共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
D Hentzen G M Lenoir M C Berthelon J Daillie 《Biochemical and biophysical research communications》1980,96(1):425-432
In order to characterize the substructure of the Epstein-Barr virus determined nuclear antigen (EBNA) which is considered to have a molecular weight of 180 K in its native form, we have examined the antigenic specificity of the polypeptides obtained after denaturation of this molecule. Two procedures were employed; treatment by sodium dodecyl sulfate (SDS) and heat followed by gel electrophoresis, or denaturation by guanidine hydrochloride followed by gel filtration, which allowed us to detect a specific antigenic activity in the 50 K region, following dialysis. The denatured molecules could be reassociated into larger molecules (50 to 180 K) which retain the property of binding to fixed nuclei, as does native EBNA. These results indicate that EBNA has a polymeric structure and that 50 K subunits carry the antigenic determinants. 相似文献
4.
The protein–DNA and protein–protein interactions of Epstein–Barr virus nuclear antigen 1 (EBNA1) are known to play an important role in the many functions of this viral protein. Large quantities of pure EBNA1 protein would be useful in biochemical assays to elucidate such interactions. In particular, the crystal structure of the full-length protein would be important to show possible regions of interaction and/or post-translational modification. Recently, we described a novel approach to overexpress and purify EBNA1 from Escherichia coli; however, it is not ideal for large-scale production of EBNA1. We were able to optimize this protocol by (1) adding a polyethyleneimine precipitation step prior to Ni–NTA chromatography to reduce complexity of the sample and remove nucleic acid, (2) optimizing the Ni–NTA gradient to further separate EBNA1 from impurities, and (3) concluding with a MonoS cation-exchange chromatography step to further purify and concentrate EBNA1. We were able to recover 10-mg quantities of pure EBNA1 protein. 相似文献
5.
Moriyama K Yoshizawa-Sugata N Obuse C Tsurimoto T Masai H 《The Journal of biological chemistry》2012,287(28):23977-23994
Origin recognition complex (Orc) plays an essential role in directing assembly of prereplicative complex at selective sites on chromosomes. However, Orc from vertebrates is reported to bind to DNA in a sequence-nonspecific manner, and it is still unclear how it selects specific genomic loci and how Cdc6, another conserved AAA(+) factor known to interact with Orc, participates in this process. Replication from oriP, the latent origin of Epstein-Barr virus, provides an excellent model system for the study of initiation on the host chromosomes because it is known to depend on prereplicative complex factors, including Orc and Mcm. Here, we show that Orc is recruited selectively at the essential dyad symmetry element in nuclear extracts in a manner dependent on EBNA1, which specifically binds to dyad symmetry. With purified proteins, EBNA1 can recruit both Cdc6 and Orc independently on a DNA containing EBNA1 binding sites, and Cdc6 facilitates the Orc recruitment by EBNA1. Purified Cdc6 directly binds to EBNA1, whereas association of Orc with EBNA1 requires the presence of the oriP DNA. Nuclease protection assays suggest that Orc associates with DNA segments on both sides adjacent to the EBNA1 binding sites and that this process is stimulated by the presence of Cdc6. Thus, EBNA1 can direct localized assembly of Orc in a process that is facilitated by Cdc6. The possibility of similar modes of recruitment of Orc/Cdc6 at the human chromosomal origins will be discussed. 相似文献
6.
Latent Epstein–Barr virus (EBV) genomes are maintained in human cells as low copy number episomes that are thought to be partitioned by attachment to the cellular mitotic chromosomes through the viral EBNA1 protein. We have identified a human protein, EBP2, which interacts with the EBNA1 sequences that govern EBV partitioning. Here we show that, in mitosis, EBP2 localizes to the condensed cellular chromosomes producing a staining pattern that is indistinguishable from that of EBNA1. The localization of EBNA1 proteins with mutations in the EBP2 binding region was also examined. An EBNA1 mutant (Δ325–376) disrupted for EBP2 binding and segregation function was nuclear but failed to attach to the cellular chromosomes in mitosis. Our results indicate that amino acids 325–376 mediate the binding of EBNA1 to mitotic chromosomes and strongly suggest that EBNA1 mediates EBV segregation by attaching to EBP2 on the cellular mitotic chromosomes. 相似文献
7.
Functional domains of Epstein-Barr virus nuclear antigen EBNA-1. 总被引:7,自引:18,他引:7
8.
Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5' or 3' end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses. 相似文献
9.
10.
Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. 总被引:20,自引:28,他引:20
下载免费PDF全文

Epstein-Barr virus (EBV) isolates show sequence divergence in the BamHI YH region of the genome which encodes the nuclear antigen EBNA 2, a protein thought to be involved in the initiation of virus-induced B-cell transformation; type A isolates (such as B95-8 EBV) encode a 82- to 87-kilodalton EBNA 2A protein, whereas type B isolates (such as AG876 EBV) encode an antigenically distinct 75-kilodalton EBNA 2B protein. In the present work 12 type A isolates and 8 type B isolates have been compared for their ability to transform resting human B cells in vitro into permanent lymphoblastoid cell lines. Although the kinetics of initial focus formation was not markedly dependent upon the EBNA 2 type of the transforming virus, on subsequent passage type A virus-transformed cells (type A transformants) yielded cell lines much more readily than did type B transformants. Direct comparison between the two types of transformant revealed clear differences in several aspects of growth phenotype. Compared with type A transformants, cell lines established with type B virus isolates consistently displayed an unusual growth pattern with poor survival of individual cells shed from lymphoblastoid clumps, a lower growth rate and a greater sensitivity to seeding at limiting dilutions, and a significantly lower saturation density that could not be corrected by supplementation of the medium with culture supernatant containing B-cell growth factors. This is the first direct evidence that, in EBV-transformed B-cell lines, the EBNA 2 protein plays a continuing role in determining the cellular growth phenotype. 相似文献
11.
Epstein-Barr virus (EBV) is etiologically linked to endemic Burkitt lymphoma (BL), but its contribution to lymphomagenesis, versus that of the chromosomal translocation leading to c-myc gene deregulation, remains unclear. The virus's growth-transforming (Latency III) program of gene expression is extinguished in tumor cells, and only a single viral protein, the EBV nuclear antigen (EBNA)1, is expressed via the alternative Latency I program. It is not known if BL arises from a B-cell subset in which EBV naturally adopts a Latency I infection or if a clone with limited antigen expression has been selected from an EBV-transformed Latency III progenitor pool. Here we identify a subset of BL tumors in which the Latency III-associated EBNA promoter Wp is active and most EBNAs are expressed, but where a gene deletion has specifically abrogated the expression of EBNA2. This implies that BL can be selected from a Latency III progenitor and that the principal selection pressure is for downregulation of the c-Myc antagonist EBNA2. 相似文献
12.
Partial purification of the Epstein-Barr virus nuclear antigen(s) 总被引:11,自引:0,他引:11
T B Sculley T Kreofsky G R Pearson T C Spelsberg 《The Journal of biological chemistry》1983,258(6):3974-3982
The Epstein-Barr virus nuclear antigen (EBNA) is speculated to be involved in cell transformation by the virus. Studies on the molecular properties of EBNA, however, have yielded conflicting results. In this study, three Epstein-Barr virus(EBV)-induced antigens were isolated and purified from extracts prepared from Raji cells. These antigens were able to block the anticomplement immunofluorescence reaction, indicating that all three were related to EBNA. The soluble antigen was found wholly in the cytosol fraction. An EBV-induced nuclear antigen I was found both in the cytosol and the nucleus. The EBV-induced nuclear antigen II was found associated with the chromatin. The soluble antigen and the nuclear antigen I were separated and partially purified using phosphocellulose chromatography. Each was further purified 1,400-fold with respect to the whole cell state by chromatography on CL-Sepharose 6B followed by blue dextran-Sepharose. subunit molecular weights of 70,000 were determined for each of these antigens, both in the crude and purified state, by radioimmunoelectrophoresis and gel filtration. The nuclear antigen II was purified 2,500-fold using hydroxylapatite, CL-Sepharose 6B, and blue dextran-Sepharose chromatographies. This antigen displayed two subunits by radioimmunoelectrophoresis with molecular weights of 65,000 and 70,000. Although all antigens shared similar molecular weights, the extent of their homology remains to be determined. 相似文献
13.
