首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Adenosine analogs selective for the A1 subclass of adenosine receptors, such as N6-cyclohexyladenosine (CHA), inhibit renin secretion in in vitro preparations. Ca chelation blocks the inhibitory effect, consistent with mediation by increased intracellular free Ca2+, and it has been suggested that intracellular Ca2+ could increase as a result of receptor-induced inhibition of adenylate cyclase followed by decreased Ca efflux from the renin-secreting cells. Pertussis toxin blocks receptor-induced inhibition of adenylate cyclase in many cells, and in others, it blocks receptor-induced phosphotidylinositol response. In the present studies, pertussis toxin treatment stimulated the basal renin secretory rate of rat renal cortical slices and blocked the inhibitory effect of CHA but not the inhibitory effect of K-depolarization. These data support the hypothesis that a pertussis toxin substrate, such as Ni, is involved in CHA-, but not in K-depolarization, -induced inhibition of renin secretion.  相似文献   

2.
The hypothesis that Gi might be involved in the alpha 1-adrenergic, protein kinase C (PKC)-mediated amplification of beta-adrenergic cyclic AMP stimulation in rat pinealocytes was investigated. Treatment of pinealocytes with a high concentration of pertussis toxin (500 ng/ml, 18 h) almost completely (approximately 95%) inactivated two cell membrane G-proteins (kDa 40.7 and 39.8) judged by back ADP-ribosylation of pinealocyte membrane proteins. However, this treatment failed to inhibit either the beta-adrenergic (isoprenaline, ISO 10(-6) M), alpha 1-plus beta-adrenergic (noradrenaline, NA 10(-5) M) or beta-adrenergic plus 12-O-tetradecanoylphorbol 13-acetate (TPA 10(-7) M) induced stimulation of cyclic AMP or cyclic GMP. These results suggest that alpha 1-adrenergic potentiation of beta-adrenergic stimulation of cyclic AMP and cyclic GMP does not involve a pertussis toxin-sensitive G-protein.  相似文献   

3.
Administration of purified pertussis toxin to rats induced persistent tachycardia, (observed in conscious rats but not after pithing); as little as 0.05 microgram/100 g produced a significant effect. Pertussis toxin-treatment did not affected the pressor response produced in the pithed rats by the alpha 2-adrenergic agonist methoxamine but markedly diminished the pressor effect of the alpha 2-adrenergic agonists clonidine and azepexole. A role of adenylate cyclase inhibition in the action of postsynaptic vascular alpha 2-adrenergic receptors is suggested.  相似文献   

4.
Calcium (Ca) is an inhibitory second messenger in renin secretion, and it has been proposed that some first messengers, such as angiotensin II (A-II), antidiuretic hormone (ADH), and N6-cyclohexyladenosine (CHA), increase Ca and thereby inhibit renin secretion by mobilizing Ca from intracellular sequestration sites. The present experiments were designed to test this proposal by using dantrolene, an antagonist of intracellular Ca mobilization. Dantrolene stimulated renin secretion by rat renal cortical slices in a concentration dependent manner; at 0.0, 0.1, and 0.5 mM dantrolene, secretory rates were 8.1 +/- 0.6, 9.4 +/- 0.6 (p less than 0.05), and 14.9 +/- 1.2 (p less than 0.0001) GU/g x hr, respectively. These results could be interpreted to mean that Ca mobilization is occurring at a finite rate during the basal state, and that by antagonizing this process, dantrolene lowers intracellular Ca and thereby stimulates renin secretion. However, 0.1 mM dantrolene failed to antagonize the inhibitory effects on renin secretion of A-II, ADH, and CHA, and only CHA-induced inhibition of renin secretion was antagonized by 0.5 mM dantrolene. We conclude that if A-II, ADH, and CHA inhibit renin secretion by mobilizing Ca from an intracellular storage site, then the site is insensitive to dantrolene.  相似文献   

