首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
BACKGROUND: Much experimental evidence suggests that lipid oxidation is important in atherogenesis and in epidemiological studies dietary antioxidants appear protective against cardiovascular events. However, most large clinical trials failed to demonstrate benefit of oral antioxidant vitamin supplementation in high-risk subjects. This paradox questions whether ingestion of antioxidant vitamins significantly affects lipid oxidation within established atherosclerotic lesions. METHODS AND RESULTS: This placebo-controlled, double blind study of 104 carotid endarterectomy patients determined the effects of short-term alpha-tocopherol supplementation (500 IU/day) on lipid oxidation in plasma and advanced atherosclerotic lesions. In the 53 patients who received alpha-tocopherol there was a significant increase in plasma alpha-tocopherol concentrations (from 32.66 +/- 13.11 at baseline to 38.31 +/- 13.87 (mean +/- SD) micromol/l, p < 0.01), a 40% increase (compared with placebo patients) in circulating LDL-associated alpha-tocopherol (p < 0.0001), and their LDL was less susceptible to ex vivo oxidation than that of the placebo group (lag phase 115.3 +/- 28.2 and 104.4 +/- 15.7 min respectively, p < 0.02). Although the mean cholesterol-standardised alpha-tocopherol concentration within lesions did not increase, alpha-tocopherol concentrations in lesions correlated significantly with those in plasma, suggesting that plasma alpha-tocopherol levels can influence lesion levels. There was a significant inverse correlation in lesions between cholesterol-standardised levels of alpha-tocopherol and 7beta-hydroxycholesterol, a free radical oxidation product of cholesterol. CONCLUSIONS: These results suggest that within plasma and lesions alpha-tocopherol can act as an antioxidant. They may also explain why studies using < 500 IU alpha-tocopherol/day failed to demonstrate benefit of antioxidant therapy. Better understanding of the pharmacodynamics of oral antioxidants is required to guide future clinical trials.  相似文献   

2.
The 'oxidation theory' of atherosclerosis proposes that oxidation of low density lipoprotein (LDL) contributes to atherogenesis. Although little direct evidence for a causative role of 'oxidized LDL' in atherogenesis exists, several studies show that, in vitro, oxidized LDL exhibits potentially proatherogenic activities and lipoproteins isolated from atherosclerotic lesions are oxidized. As a consequence, the molecular mechanisms of LDL oxidation and the actions of alpha-tocopherol (alpha-TOH, vitamin E), the major lipid-soluble lipoprotein antioxidant, have been studied in detail. Based on the known antioxidant action of alpha-TOH and epidemiological evidence, vitamin E is generally considered to be beneficial in coronary artery disease. However, intervention studies overall show a null effect of vitamin E on atherosclerosis. This confounding outcome can be rationalized by the recently discovered diverse role for alpha-TOH in lipoprotein oxidation; that is, alpha-TOH displays neutral, anti-, or, indeed, pro-oxidant activity under various conditions. This review describes the latter, novel action of alpha-TOH, termed tocopherol-mediated peroxidation, and discusses the benefits of vitamin E supplementation alone or together with other antioxidants that work in concert with alpha-TOH in ameliorating lipoprotein lipid peroxidation in the artery wall and, hence, atherosclerosis.  相似文献   

