion sites of Escherichia coli glutamine synthetase and the relationship between these sites and tryptophan residues of the enzyme. By irradiation of tryptophan residues at 295 nm and measurement of the resulting Tb(III) luminescence at 544 nm, a biphasic curve was obtained upon titrating apoenzyme with Tb(III) indicating sequential binding of Tb(III) ions to the two binding sites of glutamine synthetase. The luminescence intensity was greater in the second region of the titration curve which is mostly due to energy transfer from Trp-158 to the second Tb(III) binding site of the enzyme. By use of the F?rster equation for energy transfer from donor Trp to acceptor Tb(III), distances from Trp-57 to Tb(III) at the n1 and n2 sites were calculated, by using a mutant enzyme in which Trp-158 was replaced by Ser, to be 16.4 and 15.7 A, respectively; distances from Trp-158 to Tb(III) at the n1 and n2 sites were calculated, by using a mutant enzyme in which Trp-57 was replaced by Leu, to be 16.8 and 9.5 A, respectively. All the distances are in reasonably good agreement with the crystal structure distances from Salmonella typhimurium glutamine synthetase except the distance from Trp-158 to the second Tb(III) binding site. The discrepancies may result from a slightly different conformation of glutamine synthetase in solution and in the crystal and/or a slightly different conformation for trivalent Ln(III) binding compared to divalent Mn(II) binding.  相似文献   

8.
Several mixed-function oxidation systems catalyze inactivation of Escherichia coli glutamine synthetase and other key metabolic enzymes. In the presence of NADPH and molecular oxygen, highly purified preparations of cytochrome P-450 reductase and cytochrome P-450 (isozyme 2) from rabbit liver microsomes catalyze enzyme inactivation. The inactivation reaction is stimulated by Fe(III) or Cu(II) and is inhibited by catalase, Mn(II), Zn(II), histidine, and the metal chelators o-phenanthroline and EDTA. The inactivation of glutamine synthetase is highly specific and involves the oxidative modification of a histidine in each glutamine synthetase subunit and the generation of a carbonyl derivative of the protein which forms a stable hydrazone when treated with 2,4-dinitrophenylhydrazine. We have proposed that the mixed-function oxidation system (the cytochrome P-450 system) produces Fe(II) and H2O2 which react at the metal binding site on the glutamine synthetase to generate an activated oxygen species which oxidizes a nearby susceptible histidine. This thesis is supported by the fact that (a) Mn(II) and Zn(II) inhibit inactivation and also interfere with the reduction of Fe(III) to Fe(II) by the P-450 system; (b) Fe(II) and H2O2 (anaerobically), in the absence of a P-450 system, catalyze glutamine synthetase inactivation; (c) inactivation is inhibited by catalase; and (d) hexobarbital, which stimulates the rate of H2O2 production by the P-450 system, stimulates the rate of glutamine synthetase inactivation. Moreover, inactivation of glutamine synthetase by the P-450 system does not require complex formation because inactivation occurs when the P-450 components and the glutamine synthetase are separated by a semipermeable membrane. Also, if endogenous catalase is inhibited by azide, rabbit liver microsomes catalyze the inactivation of glutamine synthetase.  相似文献   

9.
We have prepared crystals of tryptophanyl-tRNA synthetase from Bacillus stearothermophilus complexed to tryptophan (type II*), and to tryptophanyl-3'(2')-ATP (type IV). The latter compound is a product analog, enzymatically synthesized by acyl transfer of tryptophan from the tryptophanyl-5'-AMP intermediate to a second molecule of ATP. It resembles the 3'-terminal fragment, tryptophanyl-3'(2')-adenosine, of Trp-tRNATrp. Both crystal forms diffract to high resolution. Although both forms are grown from 2 M K2HPO4, they are dramatically different in the shape of the unit cell and in space group symmetry. Type II* crystals are monoclinic (space group P21). However, low-resolution reflections obey the symmetry of space group P321, which indicates both the existence and the location of noncrystallographic symmetry in the monoclinic unit cell. Type IV crystals belong to space group P41212 (or its enantiomorph) and the unit cell is elongated along the fourfold screw axis. Analysis of molecular packing suggests that intermolecular contacts in the two crystal types are very different. Thus, the two structures may exhibit conformational differences related to catalysis by this enzyme. Solution of type II* and type IV crystal structures may provide representations resembling a Michaelis complex and an acyl transfer product complex.  相似文献   