5.
H Satoh  K Takahasi  Y Toda  S Satoh 《Life sciences》1984,35(14):1519-1526
There is some controversy regarding whether stimulation of renin release by the beta-adrenergic system is dependent on prostaglandin (PG) production. We have examined this problem in renal cortical slices of the dog and have obtained the following results: (1) Isoproterenol (4 X 10(-6) M) stimulated renin release, but had no effect on the formation of 6-keto PGF1 alpha, a stable metabolite of PGI2; (2) Indomethacin (2 X 10(-5) M) had no effect on isoproterenol stimulated renin release, but inhibited 6-keto PGF1 alpha formation; (3) Dibutyryl cyclic AMP (10(-3) M) stimulated both renin release, and 6-keto PGF1 alpha release. Indomethacin (2 X 10(-5) M) did not inhibit dibutyryl cyclic AMP-stimulated renin release, but did inhibit the production of 6 keto PGF1 alpha. These results indicate that the beta-adrenoceptor mediated renin release does not depend on the formation of PGI2, but renin release is dependent on cyclic AMP formation.  相似文献   

6.
These experiments were designed to test the hypothesis that cyclosporine A (CSA) inhibits renin secretion and stimulates renal prostaglandin E2 (PGE2) release in vitro. In rat renal cortical slices incubated at 37 degrees C in a buffered and oxygenated physiological saline solution containing 4 mM KCl, CSA concentrations ranging from 1 to 30 microM had no significant effect on renin secretion. Furthermore, partial depolarization of the cells, produced by increasing extracellular KCl concentration to 20 mM, failed to reveal any latent inhibitory or stimulatory effects of CSA on renin secretion. On the other hand, PGE2 release was significantly inhibited by CSA over the same range of concentrations. This inhibitory effect might be explained by the previous findings of others, that CSA inhibits phospholipase A2 activity, thereby decreasing arachidonic acid production, the rate-limiting step in PG synthesis. In conclusion, CSA inhibits PGE2 release but fails to affect renin secretion in vitro. These results suggest that the occasional effects of CSA on renin secretion in intact animals must be attributable to indirect and/or chronic effects.  相似文献   

7.
Prostaglandins have been shown to be involved in the mechanism of renin secretion in a variety of situations. Both arachidonic acid and prostaglandin endoperoxide have been shown to release renin from cortical slices and to be converted to PGI2 by cortical microsomes. In the present studies PGI2 was found to cause a time dependent increase in renin release from rabbit renal cortical slices, a system isolated from any indirect effects that result from the administration of prostaglandins in vivo. The stimulation was linear up to 30 minutes and effective over a range of concentrations from 10(7 M to 10(-5) M. At similar concentrations 6-keto-prostaglandin F1alpha was not active on these slices. Thus, it is proposed that PGI2 exerts a direct effect on the release of renin from cortical cells and may be the mediator of arachidonate or prostaglandin endoperoxide stimulated renin secretion.  相似文献   

8.
Beta blockade with propranolol for 7 days in healthy normotensive dogs produced a sustained 20-25% drop in heart rate, but only a transient suppression of blood pressure. Plasma renin activity and prorenin were also suppressed transiently, suggesting that both are under beta-receptor regulation. Bilateral nephrectomy (2NX) was followed by rapid clearance of renin from the circulation, at a rate that was minimally influenced by beta blockade. In contrast, the plasma prorenin level rose markedly to a peak within an hour after surgery, leveled off during the next 24 hr, dropped almost toward the pre-2NX baseline by 48 hr, but proceeded to rise again between 48 and 120 hr. Propranolol administration before and during the 2NX period reduced the detectable prorenin, suggesting that its extrarenal source is under beta-adrenergic regulation. The rapid increment of prorenin after 2NX suggests that extrarenal prorenin may have constituted part of the total plasma prorenin before 2NX, and/or had developed sufficiently quickly afterwards to replace and exceed the disappearing renal prorenin. Any fresh increment beyond 48 hr could presumably have been only extrarenal. These observations suggest the existence of a rich beta-regulated extrarenal source of prorenin capable of rapidly supplying the plasma. However, no renin-angiotesin was apparently produced from this prorenin in the nephrectomized state, implying the lack of renal "convertase," without which the prorenin convertase mechanism as a whole was rendered ineffective. The source of the extrarenal prorenin and the identity of the renal convertase remain to be established.  相似文献   

