共查询到20条相似文献,搜索用时 0 毫秒
1.
Symbiotic Potential, Competitiveness, and Serological Properties of Bradyrhizobium japonicum Indigenous to Korean Soils
下载免费PDF全文

Ui Gum Kang Padma Somasegaran Heinz J. Hoben B. Ben Bohlool 《Applied microbiology》1991,57(4):1038-1045
The symbiotic potential of Bradyrhizobium japonicum isolates indigenous to seven Korean soils was evaluated by inoculating soybeans with 10- and 1,000-fold-diluted soil suspensions (whole-soil inocula). At both levels, significant differences in the symbiotic potential of the indigenous B. japonicum isolates were demonstrated. The relationship between rhizobial numbers in the whole-soil inocula (x) and nitrogen fixation parameters (y) was best predicted by a straight line (y = a + bx) when the numbers in the inocula were 100 to 10,000 ml-1, while the power curve (y = axb) predicted the variation when the numbers were 1 to 100 ml-1. Thirty isolates from three soils showed wide differences in effectiveness (measured as milligrams of shoot N per plant), and several were of equal or greater effectiveness than reference strain B. japonicum USDA 110 on soybean cultivars Clark and Jangbaekkong. On both of the soybean cultivars grown in a Hawaiian mollisol, the Korean B. japonicum isolate YCK 213 and USDA 110 were of equal effectiveness; USDA 110 was the superior strain in colonization (nodule occupancy). Korean isolates YCK 117 and YCK 141 were superior colonizers compared with USDA 110. However, B. japonicum USDA 123 was the superior colonizer compared with isolates YCK 213, YCK 141, and YCK 117. In an immunoblot analysis of 97 indigenous Korean isolates of B. japonicum, 41% fell into the USDA 110 and USDA 123 serogroups. Serogroups USDA 110 and USDA 123 were represented in six of the seven soils examined. In one Korean soil, 100% of the B. japonicum isolates reacted only with antisera of YCK 117, an isolate from the same soil. 相似文献
2.
3.
Serological Relatedness of Rhizobium fredii to Other Rhizobia and to the Bradyrhizobia 总被引:1,自引:4,他引:1
下载免费PDF全文

Several isolates of Rhizobium fredii were examined for their serological relatedness to each other, to Bradyrhizobium japonicum, and to other fast- and slow-growing rhizobia. Immunofluorescence, agglutination, and immunodiffusion analyses indicated that R. fredii contains at least three separate somatic serogroups, USDA 192, USDA 194, and USDA 205. There was no cross-reaction between any of the R. fredii isolates and 13 of the 14 B. japonicum somatic serogroups tested. Cross-reactions were obtained with antisera from R. fredii and serogroup 122 of B. japonicum, Rhizobium meliloti, and several fast-growing Rhizobium spp. for Leucaena, Sesbania, and Lablab species. The serological relationship between R. fredii and R. meliloti was examined in more detail, and of 23 R. meliloti strains examined, 8 shared somatic antigens with the type strains from all three R. fredii serogroups. The serological relatedness of R. fredii to B. japonicum and R. meliloti appears to be unique since the strains are known to be biochemically and genetically diverse. 相似文献
4.
Luciana Bianco Jorge Angelini Adriana Fabra Rosana Malpassi 《Current microbiology》2013,66(2):174-184
Native perennial legume Adesmia bicolor reveals characteristics that are key to securing persistence under grazing. Literature on the diversity and symbiotic effectiveness of indigenous rhizobia-nodulating A. bicolor in central Argentina is limited. The purpose of this study was therefore to determine phenotypic and genotypic variability as well as biological N-fixation effectiveness in rhizobia isolated from A. bicolor nodules. To this end, repetitive genomic regions were analyzed using ERIC primers. In the greenhouse, plants were grown under a (i) N-fertilized treatment, (ii) N-free control treatment, and (iii) rhizobia inoculation treatment. Dry weight and N-content were analyzed. All isolates belonged to Rhizobium genus and showed high symbiotic effectiveness. The N-content/subterranean N-content ratio in aerial and subterranean parts of inoculated plants was higher than that observed in N-fertilized plants during the vegetative stage. Results from this study demonstrate that symbiosis between native rhizobial strains and A. bicolor is very effective. 相似文献
5.