3.
Oxidative stress has been recognized as a central feature of smoke induced chronic obstructive pulmonary disease (COPD). Imbalance between oxidant and antioxidant enzymes is also an established fact in these patients. But studies in regard to stable COPD patients and effect of vitamin E supplementation are lacking. Thirty patients with COPD were included in the study. Their baseline clinical examination, spirometry, plasma malondialdehyde (MDA), alpha-tocopherol and red blood cell superoxide dismutase (SOD) levels were mea sured. Twenty healthy non-smokers who were matched for age and sex served as controls. All the above parameters were repeated after 12 weeks of supplementation with 400 IU of vitamin E daily. The mean malondialdehyde levels in the patients at baseline were higher than controls (5.91 +/- 1.23 nmol/ml vs 4.55 +/- 1.51 nmol/ml, P = 0 001), so also was plasma alpha-tocopherol levels (P < 0 001), while SOD levels were lower in the patients compared to controls (1692 +/- 259 units g/Hb vs 2451 +/- 131 units g/Hb, P < 0 001). Exogenous vitamin E (400 IU per day) supplementation did not bring about any significant change in plasma alpha-tocopherol and SOD levels. The Pearson s co-efficient of correlation between the levels of MDA, vitamin E, SOD; and spirometric measurements were not significant either on day 1 or after 12 weeks of vitamin E supplementation. The present study shows that initially the plasma lipid peroxide (MDA) levels are high and antioxidants (alpha-tocopherol and SOD) are low in patients with COPD. Exogenous supplementation with vitamin E does not have any significant effect on the spirometric measurements though it brings down the levels of MDA showing attenuation of further damage. However, inclusion of larger number of patients and supple mentation with vitamin E for longer periods may throw more light on free radical injury and protective effects of antioxidants.  相似文献   

4.
Oxidized lipoproteins are implicated in atherosclerosis, and some antioxidants attenuate the disease in animals. Coenzyme Q(10) (CoQ(10)) in its reduced form, ubiquinol-10, effectively inhibits lipoprotein oxidation in vitro and in vivo; CoQ(10) supplements also inhibit atherosclerosis in apolipoprotein E gene knockout (apoE-/-) mice. Here we tested the effect of dietary CoQ(10) supplements on intimal proliferation and lipoprotein lipid oxidation in balloon-injured, hypercholesterolemic rabbits. Compared to nonsupplemented chow, CoQ(10) supplementation (0.5% and 1.0%, w/w) significantly increased the plasma concentration of CoQ(10) and the resistance of plasma lipids to ex vivo oxidation. CoQ(10) supplements also increased the content of CoQ(10) in the aorta and liver, but not in the brain, skeletal muscle, kidney, and heart. Surprisingly, CoQ(10) supplementation at 1% increased the aortic concentrations of all lipids, particularly triacylglycerols, although it significantly inhibited the proportion of triacylglycerols present as hydroperoxides by > 80%. The observed increase in vessel wall lipid content was reflected in elevated plasma concentrations of cholesterol, cholesteryl esters and triacylglycerols, and hepatic levels of mRNA for 3-hydroxy-3-methylglutaryl-coenzyme A reductase. CoQ(10) supplements did not attenuate lesion formation, assessed by the intima-to-media ratio of injured aortic vessels. Thus, like in apoE-/- mice, a high dose of supplemented CoQ(10) inhibits lipid oxidation in the artery wall of balloon-injured, hypercholesterolemic rabbits. However, unlike its antiatherosclerosis activity in the mice, CoQ(10) does not inhibit intimal hyperplasia in rabbits, thereby dissociating this disease process from lipid oxidation in the vessel wall.  相似文献   

5.
It is well known that exercise induces lipid peroxidation in skeletal muscle and that vitamin E prevents exercise-induced lipid damage. In this study we show for the first time, an increase in protein oxidation in skeletal muscle after a single bout of exercise, related to an exercise-induced decrease in lipophilic antioxidants, and substantial protection against both resting and exercise-induced protein oxidation by supplementation with various isomers (alpha-tocopherol, alpha-tocotrienol) of vitamin E.  相似文献   