9.
The entire mammalian nephron, including the juxtaglomerular apparatus, receives an exclusive noradrenergic innervation. Renal tubular alpha 1 adrenoceptors mediate the alterations in tubular segmental sodium, chloride, and water reabsorption that occur in response to direct or reflex changes in efferent renal sympathetic nerve activity. Specific tubular segments so identified are the proximal convoluted tubule, the loop of Henle (thick ascending limb), and the collecting duct. Alterations in efferent renal sympathetic nerve activity represent an important physiological contribution to the overall role of the kidney in the regulation of external sodium balance in conscious animals during both dietary sodium restriction and acute and chronic increases in total-body sodium. Progressively more intense activation of the renal nerves recruits a series of adrenergically mediated influences on renin secretion that are additive, ranging from subtle (modulation of nonneural mechanisms without directly causing renin secretion) to marked (renal vasoconstriction, antinatriuresis, high renin secretion rates). Juxtaglomerular granular cell beta 1 adrenoceptors mediate renin secretion responses to frequencies of renal nerve stimulation that do not cause renal vasoconstriction; at higher frequencies of renal nerve stimulation where renal vasoconstriction is present, renal vascular alpha 1 adrenoceptors mediate a portion of the renin secretion response.  相似文献   

10.
Desensitization of the beta-adrenergic receptor, a receptor which is coupled to the stimulation of adenylate cyclase, may be regulated via phosphorylation by a unique protein kinase. This recently discovered enzyme, known as the beta-adrenergic receptor kinase, only phosphorylates the agonist-occupied form of the beta-adrenergic receptor. To assess whether receptors coupled to the inhibition of adenylate cyclase might also be substrates, we examined the effects of beta-adrenergic receptor kinase on the partially purified human platelet alpha 2-adrenergic receptor. Phosphorylation of the reconstituted alpha 2-adrenergic receptor was dependent on agonist occupancy and was completely blocked by coincubation with alpha 2-antagonists. The time course of phosphorylation of the alpha 2-adrenergic receptor was virtually identical to that observed with the beta-adrenergic receptor with maximum stoichiometries of 7-8 mol of phosphate/mol of receptor in each case. In contrast, the alpha 1-adrenergic receptor, which is coupled to stimulation of phosphatidylinositol hydrolysis, is not a substrate for the beta-adrenergic receptor kinase. These results suggest that receptors coupled to either stimulation or inhibition of adenylate cyclase may be regulated by an agonist-dependent phosphorylation mediated by the beta-adrenergic receptor kinase.  相似文献   

11.
Prostaglandins have been shown to be involved in the mechanism of renin secretion in a variety of situations. Both arachidonic acid and prostaglandin endoperoxide have been shown to release renin from cortical slices and to be converted to PGI2 by cortical microsomes. In the present studies PGI2 was found to cause a time dependent increase in renin release from rabbit renal cortical slices, a system isolated from any indirect effects that result from the administration of prostaglandins . The stimulation was linear up to 30 minutes and effective over a range of concentrations from 10−7 M to 10−5 M. At similar concentrations 6-keto-prostaglandin F was not active on these slices. Thus, it is proposed that PGI2 exerts a direct effect on the release of renin from cortical cells and may be the mediator of arachidonate or prostaglandin endoperoxide stimulated renin secretion.  相似文献   