A survey of 51 strains of Bradyrhizobium japonicum was performedwith respect to the composition of extracellular polysaccharide(EPS), the production of rhizobitoxine and the hydrogenase phenotype.A good correlation was found among these three different characteristics.Thirty-six strains producing an EPS composed of glucose, mannose,galactose, 4-O-methyl galactose and galacturonic acid did notsynthesize rhizobitoxine, whereas 14 strains producing an EPScomposed of rhamnose and 4-O-methyl glucuronic acid were allfound to synthesize rhizobitoxine. Hydrogen-uptake positive(Hup+) strains were confined exclusively to the former groupof strains which produced an EPS composed of glucose, mannose,galactose, 4-O-methyl galactose and galacturonic acid. Theseresults suggest that the phenotype with respect to rhizobitoxineproduction and hydrogen uptake is involved in the phylogenyof Bradyrhizobium japonicum as well as in the productivity ofnodulated soybeans. (Received March 24, 1989; Accepted June 16, 1989) 相似文献
6.
7.
Symbiotic Effectiveness and Host-Strain Interactions of Rhizobium fredii USDA 191 on Different Soybean Cultivars 总被引:1,自引:0,他引:1
下载免费PDF全文

Daniel W. Israel James N. Mathis W. Mark Barbour Gerald H. Elkan 《Applied microbiology》1986,51(5):898-903
Nodulation, acetylene reduction activity, dry matter accumulation, and total nitrogen accumulation by nodulated plants growing in a nitrogen-free culture system were used to compare the symbiotic effectiveness of the fast-growing Rhizobium fredii USDA 191 with that of the slow-growing Bradyrhizobium japonicum USDA 110 in symbiosis with five soybean (Glycine max (L.) Merr.) cultivars. Measurement of the amount of nitrogen accumulated during a 20-day period of vegetative growth (28 to 48 days after transplanting) showed that USDA 110 fixed 3.7, 39.1, 4.6, and 57.3 times more N2 than did USDA 191 with cultivars Pickett 71, Harosoy 63, Lee, and Ransom as host plants, respectively. With the unimproved Peking cultivar as the host plant, USDA 191 fixed 3.3 times more N2 than did the USDA 110 during the 20-day period. The superior N2 fixation capability of USDA 110 with the four North American cultivars as hosts resulted primarily from higher nitrogenase activity per unit nodule mass (specific acetylene reduction activity) and higher nodule mass per plant. The higher N2-fixation capability of USDA 191 with the Peking cultivar as host resulted primarily from higher nodule mass per plant, which was associated with higher nodule numbers. There was significant variation in the N2-fixation capabilities of the four North American cultivar-USDA 191 symbioses. Pickett 71 and Lee cultivars fixed significantly more N2 in symbiosis with USDA 191 than did the Harosoy 63 and Ransom cultivars. This quantitative variation in N2-fixation capability suggests that the total incompatibility (effectiveness of nodulation and efficiency of N2 fixation) of host soybean plants and R. fredii strains is regulated by more than one host plant gene. These results indicate that it would not be prudent to introduce R. fredii strains into North American agricultural systems until more efficient N2-fixing symbioses between North American cultivars and these fast-growing strains can be developed. When inoculum containing equal numbers of USDA 191 and of strain USDA 110 was applied to the unimproved Peking cultivar in Perlite pot culture, 85% of the 160 nodules tested were occupied by USDA 191. With Lee and Ransom cultivars, 99 and 85% of 140 and 96 nodules tested, respectively, were occupied by USDA 110. 相似文献
8.