6.
We considered the hypothesis that antioxidant supplementation that increases aortic antioxidant concentrations would reduce autoantibody titer to MDA-LDL, a measure that may indicate in vivo oxidation. We assessed autoantibody titer to MDA-LDL in rabbits before and after 5 months of treatment with a nutritionally adequate hypercholesterolemic diet alone (control) or supplemented with synthetic alpha-tocopherol or probucol. Aortic cholesterol and antioxidants were assessed at the end of treatment. alpha-Tocopherol supplementation increased the ratio of aortic alpha-tocopherol to cholesterol by 20-30-fold, while probucol supplementation increased the ratio of aortic probucol to cholesterol to 4-13 micromol/mol. Before treatment, MDA-LDL autoantibody titer averaged 5.09 +/- 0.24 with no difference among groups (p =.53 by ANOVA). However, after treatment, autoantibody titers differed among groups (p <.03 by ANOVA). Autoantibody titers were similar in rabbits supplemented with alpha-tocopherol and probucol (3.69 +/- 0.21 and 3.73 +/- 0.48, respectively, p = 0.81), and 26% (p <.009) lower in antioxidant supplemented rabbits than unsupplemented hypercholesterolemic rabbits (5.03 +/- 0.47). There was an inverse J relationship between autoantibody titer after treatment and aortic alpha-tocopherol/cholesterol and probucol/cholesterol, with minimum values for autoantibody titers above 8-10 micromol antioxidant/mmol cholesterol. The results of this study are consistent with inhibition of in vivo intra-aortic oxidation when aortic alpha-tocopherol or probucol exceed 8-10 micro;mol/mmol cholesterol.  相似文献   

7.
Substantial evidence implicates oxidative modification of low density lipoprotein (LDL) as an important event contributing to atherogenesis. As a result, the elucidation of the molecular mechanisms by which LDL is oxidized and how such oxidation is prevented by antioxidants has been a significant research focus. Studies on the antioxidation of LDL lipids have focused primarily on alpha-tocopherol (alpha-TOH), biologically and chemically the most active form of vitamin E and quantitatively the major lipid-soluble antioxidant in extracts prepared from human LDL. In addition to alpha-TOH, plasma LDL also contains low levels of ubiquinol-10 (CoQ10H2; the reduced form of coenzyme Q10). Recent studies have shown that in oxidizing plasma lipoproteins alpha-TOH can exhibit anti- or pro-oxidant activities for the lipoprotein's lipids exposed to a vast array of oxidants. This article reviews the molecular action of alpha-TOH in LDL undergoing "mild" radical-initiated lipid peroxidation, and discusses how small levels of CoQ10H2 can represent an efficient antioxidant defence for lipoprotein lipids. We also comment on the levels alpha-TOH, CoQ10H2 and lipid oxidation products in the intima of patients with coronary artery disease and report on preliminary studies examining the effect of coenzyme Q10 supplementation on atherogenesis in apolipoprotein E knockout mice.  相似文献   

8.
It has been claimed that coenzyme Q10 (Q10) would be an effective plasma antioxidant since it can regenerate plasma vitamin E. To test separate effects and interaction between Q10 and vitamin E in the change of plasma concentrations and in the antioxidative efficiency, we carried out a double-masked, double-blind clinical trial in 40 subjects with mild hypercholesterolemia undergoing statin treatment. Subjects were randomly allocated to parallel groups to receive either Q10 (200 mg daily), d-alpha-tocopherol (700 mg daily), both antioxidants or placebo for 3 months. In addition we investigated the pharmacokinetics of Q10 in a separate one-week substudy. In the group that received both antioxidants, the increase in plasma Q10 concentration was attenuated. Only vitamin E supplementation increased significantly the oxidation resistance of isolated LDL. Simultaneous Q10 supplementation did not increase this antioxidative effect of vitamin E. Q10 supplementation increased and vitamin E decreased significantly the proportion of ubiquinol of total Q10, an indication of plasma redox status in vivo. The supplementations used did not affect the redox status of plasma ascorbic acid. In conclusion, only vitamin E has antioxidative efficiency at high radical flux ex vivo. Attenuation of the proportion of plasma ubiquinol of total Q10 in the vitamin E group may represent in vivo evidence of the Q10-based regeneration of the tocopheryl radicals. In addition, Q10 might attenuate plasma lipid peroxidation in vivo, since there was an increased proportion of plasma ubiquinol of total Q10.  相似文献   