12.
13.
The effect of inhibition of prostaglandin (PG) synthesis with indomethacin on basal and isoproterenol-stimulated renin secretion was examined in the isolated perfused rabbit kidney. 6-keto PGF1 alpha' the stable metabolite of prostacyclin, was measured in urine by radioimmunoassay using 125I labelled histamine coupled to 6-keto PGF1 alpha as ligand. The level in urine, prior to isolation and perfusion of the kidney, was 10.7 +/- 5.6 ng/min, and this was reduced to 0.32 +/- 0.25 ng/min (P less than 0.05) in rabbits treated with 2.0 mg/kg of indomethacin. Renin release was markedly stimulated by intrarenal infusion of isoproterenol (0.1 microgram/min) but urinary 6-keto PGF1 alpha did not change. These responses were not affected by indomethacin treatment. Renal perfusion pressure, perfusate flow rate and consequently renal vascular resistance, remained relatively constant during the course of perfusion and were unaltered by indomethacin treatment. These results therefore do not support a role for PGs, and in particular prostacyclin, in the renin response to beta-adrenergic stimulation with isoproterenol.  相似文献   

14.
Prostaglandins have been hypothesized to have several mechanistic functions in sympathetically mediated release of renin. The rabbit renal cortical slice system was chosen to examine the prostaglandin dependency of renin release directly stimulated by either a direct adenylate cyclase activator, forskolin, or a β-agonist, isoproterenol. In this study, we demonstrate that with forskolin (1 × 10−5M) or isoproterenol (1 × 10−6M), renin release was elevated 2–3 fold above control, and that this increase was shown to accompany a substantial increase in the tissue levels f cAMP (19.5 fold and 3.5 fold respectively). We also demonstrate that the increase in renin release produced by these compounds was not inhibited by cyclooxygenase inhibitors, indomethacin (25 uM) or eicosatetraynoic acid (30 ug/ml), nor was it inhibited by the selective prostacyclin synthesis inhibitor, U-51605 (30 ug/ml). Each of these inhibitors was demonstrated to block the synthesis of prostaglandins in the cortical slices at the concentrations used. Thus we propose that prostaglandins do not play a role in the induction of renin release resulting from elevated cyclic nucleotide levels or β-adrenergic stimulation.  相似文献   

15.
Prostaglandins have been hypothesized to have several mechanistic functions in sympathetically mediated release of renin. The rabbit renal cortical slice system was chosen to examine the prostaglandin dependency of renin release directly stimulated by either a direct adenylate cyclase activator, forskolin, or a beta-agonist, isoproterenol. In this study, we demonstrate that with forskolin (1 X 10(-5) M) or isoproterenol (1 X 10(-6) M), renin release was elevated 2-3 fold above control, and that this increase was shown to accompany a substantial increase in the tissue levels of cAMP (19.5 fold and 3.5 fold respectively). We also demonstrate that the increase in renin release produced by these compounds was not inhibited by cyclooxygenase inhibitors, indomethacin (25 microM) or eicosatetraynoic acid (30 micrograms/ml), nor was it inhibited by the selective prostacyclin synthesis inhibitor, U-51605 (30 micrograms/ml). Each of these inhibitors was demonstrated to block the synthesis of prostaglandins in the cortical slices at the concentrations used. Thus we propose that prostaglandins do not play a role in the induction of renin release resulting from elevated cyclic nucleotide levels or beta-adrenergic stimulation.  相似文献   

16.
The present study was conducted to examine an involvement of G protein in the action of activin A in rat parenchymal liver cells. Activin A induced a dose-dependent increase in inositol phosphates in cells prelabelled with [3H]inositol. The effect of activin A was completely blocked by pretreatment of the cells with pertussis toxin. In contrast, pertussis toxin had little effect on angiotensin II-induced production of inositol phosphates. Both activin A and angiotensin II inhibited glucagon-mediated production of cAMP. Pretreatment of the cells with pertussis toxin blocked the inhibition induced by both activin A and angiotensin II. In permeabilized cells, activin A augmented production of inositol phosphates. Activin-mediated production of inositol trisphosphate was enhanced by GTP-gamma S and was attenuated by GDP-beta S. These results suggest that a pertussis toxin-sensitive G protein(s) may be involved in the action of activin A in hepatocytes.  相似文献   