10.
Asparagine synthetase B catalyzes the assembly of asparagine from aspartate, Mg(2+)ATP, and glutamine. Here, we describe the three-dimensional structure of the enzyme from Escherichia colidetermined and refined to 2.0 A resolution. Protein employed for this study was that of a site-directed mutant protein, Cys1Ala. Large crystals were grown in the presence of both glutamine and AMP. Each subunit of the dimeric protein folds into two distinct domains. The N-terminal region contains two layers of antiparallel beta-sheet with each layer containing six strands. Wedged between these layers of sheet is the active site responsible for the hydrolysis of glutamine. Key side chains employed for positioning the glutamine substrate within the binding pocket include Arg 49, Asn 74, Glu 76, and Asp 98. The C-terminal domain, responsible for the binding of both Mg(2+)ATP and aspartate, is dominated by a five-stranded parallel beta-sheet flanked on either side by alpha-helices. The AMP moiety is anchored to the protein via hydrogen bonds with O(gamma) of Ser 346 and the backbone carbonyl and amide groups of Val 272, Leu 232, and Gly 347. As observed for other amidotransferases, the two active sites are connected by a tunnel lined primarily with backbone atoms and hydrophobic and nonpolar amino acid residues. Strikingly, the three-dimensional architecture of the N-terminal domain of asparagine synthetase B is similar to that observed for glutamine phosphoribosylpyrophosphate amidotransferase while the molecular motif of the C-domain is reminiscent to that observed for GMP synthetase.  相似文献   

11.
12.
Mn-Mn interaction in adenylylated and unadenylylated glutamine synthetase   总被引:1,自引:0,他引:1  
The distance between the two catalytically important metal ions of glutamine synthetase was determined by electron paramagnetic resonance (EPR). Mn(II) binds more tightly to the n1 site of this enzyme in the presence of methionine sulfoximine and the influence of Mn(II) bound at the n2 site on the EPR spectrum of Mn(II) at n1 was studied. A monotonic increase in the EPR spectrum of Mn(II) was observed at Mn:E (subunit) ratios of 0 to 0.8. After this point as Mn(II) was added to about 1.8 Mn:E, a decrease in the EPR signal was observed. This phenomenon was found for both adenylylated and unadenylylated forms of glutamine synthetase. The data were analyzed using a theory for dipolar electron-electron relaxation and a distance of 10-12 A was computed for the Mn(II)-Mn(II) separation. These data demonstrate that both modified and unmodified forms of glutamine synthetase which have different catalytic activities have a similar spatial relationship between the two catalytic metal ion sites.  相似文献   

13.
D-Fructose 1,6-bisphosphate 1-phosphohydrolase (EC 3.1.3.11) was isolated from rat liver in two forms: "A," isolated in the presence, and "B," isolated in the absence of dithiothreitol. Both forms had an apparently identical molecular weight of approximately 37,000/subunit and the same Km for fructose 1,6-bisphosphate of 2 microM. However, the Ki of the AMP inhibition of form A was 140 microM and of form B, 370 microM. With form B the same inhibition as with form A was reached by incubating the enzyme with dithiothreitol. The two forms of the enzyme differed in their total, as well as in their number of fast reacting thiol groups. Form A was the more reduced form, exhibiting 22.4 thiol groups/molecule, 2.5 of them fast reacting with 5,5'-dithiobis-(2-nitrobenzoic acid). Only 0.5 fast reacting groups and a total of 19.2 were found with form B. The fast reacting thiol groups disappeared when assayed in the presence of AMP. It is suggested that a redox reaction alters a site that influences the inhibitory action of AMP, so as to regulate the activity of fructose 1,6-bisphosphatase.  相似文献   