9.
Vitamin E, antioxidant and nothing more   总被引:2,自引:0,他引:2  
All of the naturally occurring vitamin E forms, as well as those of synthetic all-rac-alpha-tocopherol, have relatively similar antioxidant properties, so why does the body prefer alpha-tocopherol as its unique form of vitamin E? We propose the hypothesis that all of the observations concerning the in vivo mechanism of action of alpha-tocopherol result from its role as a potent lipid-soluble antioxidant. The purpose of this review then is to describe the evidence for alpha-tocopherol's in vivo function and to make the claim that alpha-tocopherol's major vitamin function, if not only function, is that of a peroxyl radical scavenger. The importance of this function is to maintain the integrity of long-chain polyunsaturated fatty acids in the membranes of cells and thus maintain their bioactivity. That is to say that these bioactive lipids are important signaling molecules and that changes in their amounts, or in their loss due to oxidation, are the key cellular events that are responded to by cells. The various signaling pathways that have been described by others to be under alpha-tocopherol regulation appear rather to be dependent on the oxidative stress of the cell or tissue under question. Moreover, it seems unlikely that these pathways are specifically under the control of alpha-tocopherol given that various antioxidants other than alpha-tocopherol and various oxidative stressors can manipulate their responses. Thus, virtually all of the variation and scope of vitamin E's biological activity can be seen and understood in the light of protection of polyunsaturated fatty acids and the membrane qualities (fluidity, phase separation, and lipid domains) that polyunsaturated fatty acids bring about.  相似文献   

10.
Twelve clinically healthy subjects participated in a vitamin E supplementation study. Eight were given daily dosages of 150, 225, 800, or 1200 IU RRR-alpha-tocopherol for 21 days (two persons per dose) and four received placebo. Prior, during, and after the supplementation period, alpha-tocopherol, gamma-tocopherol, and carotenoids were determined in plasma and low density lipoprotein (LDL). The maximum levels of alpha-tocopherol were 1.7- to 2.5-times the baseline values in plasma and 1.7- to 3.1-times in LDL. A high correlation existed between alpha-tocopherol in plasma and LDL. gamma-Tocopherol significantly decreased in plasma and LDL during vitamin E supplementation. No significant influence on the lipoprotein and lipid status and carotenoid levels of the participants occurred throughout the supplementation. The resistance of LDL against copper-mediated oxidation was also measured. The oxidation resistance of LDL was significantly higher during vitamin E supplementation. However, the efficacy of vitamin E in protecting LDL varied from person to person. The statistical evaluation of all data gave a correlation of r2 = 0.51 between alpha-tocopherol in LDL and the oxidation resistance as measured by the length of the lag-phase preceding the oxidation of LDL. No association was seen between levels of carotenoids and vitamin E in plasma and LDL. The present study clearly shows that in humans the oxidation resistance of LDL can be increased by vitamin E supplementation.  相似文献   

11.
Antioxidants can inhibit atherosclerosis in animals, though it is not clear whether this is due to the inhibition of aortic lipoprotein lipid (per)oxidation. Coantioxidants inhibit radical-induced, tocopherol-mediated peroxidation of lipids in lipoproteins through elimination of tocopheroxyl radical. Here we tested the effect of the bisphenolic probucol metabolite and coantioxidant H 212/43 on atherogenesis in apolipoprotein E and low density lipoprotein (LDL) receptor gene double knockout (apoE-/-;LDLr-/-) mice, and how this related to aortic lipid (per)oxidation measured by specific HPLC analyses. Dietary supplementation with H 212/43 resulted in circulating drug levels of approximately 200 microM, increased plasma total cholesterol slightly and decreased plasma and aortic alpha-tocopherol significantly relative to age-matched control mice. Treatment with H 212/43 increased the antioxidant capacity of plasma, as indicated by prolonged inhibition of peroxyl radical-induced, ex vivo lipid peroxidation. Aortic tissue from control apoE-/-;LDLr-/- mice contained lipid hydro(pero)xides and substantial atherosclerotic lesions, both of which were decreased strongly by supplementation of the animals with H 212/43. The results show that a coantioxidant effectively inhibits in vivo lipid peroxidation and atherosclerosis in apoE-/-;LDLr-/- mice, consistent with though not proving a causal relationship between aortic lipoprotein lipid oxidation and atherosclerosis in this model of the disease.  相似文献   