Sokichi Shiro Syota Matsuura Rina Saiki Gilbert C. Sigua Akihiro Yamamoto Yosuke Umehara Masaki Hayashi Yuichi Saeki 《Applied and environmental microbiology》2013,79(12):3610-3618
We investigated the relationship between the genetic diversity of indigenous soybean-nodulating bradyrhizobia and their geographical distribution in the United States using nine soil isolates from eight states. The bradyrhizobia were inoculated on three soybean Rj genotypes (non-Rj, Rj2Rj3, and Rj4). We analyzed their genetic diversity and community structure by means of restriction fragment length polymorphisms of PCR amplicons to target the 16S-23S rRNA gene internal transcribed spacer region, using 11 USDA Bradyrhizobium strains as reference strains. We also performed diversity analysis, multidimensional scaling analysis based on the Bray-Curtis index, and polar ordination analysis to describe the structure and geographical distribution of the soybean-nodulating bradyrhizobial community. The major clusters were Bradyrhizobium japonicum Bj123, in the northern United States, and Bradyrhizobium elkanii, in the middle to southern regions. Dominance of bradyrhizobia in a community was generally larger for the cluster belonging to B. elkanii than for the cluster belonging to B. japonicum. The indigenous American soybean-nodulating bradyrhizobial community structure was strongly correlated with latitude. Our results suggest that this community varies geographically. 相似文献
9.
Attenuation of Symbiotic Effectiveness by Rhizobium meliloti SAF22 Related to the Presence of a Cryptic Plasmid
下载免费PDF全文

E. Velazquez P. F. Mateos P. Pedrero F. B. Dazzo E. Martinez-Molina 《Applied microbiology》1995,61(5):2033-2036
Several wild-type strains of Rhizobium meliloti isolated from alfalfa nodules exhibited different plasmid profiles, yet did not differ in growth rate in yeast-mannitol medium, utilization of 43 different carbon sources, intrinsic resistance to 14 antibiotics, or detection of 16 enzyme activities. In contrast, three measures of effectiveness in symbiotic nitrogen fixation with alfalfa (shoot length, dry weight, and nitrogen content) indicated that R. meliloti SAF22, whose plasmid profile differs from those of the other strains tested, is significantly less effective than other wild-type strains in symbiotic nitrogen fixation. Light microscopy of nodules infected with strain SAF22 showed an abnormal center of nitrogen fixation zone III, with bacteria occupying a smaller portion of the infected host cells and vacuoles occupying a significantly larger portion of adjacent uninfected host cells. In contrast, the effective nodules infected with other wild types or plasmid pRmSAF22c-cured segregants of SAF22 did not display this cytological abnormality. 相似文献
10.
Seventeen cultures of Rhizobium CB756 varied in symbiotic effectiveness and contained a number of different colony types. An examination of single colony isolates from one culture of CB756 indicated that colony characteristics of most isolates were unstable and did not breed true. There was a relationship between symbiotic effectiveness and colony type of the original isolate. The 3 most ineffective sub-strains were all isolated from large, gummy colonies whereas the most effective were isolated from pinpoint, dry colonies. 相似文献
11.
Recent molecular biological, chemical, physiological and morphological studies indicate that Trichosporon cutaneum and related species should be reclassified. In this study, antigenic characteristics of the species were determined. The results of adsorption experiments revealed that there were at least three serological types: I, II and III. Specific factor sera I, II and III were prepared on the basis of adsorption experiments and isolates were serotyped by cell slide agglutination (CSA). Since the CSA test was difficult to read in some strains, the results of the CSA test were compared with the findings from an enzyme-linked immunosorbent assay (ELISA). For the ELISA, crude polysaccharide antigens prepared from the culture supernatant were used as the antigen. The types determined by ELISA correlated well with those determined by the CSA test. These data suggest that T. cutaneum and related species have at least three serological types, and that the typing can be done by either CSA or ELISA. 相似文献
12.
Distribution and Diversity of Symbiotic Thermophiles, Symbiobacterium thermophilum and Related Bacteria, in Natural Environments
下载免费PDF全文

Kenji Ueda Michiyo Ohno Kaori Yamamoto Hanae Nara Yujiro Mori Masafumi Shimada Masahiko Hayashi Hanako Oida Yuko Terashima Mitsuyo Nagata Teruhiko Beppu 《Applied microbiology》2001,67(9):3779-3784
Symbiobacterium thermophilum is a tryptophanase-positive thermophile which shows normal growth only in coculture with its supporting bacteria. Analysis of the 16S rRNA gene (rDNA) indicated that the bacterium belongs to a novel phylogenetic branch at the outermost position of the gram-positive bacterial group without clustering to any other known genus. Here we describe the distribution and diversity of S. thermophilum and related bacteria in the environment. Thermostable tryptophanase activity and amplification of the specific 16S rDNA fragment were effectively employed to detect the presence of Symbiobacterium. Enrichment with kanamycin raised detection sensitivity. Mixed cultures of thermophiles containing Symbiobacterium species were frequently obtained from compost, soil, animal feces, and contents in the intestinal tracts, as well as feeds. Phylogenetic analysis and denaturing gradient gel electrophoresis of the specific 16S rDNA amplicons revealed a diversity of this group of bacteria in the environment. 相似文献
13.