17.
T Okumura  T Sago  K Saito 《Prostaglandins》1988,36(4):463-475
Prostaglandin E2 (PGE2) and 16,16-dimethyl PGE2 were found to inhibit a hepatic glycogenolysis stimulated by epinephrine in the presence of propranolol (alpha 1-adrenergic response), isoproterenol (beta-adrenergic response) and glucagon in primary cultures of rat hepatocytes. The inhibitory effects to these stimulations were maximally increased (60-100%) in the cultures on day 2 or 3. Pretreatment of the cultured hepatocytes with pertussis toxin (islet-activating protein) resulted in a complete blockage of the prostaglandin-induced inhibition of glycogenolysis in a dose-dependent manner. Pertussis toxin had no significant effect on the glycogenolysis stimulated by these compounds in the absence of prostaglandin. The data suggest that the hepatic glycogenolysis stimulated by alpha 1- and beta-adrenergic responses and glucagon are modulated by the E series of prostaglandins via pertussis toxin-sensitive guanine nucleotide regulatory protein.  相似文献   

18.
The high-affinity guanine nucleotide-sensitive receptor sites for melatonin in the mammalian hypothalamus and pars tuberalis mediate inhibition of adenylate cyclase (AC) activity. Therefore, we have examined whether similar sites in the chick brain and retina also modulate AC activity. Melatonin did not alter basal or forskolin-stimulated AC activity in whole forebrain or retinal homogenates. In contrast, melatonin significantly inhibited forskolin-stimulated AC activity in forebrain synaptosomal membranes and partially purified retinal membranes in a concentration-dependent manner. Maximal inhibition (approximately 25-30%) of stimulated AC activity was observed at 10-100nM melatonin, while the concentrations (EC50's) which caused half-maximal effects were 22 +/- 6 pM and 30 +/- 5 pM in the brain and retina respectively. Pretreatment of forebrain slices with pertussis toxin abolished the inhibitory effect of melatonin on stimulated AC activity. These data provide the first evidence that melatonin suppresses AC activity in the chick CNS via a pertussis toxin-sensitive G-protein.  相似文献   

19.
The inhibition of prolactin secretion and cyclic AMP accumulation in GH3 cells by muscarinic agonists was blocked by preincubation of the cells with pertussis toxin (islet-activating protein). There was a lag of approx. 80 min in the onset of the effect on secretion. These results suggest that muscarinic agonists decrease prolactin secretion by inhibiting adenylate cyclase activity.  相似文献   

20.
A role for protein kinase C (PKC)- and -isotypes in 1-adrenergicregulation of human tracheal epithelial Na-K-2Cl cotransport wasstudied with the use of isotype-specific PKC inhibitors and antisenseoligodeoxynucleotides to PKC- or - mRNA. Rottlerin, a PKC-inhibitor, blocked 72% of basolateral-to-apical, bumetanide-sensitive 36Cl flux innystatin-permeabilized cell monolayers stimulated with methoxamine, an1-adrenergic agonist, with a50% inhibitory concentration of 2.3 µM. Methoxamine increased PKCactivity in cytosol and a particulate fraction; the response wasinsensitive to PKC- and -IIisotype-specific inhibitors, but was blocked by general PKC inhibitorsand rottlerin. Rottlerin also inhibited methoxamine-induced PKCactivity in immune complexes of PKC-, but not PKC-. At the subcellular level, methoxamine selectively elevated cytosolic PKC-activity and particulate PKC- activity. Pretreatment of cellmonolayers with antisense oligodeoxynucleotide to PKC- for 48 hreduced the amount of whole cell and cytosolic PKC-, diminished whole cell and cytosolic PKC- activity, and blockedmethoxamine-stimulated Na-K-2Cl cotransport. Sense oligodeoxynucleotideto PKC- and antisense oligodeoxynucleotide to PKC- did not altermethoxamine-induced cotransport activity. These results demonstrate theselective activation of Na-K-2Cl cotransport by cytosolic PKC-.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号