12.
Protection of sperm membranes against lipid peroxidation is a pre-requisite to prolonged sperm storage, both in vivo and in vitro. As females from avian species can store spermatozoa in the utero-vaginal junction (UVJ) for prolonged periods, we investigated the mechanisms involved in antioxidative protection of the plasma membrane of chicken sperm in this region. Comparisons of concentrations in nonenzymatic (alpha-tocopherol, ascorbic acid, and GSH) and enzymatic (GSH-Px, SOD) antioxidants among the vagina, UVJ and uterus of sexually mature chicken hens revealed tissue-specific profiles, with higher ascorbic acid content and increased GSH-Px and SOD activity in the UVJ compared to other regions of the lower oviduct (vagina, uterus). Deterioration of the antioxidant profile in the UVJ was observed in aging hens, but it was partially compensated by dietary supplementation with vitamin E (130 ppm). It is concluded that the chicken UVJ provides a complex defense barrier against lipid peroxidation of the sperm membrane during in vivo storage, which can be partially improved by dietary supplementation with vitamin E. The protective effects of this barrier decline over time during the reproductive season.  相似文献   

13.
Epidemiological and biochemical studies infer that oxidative processes, including the oxidation of low-density lipoprotein (LDL), are involved in atherosclerosis. Vitamin E has been the focus of several large supplemental studies of cardiovascular disease, yet its potential to attenuate or even prevent atherosclerosis has not been realised. The scientific rationale for vitamin E supplements protecting against atherosclerosis is based primarily on the oxidation theory of atherosclerosis, the assumption that vitamin E becomes depleted as disease progresses, and the expectation that vitamin E prevents the oxidation of LDL in vivo and atherogenic events linked to such oxidation. However, it is increasingly clear that the balance between vitamin E and other antioxidants may be crucial for in vivo antioxidant protection, that vitamin E is only minimally oxidised and not deficient in atherosclerotic lesions, and that vitamin E is not effective against two-electron oxidants that are increasingly implicated in both early and later stages of the disease. It also remains unclear as to whether oxidation plays a bystander or a casual role in atherosclerosis. This lack of knowledge may explain the ambivalence of vitamin E and other antioxidant supplementation in atherosclerosis.  相似文献   

14.
The antioxidant action of carotenoids is believed to involve quenching of singlet oxygen and scavenging of reactive oxygen radicals. However, the exact mechanism by which carotenoids protect cells against oxidative damage, particularly in the presence of other antioxidants, remains to be elucidated. This study was carried out to examine the ability of exogenous zeaxanthin alone and in combination with vitamin E or C, to protect cultured human retinal pigment epithelium cells against oxidative stress. The survival of ARPE-19 cells, subjected to merocyanine 540-mediated photodynamic action, was determined by the MTT test and the content of lipid hydroperoxides in photosensitized cells was analyzed by HPLC with electrochemical detection. We found that zeaxanthin-supplemented cells, in the presence of either alpha-tocopherol or ascorbic acid, were significantly more resistant to photoinduced oxidative stress. Cells with added antioxidants exhibited increased viability and accumulated less lipid hydroperoxides than cells without the antioxidant supplementation. Such a synergistic action of zeaxanthin and vitamin E or C indicates the importance of the antioxidant interaction in efficient protection of cell membranes against oxidative damage induced by photosensitized reactions.  相似文献   