Determination of Hydrogenase in Free-living Cultures of Rhizobium japonicum and Energy Efficiency of Soybean Nodules 总被引:14,自引:2,他引:14
下载免费PDF全文

Lim ST 《Plant physiology》1978,62(4):609-611
A sensitive tritium exchange assay was applied to the Rhizobium system for measuring the expression of uptake hydrogenase in free-living cultures of Rhizobium japonicum. Hydrogenase was detected about 45 hours after inoculation of cultures maintained under microaerophilic conditions (about 0.1% O2). The tritium exchange assay was used to screen a variety of different strains of R. japonicum (including major production strains) with the findings that about 30% of the strains expressed hydrogenase activity with identical results being observed using an alternative assay based on uptake of H2. The relative efficiency of intact soybean nodules inoculated with 10 different rhizobial strains gave results identical to those obtained using free-living cultures. The tritium exchange assay provides an easy, quick, and accurate assessment of H2 uptake efficiency of intact nodules. 相似文献
14.
Andrew Karl Fenton Carey Lambert Peter Charles Wagstaff Renee Elizabeth Sockett 《Journal of bacteriology》2010,192(5):1299-1311
We studied the two mreB genes, encoding actinlike cytoskeletal elements, in the predatory bacterium Bdellovibrio bacteriovorus. This bacterium enters and replicates within other Gram-negative bacteria by attack-phase Bdellovibrio squeezing through prey outer membrane, residing and growing filamentously in the prey periplasm forming an infective “bdelloplast,” and septating after 4 h, once the prey contents are consumed. This lifestyle brings challenges to the Bdellovibrio cytoskeleton. Both mreB genes were essential for viable predatory growth, but C-terminal green fluorescent protein tagging each separately with monomeric teal-fluorescent protein (mTFP) gave two strains with phenotypic changes at different stages in predatory growth and development. MreB1-mTFP cells arrested growth early in bdelloplast formation, despite successful degradation of prey nucleoid. A large population of stalled bdelloplasts formed in predatory cultures and predation proceeded very slowly. A small proportion of bdelloplasts lysed after several days, liberating MreB1-mTFP attack-phase cells of wild-type morphology; this process was aided by subinhibitory concentrations of an MreB-specific inhibitor, A22. MreB2-mTFP, in contrast, was predatory at an almost wild-type rate but yielded attack-phase cells with diverse morphologies, including spherical, elongated, and branched, the first time such phenotypes have been described. Wild-type predatory rates were seen for all but spherical morphotypes, and septation of elongated morphotypes was achieved by the addition of A22.The predatory bacterium Bdellovibrio bacteriovorus shows novel filamentous growth within the periplasm of the Gram-negative prey bacterium on which it feeds. This study focuses on the cytoskeletal protein MreB and the role that two homologues of it play in B. bacteriovorus predatory or host-dependent (HD) growth. The HD B. bacteriovorus life cycle can be split into two phases: an attack phase and a growth phase (Fig. (Fig.1).1). The attack-phase B. bacteriovorus is a small free-swimming, highly motile cell within which replication has been arrested and which does not take up organic nutrients from the environment or grow extensively (24, 26). Once an attack-phase cell has collided with a suitable prey bacterium, B. bacteriovorus opens and squeezes through a small hole, formed in the outer membrane, using type IV pili to pull itself inside (7, 10). The B. bacteriovorus reseals the hole upon entering the periplasm. Once inside, the prey is killed rapidly within 15 min, and the prey cell wall is partially digested (35), forming a rounded structure called the bdelloplast (see Fig. Fig.11 and 4Ac and d). The HD B. bacteriovorus cell then enters the second, growth phase, part of the life cycle, (Fig. (Fig.1),1), whereby it grows filamentously while simultaneously coordinating the digestion and transportation of monomers from the prey cytoplasm. The mature growth-phase cell is multiploid and elongates typically 3 to 10 times the length of an attack-phase cell, its length being a reflection of the nutritional resources available in the prey (20). Once resources within the bdelloplast are depleted, the mature filament septates sequentially from one pole to form multiple progeny. These lyse the exhausted bdelloplast, mature into attack-phase cells, and repress growth once again (Fig. (Fig.1).1). B. bacteriovorus can be cultured slowly, without prey, as host-independent (HI) cells growing upon peptone-rich medium (30). In these conditions they grow pleiomorphically as mainly long filamentous or serpentine cells, from which some small attack-phase cells septate (30).Open in a separate windowFIG. 