14.
This paper reports the first determination of the distance between the two metal ions (per subunit) of E. coli glutamine synthetase. When Mn(II) is bound at the n1 metal ion site its EPR spectrum is diminished in intensity but not broadened as Cr(III)-ATP or Cr(III)-ADP is bound to the enzyme. A paramagnetic spin-spin interaction is responsible for this phenomenon and a metal-metal distance of ~7 Å is calculated for enzyme - Mn(II) - Cr(III)-ATP and ~6Å for enzyme - Mn(II) - Cr(III)-ADP. The metal-metal distance changes slightly when substrates or inhibitors are also bound to the enzyme demonstrating induced conformational changes in the protein at the metal ion sites.  相似文献   

15.
Glutamine synthetase of plants is the physiological target of tabtoxinine-beta-lactam, a toxin produced by several disease-causing pathovars of Pseudomonas syringae. This toxin, a unique amino acid, is an active site-directed, irreversible inhibitor of glutamine synthetase from pea. ATP is required for inactivation. Neither ADP, AMP, nor adenosine 5'-(beta,gamma-methylene)triphosphate (AMP-PCP) supports inactivation. Adenyl-5'-yl imidophosphate (AMP-PNP) is slowly hydrolyzed by glutamine synthetase to produce adenyl-5'-yl phosphoramidate (AMP-PN) and inorganic phosphate as identified by 31P NMR spectroscopic analysis. AMP-PNP also supports a slow inactivation of glutamine synthetase by tabtoxinine-beta-lactam. These data are consistent with gamma-phosphate transfer being involved in the inactivation. Completely inactivated glutamine synthetase has 0.9 mumol of toxin bound/mumol of subunit. One mumol of ATP is bound per mumol of subunit of glutamine synthetase in the absence of either the toxin or another active site-directed inhibitor, methionine sulfoximine; whereas, a 2nd mumol of either [alpha- or gamma-32P]ATP is bound per mumol of subunit when glutamine synthetase is incubated in the presence of either toxin or methionine sulfoximine until all enzyme activity is lost. These data suggest that the gamma-phosphate hydrolyzed from ATP during inactivation remains with the enzyme-inhibitor complex, as well as the ADP. The open chain form, tabtoxinine, was neither a reversible nor an irreversible inhibitor of glutamine synthetase, suggesting that the beta-lactam ring is necessary for inhibition. The inactivation of glutamine synthetase with tabtoxinine-beta-lactam is pseudo-first-order when done in buffer containing 15% (v/v) ethylene glycol. The rate constant for this reaction is 3 X 10(-2) S-1, and the Ki for the toxin is 1 mM. Removal of the ethylene glycol from the buffer allows the reaction to proceed in a non-first-order manner with the apparent rate constant decreasing with time. As the enzyme is inactivated in these conditions, the binding affinity for the toxin appears to decrease, while the Km observed for glutamate does not change.  相似文献   

16.
Glutamine synthetase activity is modulated by nitrogen repression and by two distinct inactivation processes. Addition of glutamine to exponentially grown yeast leads to enzyme inactivation. 50% of glutamine synthetase activity is lost after 30 min (a quarter of the generation time). Removing glutamine from the growth medium results in a rapid recovery of enzyme activity. A regulatory mutation (gdhCR mutation) suppresses this inactivation by glutamine in addition to its derepressing effect on enzymes involved in nitrogen catabolism. The gdhCR mutation also increases the level of proteinase B in exponentially grown yeast. Inactivation of glutamine synthetase is also observed during nitrogen starvation. This inactivation is irreversible and consists very probably of a proteolytic degradation. Indeed, strains bearing proteinase A, B and C mutations are no longer inactivated under nitrogen starvation.  相似文献   