15.
The decreased oxidizability of plasma lipoproteins is related to the increased vitamin E intake and its association with a relatively lower incidence of coronary heart disease has been proposed. We investigated the effect of the in vivo vitamin E supplementation on the oxidizability of serum lipids in patients with ischemic heart disease and a moderate hypercholesterolemia. Thirty-two patients (16 males and 16 postmenopausal women) participated in this placebo-controlled, randomized trial. They were treated with 400 mg vitamin E/day for 6 weeks. The copper-induced serum lipid oxidizability ex vivo was assessed by measuring conjugated diene formation at 245 nm. We also measured vitamin E, malondialdehyde (MDA) and uric acid concentrations in the plasma. Because of observed significant differences in parameters of serum lipid oxidizability (lag time and maximal rate of oxidation), plasma alpha-tocopherol and MDA levels between male patients and postmenopausal women supplemented with vitamin E, the results were compared between both genders. Six weeks of vitamin E supplementation significantly increased plasma vitamin E levels (by 87 %) in male patients but in postmenopausal women only by 34 %. Concomitantly with increased plasma levels of vitamin E the decrease in plasma MDA levels was observed in male patients (decrease by 20 %; p=0.008), but in postmenopausal women the decrease did not attain statistical significance. Plasma uric acid levels were not apparently changed in placebo or vitamin E supplemented groups of patients. The changes in ex vivo serum lipid oxidizability after vitamin E, supplementation have shown a significantly prolonged lag time (by 11 %; p=0.048) and lowered rate of lipid oxidation (by 21 %; p=0.004) in male patients in comparison with postmenopausal women. Linear regression analysis revealed a significant correlation between plasma vitamin E levels and the lag time (r=0.77; p=0.03) and the maximal rate of serum lipid oxidation (r=-0.70; p=0.05) in male patients. However, in postmenopausal women the correlations were not significant. We conclude that 400 mg vitamin E/day supplementation in patients with ischemic heart disease and a moderate hypercholesterolemia influenced favorably ex vivo serum lipid oxidation of male patients when compared with postmenopausal women. The observed differences between both genders could be useful in the selection of the effective vitamin E doses in the prevention of coronary heart disease.  相似文献   

16.
alpha-tocopherol, the most potent antioxidant form of vitamin E, is mainly bound to lipoproteins in plasma and its incorporation into the vascular wall can prevent the endothelium dysfunction at an early stage of atherogenesis. In the present study, the plasma phospholipid transfer protein (PLTP) was shown to promote the net mass transfer of alpha-tocopherol from high density lipoproteins (HDL) and alpha-tocopherol-albumin complexes toward alpha-tocopherol-depleted, oxidized low density lipoproteins (LDL). The facilitated transfer reaction of alpha-tocopherol could be blocked by specific anti-PLTP antibodies. These observations indicate that PLTP may restore the antioxidant potential of plasma LDL at an early stage of the oxidation cascade that subsequently leads to cellular damages. In addition, the present study demonstrated that the PLTP-mediated net mass transfer of alpha-tocopherol can constitute a new mechanism for the incorporation of alpha-tocopherol into the vascular wall in addition to the previously recognized LDL receptor and lipoprotein lipase pathways. In ex vivo studies on rabbit aortic segments, the impairment of the endothelium-dependent arterial relaxation induced by oxidized LDL was found to be counteracted by a pretreatment with purified PLTP and alpha-tocopherol-albumin complexes, and both the maximal response and the sensitivity to acetylcholine were significantly improved. We conclude that PLTP, by supplying oxidized LDL and endothelial cells with alpha-tocopherol through a net mass transfer reaction may play at least two distinct beneficial roles in preventing endothelium damage, i.e., the antioxidant protection of LDL and the preservation of a normal relaxing function of vascular endothelial cells.  相似文献   

17.
Multiple reactive oxygen/nitrogen species induce oxidative stress. Mammals have evolved with an elaborate defense network against oxidative stress, in which multiple antioxidant compounds and enzymes with different functions exert their respective roles. Radical scavenging is one of the essential roles of antioxidants and vitamin E is the most abundant and important lipophilic radical-scavenging antioxidant in vivo. The kinetic data and physiological molar ratio of vitamin E to substrates show that the peroxyl radicals are the only radicals that vitamin E can scavenge to break chain propagation efficiently and that vitamin E is unable to act as a potent scavenger of hydroxyl, alkoxyl, nitrogen dioxide, and thiyl radicals in vivo. The preventive effect of vitamin E against the oxidation mediated by nonradical oxidants such as hypochlorite, singlet oxygen, ozone, and enzymes may be limited in vivo. The synergistic interaction of vitamin E and vitamin C is effective for enhancing the antioxidant capacity of vitamin E. The in vitro and in vivo evidence of the function of vitamin E as a peroxyl radical-scavenging antioxidant and inhibitor of lipid peroxidation is presented.  相似文献   