1.Schematic host-dependent (HD) predatory cycle for B. bacteriovorus on E. coli prey, showing the different phases of growth and inferred demands on the B. bacteriovorus cell cytoskeleton. References where the roles of the cytoskeleton in cell development have been proven for other bacteria are provided in parentheses. The status of the prey genome is both drawn from an earlier study (26) and confirmed by our work in the present study (see Fig. Fig.44).The predatory lifestyle of B. bacteriovorus presents a number of novel developmental challenges to the B. bacteriovorus cell and its cytoskeleton. It is not known how the attack-phase cells deform, allowing the B. bacteriovorus to squeeze through a pore it makes in the prey outer membrane that is narrower than the width of an attack-phase cell, as was imaged by Burnham et al. in the 1960s and more recently by Evans et al. (7, 10). It is also not known how the growth-phase filamentous cell within the bdelloplast is generated and remains resistant to division until terminal sequential septation begins, despite having multiple potential sites for septation along its length while elongating.The processes of cell elongation in rod-shaped bacteria are coordinated by an internal MreB cell cytoskeleton (9). MreB is a eukaryotic actin homologue and has been well studied in Escherichia coli, Bacillus subtilis, and Caulobacter crescentus (38). MreB monomers polymerize on ATP binding, forming helical structures in vivo that appear to associate with the cytoplasmic side of the bacterial cytoplasmic membrane (11, 18, 31). Bacterial two-hybrid experiments in Escherichia coli suggest that MreB forms a transmembrane complex with the two proteins MreC and MreD, each of which have been shown to form helical structures in vivo (21). A complex of MreBCD, together with the RodA protein, influences the shape of the peptidoglycan cell wall and thus the shape of the cell by positioning the peptidoglycan biosynthetic machinery so that its action is directionally specific (9, 19, 37). The MreB filament has also been shown to have roles in chromosome segregation, septation, and cell polarity (13, 14, 22, 37).Depletion of the MreB protein levels in E. coli and B. subtilis led to cells taking on a spherical morphology and eventual loss of viability since new peptidoglycan is not synthesized evenly along the cell wall (9, 36). Uneven incorporation of new peptidoglycan is potentially driven by the tubulin homologue FtsZ (4, 36). A similar phenotype is achieved by addition of the MreB inhibitor A22 that causes the reversible loss of MreB filament localization in vivo (14, 17). A22 was discovered in a chemical library being screened for the ability to generate anucleate minicells from E. coli (16, 17). It has been used extensively by others to examine MreB function in bacteria of many different genera. The addition of A22 to E. coli cells at 3.13 μg/ml leads to the breakdown of MreB filaments, spheroplasting and the generation of minicells (16). In B. subtilis, A22 at concentrations in excess of 100 μg/ml is required to generate spheroplasts; in C. crescentus 6-h incubations of A22 at 10 μg/ml are needed before any change to the cell shape can be observed—in this case cells take on a characteristic “lemon shape” (14, 16). Isolation and sequencing of A22-resistant mutants of C. crescentus, as well as biochemical evidence from purified MreB from Thermotoga maritima, revealed that A22 binds in the nucleotide binding pocket of MreB (3, 14). In vitro light scattering assays of MreB filamentation showed that A22 acted as a competitive inhibitor of ATP binding and was able in inhibit the formation of MreB filaments, presumably by sequestering and inactivating MreB monomers preventing their recycling (3). This study also demonstrated that in vitro A22 can have a role in stabilizing ADP-bound MreB (3).In the present study we investigated the functions of the two MreB homologues found in B. bacteriovorus, testing the role each has in predation and cell morphology by a combination of genetic approaches and A22 treatment. A reduction in function in both MreB proteins, achieved by C-terminal teal fluorescent protein (TFP) tagging, suggests that the MreB1 (Bd0211) protein was required in the growth-phase cell in bdelloplasts, whereas the MreB2 (Bd1737) protein is required later in the predatory process, for maintaining and allowing successful resolution of the growth-phase filament into short attack-phase vibroid cells. 相似文献
15.