17.
The interaction of Escherichia coli glutamine synthetase with the adenosine 5'-triphosphate analogue, 5'-p-fluorosulfonylbenzoyladenosine (5'-FSO2BzAdo), has been studied. This interaction results in the covalent attachment of the 5'-FSO2BzAdo to the enzyme with concomitant loss of catalytic activity. Although adenine nucleotides interact with glutamine synthetase at three distinct sites--a noncovalent AMP effector site, a regulatory site of covalent adenylylation, and the catalytic ATP/ADP binding site--our studies suggest that reaction with 5'-FSO2BzAdo occurs only at the active center. When glutamine synthetase was incubated with 5'-FSO2BzAdo, the decrease in catalytic activity obeyed pseudo-first order kinetics. The plot of the observed rate constant of inactivation versus the concentration of 5'-FSO2BzAdo was hyperbolic, consistent with reversible binding of the analogue to the enzyme prior to covalent attachment. Protection against inactivation was afforded by ATP and ADP; L-glutamate did not protect the enzyme against inactivation, but rather enhanced the rate of inactivation, consistent with the observations of others (Timmons, R. B., Rhee, S. G., Luterman, D. L., and Chock, P. B. (1974) Biochemistry 13, 4479-4485) that there is synergism in the binding of the two substrates to the enzyme. The incorporation of approximately 1.09 mol of the 5'-FSO2BzAdo/mol of glutamine synthetase subunit resulted in the total loss of enzymatic activity. The results suggest that 5'-FSO2BzAdo occupies the ATP binding site at the active center of glutamine synthetase and binds covalently to an amino acid residue nearby.  相似文献   

18.
A new crystalline polymorph of Bombyx mori silk, which forms at the air–water interface, has been characterized. A previous study found this structure to be trigonal, and to be distinctly different than the two previously observed silk crystal structures, silk I and silk II. This new structure was named silk III. Identification of this new silk polymorph was based on evidence from transmission electron microscopy and electron diffraction, coupled with molecular modeling. In the current paper, additional data enables us to refine our model of the silk III structure. Some single crystal electron diffraction patterns indicate a deviation in symmetry away from a perfect trigonal unit cell to monoclinic unit cell. The detailed shape of the powder diffraction peaks also supports a monoclinic cell. The monoclinic crystal structure has an nonprimitive unit cell incorporating a slightly distorted hexagonal packing of silk molecular helices. The chains each assume a threefold helical conformation, resulting in a crystal structure similar to that observed for polyglycine II, but with some additional sheet-like packing features common to the threefold helical crystalline forms of many glycine-rich polypeptides. © 1997 John Wiley & Sons, Inc. Biopoly 42: 705–717, 1997  相似文献   

19.
Gill HS  Pfluegl GM  Eisenberg D 《Biochemistry》2002,41(31):9863-9872
The crystal structure of glutamine synthetase (GS) from Mycobacterium tuberculosis determined at 2.4 A resolution reveals citrate and AMP bound in the active site. The structure was refined with strict 24-fold noncrystallographic symmetry (NCS) constraints and has an R-factor of 22.7% and an R-free of 25.5%. Multicopy refinement using 10 atomic models and strict 24-fold NCS constraints further reduced the R-factor to 20.4% and the R-free to 23.2%. The multicopy model demonstrates the range of atomic displacements of catalytic and regulatory loops in glutamine synthesis, simulating loop motions. A comparison with loop positions in substrate complexes of GS from Salmonella typhimurium shows that the Asp50 and Glu327 loops close over the active site during catalysis. These loop closures are preceded by a conformational change of the Glu209 beta-strand upon metal ion or ATP binding that converts the enzyme from a relaxed to a taut state. We propose a model of the GS regulatory mechanism based on the loop motions in which adenylylation of the Tyr397 loop reverses the effect of metal ion binding, and regulates intermediate formation by preventing closure of the Glu327 loop.  相似文献   

20.
In Bacillus subtilis, the activity of the nitrogen regulatory factor TnrA is regulated through a protein- protein interaction with glutamine synthetase. During growth with excess nitrogen, the feedback-inhibited form of glutamine synthetase binds to TnrA and blocks DNA binding by TnrA. Missense mutations in glutamine synthetase that constitutively express the TnrA-regulated amtB gene were characterized. Four mutant proteins were purified and shown to be defective in their ability to inhibit the in vitro DNA-binding activity of TnrA. Two of the mutant proteins exhibited enzymatic properties similar to those of wild-type glutamine synthetase. A model of B. subtilis glutamine synthetase was derived from a crystal structure of the Salmonella typhimurium enzyme. Using this model, all the mutated amino acid residues were found to be located close to the glutamate entrance of the active site. These results are consistent with the glutamine synthetase protein playing a direct role in regulating TnrA activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号