18.
Oxidation of lipoproteins is thought to be an early event in atherogenesis. To evaluate whether aortic lipoprotein lipid (per)oxidation contributes to atherosclerosis, we investigated the time-dependent changes to lipids and antioxidants in plasma and aortas of apolipoprotein E gene knockout (apoE-/-) mice receiving a high fat diet, and compared these changes with lesion development. Circulating buoyant lipoproteins and associated cholesterol (C), cholesteryl esters (CE), and alpha-tocopherol (alpha-TOH) increased within 1 month then remained largely constant up to 6 months. Coenzyme Q (CoQ) remained unchanged for the first 3 months and increased marginally after 6 months. With increasing duration of the diet, plasma lipids showed an increased propensity to undergo peroxyl radical-induced (per)oxidation. Absolute concentrations of aortic C, hydroperoxides and hydroxides of CE (CE-O(O)H) and alpha-TOH increased gradually while aortic CE increased more markedly with changes to cholesteryl linoleate being most pronounced. Aortic CoQ remained largely unchanged. Overall, the extent of aortic CE (per)oxidation remained low (相似文献   

19.
In this study we have evaluated the supplementation of olive oil with vitamin E on coenzyme Q concentration and lipid peroxidation in rat liver mitochondrial membranes. Four groups of rats were fed on virgin olive, olive plus 200 mg/kg of vitamin E or sunflower oils as lipid dietary source. To provoke an oxidative stress rats were administered intraperitoneally 10 mg/kg/day of adriamycin the last two days of the experiment. Animals fed on olive oil plus vitamin E had significantly higher coenzyme Q and vitamin E levels but a lower mitochondrial hydroperoxide concentration than rats fed on olive oil. Retinol levels were not affected, by either different diets or adriamycin treatment. In conclusion, an increase in coenzyme Q and alpha-tocopherol in these membranes can be a basis for protection against oxidation and improvement in antioxidant capacity.  相似文献   

20.
Selenium is an essential trace element and it is well known that selenium is necessary for cell culture. However, the mechanism underlying the role of selenium in cellular proliferation and survival is still unknown. The present study using Jurkat cells showed that selenium deficiency in a serum-free medium decreased the selenium-dependent enzyme activity (glutathione peroxidases and thioredoxin reductase) within cells and cell viability. To understand the mechanism of this effect of selenium, we examined the effect of other antioxidants, which act by different mechanisms. Vitamin E, a lipid-soluble radical-scavenging antioxidant, completely blocked selenium deficiency-induced cell death, although alpha-tocopherol (biologically the most active form of vitamin E) could not preserve selenium-dependent enzyme activity. Other antioxidants, such as different isoforms and derivatives of vitamin E, BO-653 and deferoxamine mesylate, also exerted an inhibitory effect. However, the water-soluble antioxidants, such as ascorbic acid, N-acetyl cysteine, and glutathione, displayed no such effect. Dichlorodihydrofluorescein (DCF) assay revealed that cellular reactive oxygen species (ROS) increased before cell death, and sodium selenite and alpha-tocopherol inhibited ROS increase in a dose-dependent manner. The generation of lipid hydroperoxides was observed by fluorescence probe diphenyl-1-pyrenylphosphine (DPPP) and HPLC chemiluminescence only in selenium-deficient cells. These results suggest that the ROS, especially lipid hydroperoxides, are involved in the cell death caused by selenium deficiency and that selenium and vitamin E cooperate in the defense against oxidative stress upon cells by detoxifying and inhibiting the formation of lipid hydroperoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号