Soybean is extensively cultivated worldwide and is the largest source of biologically fixed nitrogen among legumes. It is nodulated by both slow and fast growing rhizobia. Indigenous soybean rhizobia in Vertisols of central India were assessed for utilization of 35 carbon sources and intrinsic resistance to 19 antibiotics. There was greater utilization of trehalose and raffinose by fast growers (87 and 73 % by fast vs. 35 and 30 % by slow growers); but slow growers had higher ability to utilize glucosamine (75 % by slow vs. 33 % by fast growers). A larger proportion of slow growers were resistant to vancomycin, polymyxin-B and rifampicin (70, 65 and 55 %) compared to fast growers (13, 7 and 7 % each). Among the two 16S rRNA sequence types in the slow growers, those belonging to Bradyrhizobium spp. utilized glucosamine while those belonging to Rhizobium radiobacter did not. All the fast growers had 16S rRNA homology to R. radiobacter and majority could not utilize glucosamine. It is suggested that during initial isolations and screening of rhizobia in strain selection programmes, using carbon sources like glucosamine and antibiotics like vancomycin, polymyxin-B and rifampicin in the media may provide a simple way of distinguishing Bradyrhizobium strains from R. radiobacter among the slow growers. 相似文献
16.
Phenotypes, genotypes and response to statin therapy 总被引:3,自引:0,他引:3
PURPOSE OF REVIEW: Response to statin treatment can vary widely from person to person as a result of inherited traits (genotype) and acquired characteristics such as obesity (phenotype). The aim of this review is to describe what is known about factors that determine a patient's response, and to offer a mechanism to explain how plasma triglyceride influences the nature and magnitude of lipid lowering on statin therapy. RECENT FINDINGS: In normotriglyceridemic individuals statins have little impact on the concentration of large VLDL, but as basal plasma triglyceride rises there is an increasing tendency for large VLDL, chylomicrons, chylomicron remnants and small, dense LDL to fall on treatment. These phenotype-dependent effects are in contrast to the phenotype-independent actions on IDL and LDL. Recent studies have also revealed that the principal mechanism by which statins lower VLDL (and LDL) in hypertriglyceridemic individuals is by stimulation of lipoprotein clearance. Individuals with low HDL-cholesterol are increasingly treated with statins. The increase in this lipoprotein affects the subfraction distribution, with a specific increase in alpha1 HDL components. Polymorphism in the promoter for the ABCG8 gene has been linked to variations in response to statins; individuals with the rarer D19H genotype exhibit a greater reduction in LDL-cholesterol. Similarly, the magnitude of the statin-induced increase in HDL-cholesterol has been linked to a polymorphism in the promoter for apolipoprotein A1. SUMMARY: Statins are administered to a wide range of individuals on an empirical basis. Investigation of the phenotype and genotype influences on treatment response will allow a more tailored use of these drugs. 相似文献
17.
Rhizobium leguminosarum Biovar viciae Symbiotic Hydrogenase Activity and Processing Are Limited by the Level of Nickel in Agricultural Soils
下载免费PDF全文

Ana-Claudia Ureta Juan Imperial Tomás Ruiz-Argüeso Jose M. Palacios 《Applied microbiology》2005,71(11):7603-7606
Analysis of levels of hydrogenase processing and activity in Rhizobium leguminosarum biovar viciae bacteroids from pea (Pisum sativum) plants showed that the oxidation of nitrogenase-evolved hydrogen is limited by the availability of nickel in agricultural soils. This limitation was overcome by using an inoculant strain engineered for higher hydrogenase expression. 相似文献
18.
Inoculation Response of Legumes in Relation to the Number and Effectiveness of Indigenous Rhizobium Populations 总被引:7,自引:9,他引:7
下载免费PDF全文

The response of legumes to inoculation with rhizobia can be affected by many factors. Little work has been undertaken to examine how indigenous populations or rhizobia affect this response. We conducted a series of inoculation trials in four Hawaiian soils with six legume species (Glycine max, Vigna unguiculata, Phaseolus lunatus, Leucaena leucocephala, Arachis hypogaea, and Phaseolus vulgaris) and characterized the native rhizobial populations for each species in terms of the number and effectiveness of the population for a particular host. Inoculated plants had, on average, 76% of the nodules formed by the inoculum strain, which effectively eliminated competition from native strains as a variable between soils. Rhizobia populations ranged from less than 6 × 100/g of soil to 1 × 104/g of soil. The concentration of nitrogen in shoots of inoculated plants was not higher than that in uninoculated controls when the most probable number MPN counts of rhizobia were at or above 2 × 101/g of soil unless the native population was completely ineffective. Tests of random isolates from nodules of uninoculated plants revealed that within most soil populations there was a wide range of effectiveness for N2 fixation. All populations had isolates that were ineffective in fixing N2. The inoculum strains generally did not fix more N2 than the average isolate from the soil population in single-isolate tests. Even when the inoculum strain proved to be a better symbiont than the soil rhizobia, there was no response to inoculation. Enhanced N2 fixation after inoculation was related to increased nodule dry weights. Although inoculation generally increased nodule number when there were less than 1 × 102 rhizobia per g of soil, there was no corresponding increase in nodule dry weight when native populations were effective. Most species compensated for reduced nodulation in soils with few rhizobia by increasing the size of nodules and therefore maintaining a nodule dry weight similar to that of inoculated plants with more nodules. Even when competition by native soil strains was overcome with a selected inoculum strain, it was not always possible to enhance N2 fixation when soil populations were above a threshold number and had some effective strains. 相似文献
19.
Ella M. Barnes 《Journal of applied microbiology》1964,27(3):461-470
S ummary . The distribution of 19 serological types of Streptococcus faecium and related organisms has been studied, using 367 strains isolated mainly from faecal samples. Several types occurred in man as well as in pigs, sheep, cattle or chickens.
Strains of the same serological type showed a diversity of fermentation reactions, so that organisms which could be identified as Streptococcus durans shared a common type antigen with Strep. faecium strains. The evidence given here supports the proposal that Strep. durans should in future be considered as a variant of Strep. faecium .
It has also been shown that, in common with those of Streptococcus faecalis , the type antigens of the Strep. faecium types are cell wall components. 相似文献
Strains of the same serological type showed a diversity of fermentation reactions, so that organisms which could be identified as Streptococcus durans shared a common type antigen with Strep. faecium strains. The evidence given here supports the proposal that Strep. durans should in future be considered as a variant of Strep. faecium .
It has also been shown that, in common with those of Streptococcus faecalis , the type antigens of the Strep. faecium types are cell wall components. 相似文献
20.
Clostridium botulinum type E antigens prepared from washed cells by either Formalin treatment or heating at 100 C were used for immunizing rabbits. Agglutination tests showed that high levels of antibody were produced by both types of preparations. Flagellar antigens were highly strain-specific, whereas the somatic antigens were sufficiently similar to produce complete cross-agglutination. One toxigenic strain produced toxigenic and nontoxigenic progeny which were physiologically and antigenically identical in all other respects. Other nontoxigenic strains whose growth, physiological, and morphological characters were identical to type E and strains which had some physiological differences completely cross-agglutinated with type E strains via the somatic antigen. Neither type of antiserum agglutinated other clostridia against which they were tested except for C. acetobutylicum. This reaction seems to be due to a nonspecific anamnestic response and does not appear to be related to the immunizing strains. The nontoxigenic strains studied seem to have no greater antigenic differences from type E strains than the type E strains have from each other. 相似文献