Epstein-Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. 总被引:4,自引:5,他引:4
下载免费PDF全文

The Epstein-Barr virus in the Burkitt lymphoma-derived cell line Raji has a deletion in the EBNA3C gene. When Raji cells are allowed to grow to high density and most of the cells become growth arrested in the G1 phase of the cell cycle, the level of detectable latent membrane protein 1 (LMP1) is substantially reduced. After dilution of the cells with fresh growth medium, within 8 h, there is a large increase in LMP1 mRNA, and by 12 h, LMP1 is expressed to a high level (H. Boos, M. Stoehr, M. Sauter, and N. Mueller-Lantzch, J. Gen. Virol. 71:1811-1815, 1990). Here we show that in Raji cells which constitutively express a transfected EBNA3C gene, the down-regulation of LMP1 in growth-arrested cells does not take place. Furthermore, we show that in wild-type Raji cells, low-level LMP1 expression occurs when most of the cells are arrested at a point(s) early in G1 (or G0) when the product of the retinoblastoma gene, pRb, is hypophosphorylated. The dramatic synthesis of LMP1 coincides with the progression of these cells to late G1 when pRb becomes hyperphosphorylated. Thus, in Raji cells, the LMP1 gene is apparently regulated in a cell cycle- or proliferation-dependent manner, but when EBNA3C is present, sustained LMP1 expression occurs as it does in a lymphoblastoid cell line. EBNA3C appears to either relieve the apparent repression of LMP1 in cells progressing through early G1 or possibly alter the stage at which the cells growth arrest to one where they are permissive for LMP1 expression. 相似文献
14.
15.
CD4+ T-cell responses to Epstein-Barr virus nuclear antigen EBNA1 in Chinese populations are highly focused on novel C-terminal domain-derived epitopes
下载免费PDF全文

Tsang CW Lin X Gudgeon NH Taylor GS Jia H Hui EP Chan AT Lin CK Rickinson AB 《Journal of virology》2006,80(16):8263-8266
Epstein-Barr virus nuclear antigen EBNA1, the one viral protein uniformly expressed in nasopharyngeal carcinoma (NPC), represents a prime target for T-cell-based immunotherapy. However, little is known about the EBNA1 epitopes, particularly CD4 epitopes, presented by HLA alleles in Chinese people, the group at highest risk for NPC. We analyzed the CD4+ T-cell responses to EBNA1 in 78 healthy Chinese donors and found marked focusing on a small number of epitopes in the EBNA1 C-terminal region, including a DP5-restricted epitope that was recognized by almost half of the donors tested and elicited responses able to recognize EBNA1-expressing, DP5-positive target cells. 相似文献
16.
Sivachandran N Dawson CW Young LS Liu FF Middeldorp J Frappier L 《Journal of virology》2012,86(1):60-68
Approximately 10% of gastric carcinomas (GC) are comprised of cells latently infected with Epstein-Barr virus (EBV); however, the mechanism by which EBV contributes to the development of this malignancy is unclear. We have investigated the cellular effects of the only EBV nuclear protein expressed in GC, EBNA1, focusing on promyelocytic leukemia (PML) nuclear bodies (NBs), which play important roles in apoptosis, p53 activation, and tumor suppression. AGS GC cells infected with EBV were found to contain fewer PML NBs and less PML protein than the parental EBV-negative AGS cells, and these levels were restored by silencing EBNA1. Conversely, EBNA1 expression was sufficient to induce the loss of PML NBs and proteins in AGS cells. Consistent with PML functions, EBNA1 expression decreased p53 activation and apoptosis in response to DNA damage and resulted in increased cell survival. In addition, EBNA1 mutants unable to bind CK2 kinase or ubiquitin-specific protease 7 had decreased ability to induce PML loss and to interfere with p53 activation. PML levels in EBV-positive and EBV-negative GC biopsy specimens were then compared by immunohistochemistry. Consistent with the results in the AGS cells, EBV-positive tumors had significantly lower PML levels than EBV-negative tumors. The results indicate that EBV infection of GC cells leads to loss of PML NBs through the action of EBNA1, resulting in impaired responses to DNA damage and promotion of cell survival. Therefore, PML disruption by EBNA1 is one mechanism by which EBV may contribute to the development of gastric cancer. 相似文献
17.
Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. 总被引:13,自引:50,他引:13
下载免费PDF全文

Several lines of evidence are compatible with the hypothesis that Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) or leader protein (EBNA-LP) affects expression of the EBV latent infection membrane protein LMP1. We now demonstrate the following. (i) Acute transfection and expression of EBNA-2 under control of simian virus 40 or Moloney murine leukemia virus promoters resulted in increased LMP1 expression in P3HR-1-infected Burkitt's lymphoma cells and the P3HR-1 or Daudi cell line. (ii) Transfection and expression of EBNA-LP alone had no effect on LMP1 expression and did not act synergistically with EBNA-2 to affect LMP1 expression. (iii) LMP1 expression in Daudi and P3HR-1-infected cells was controlled at the mRNA level, and EBNA-2 expression in Daudi cells increased LMP1 mRNA. (iv) No other EBV genes were required for EBNA-2 transactivation of LMP1 since cotransfection of recombinant EBNA-2 expression vectors and genomic LMP1 DNA fragments enhanced LMP1 expression in the EBV-negative B-lymphoma cell lines BJAB, Louckes, and BL30. (v) An EBNA-2-responsive element was found within the -512 to +40 LMP1 DNA since this DNA linked to a chloramphenicol acetyltransferase reporter gene was transactivated by cotransfection with an EBNA-2 expression vector. (vi) The EBV type 2 EBNA-2 transactivated LMP1 as well as the EBV type 1 EBNA-2. (vii) Two deletions within the EBNA-2 gene which rendered EBV transformation incompetent did not transactivate LMP1, whereas a transformation-competent EBNA-2 deletion mutant did transactivate LMP1. LMP1 is a potent effector of B-lymphocyte activation and can act synergistically with EBNA-2 to induce cellular CD23 gene expression. Thus, EBNA-2 transactivation of LMP1 amplifies the biological impact of EBNA-2 and underscores its central role in EBV-induced growth transformation. 相似文献
18.
Maier S Staffler G Hartmann A Höck J Henning K Grabusic K Mailhammer R Hoffmann R Wilmanns M Lang R Mages J Kempkes B 《Journal of virology》2006,80(19):9761-9771
Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) is a key determinant in the EBV-driven B-cell growth transformation process. By activating an array of viral and cellular target genes, EBNA-2 initiates a cascade of events which ultimately cause cell cycle entry and the proliferation of the infected B cell. In order to identify cellular target genes that respond to EBNA-2 in the absence of other viral factors, we have performed a comprehensive search for EBNA-2 target genes in two EBV-negative B-cell lines. This screen identified 311 EBNA-2-induced and 239 EBNA-2-repressed genes that were significantly regulated in either one or both cell lines. The activation of most of these genes had not previously been attributed to EBNA-2 function and will be relevant for the identification of EBNA-2-specific contributions to EBV-associated malignancies. The diverse spectrum of EBNA-2 target genes described in this study reflects the broad spectrum of EBNA-2 functions involved in virus-host interactions, including cell signaling molecules, adapters, genes involved in cell cycle regulation, and chemokines. 相似文献
19.
F A Gr?sser S G?ttel P Haiss B Boldyreff O G Issinger N Mueller-Lantzsch 《Biochemical and biophysical research communications》1992,186(3):1694-1701
A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK-1. The CK-2 specific phosphorylation site was localized in the 140 C-terminal amino acids using a recombinant trpE-C-terminal fusion protein. In a similar experiment, the 58 N-terminal amino acids expressed as a recombinant trpE-fusion protein were not phosphorylated. Phosphorylation of a synthetic peptide corresponding to amino acids 464-476 of EBNA-2 as a substrate led to the incorporation of 0.69 mol phosphate/mol peptide indicating that only one of three potential phosphorylation sites within the peptide was modified. The most likely amino acid residues for phosphorylation by CK-2 are Ser469 and Ser470. 相似文献
20.
Identification of the coding region for a second Epstein-Barr virus nuclear antigen (EBNA 2) by transfection of cloned DNA fragments. 总被引:10,自引:3,他引:10
下载免费PDF全文

N Mueller-Lantzsch G M Lenoir M Sauter K Takaki J M Bchet C Kuklik-Roos D Wunderlich G W Bornkamm 《The EMBO journal》1985,4(7):1805-1811
Cell lines were established by co-transfection of cloned M-ABA Epstein-Barr virus (EBV) DNA fragments with plasmids conferring resistance to dominant selective markers. A baby hamster kidney cell line carrying the HindIII-I1 fragment exhibits a nuclear antigen of 82 000 daltons, serologically defined as EBV-determined nuclear antigen (EBNA) 1. Furthermore, a Rat-1 cell line transfected with DNA of the clone pM 780-28 containing three large internal repeats (BglII-U) and the adjacent BglII-C fragment expresses a nuclear antigen of 82 000 daltons which can be visualized only by a subset of anti EBNA-positive human sera. Sera recognizing the 82 000-dalton protein of the transfected cell line reacted with a protein of the same size in the non-producer line Raji, designated as EBNA 2. Conversely, sera without reactivity to the 82 000-dalton protein failed to react with EBNA 2 of Raji cells. P3HR-1 and Daudi cells with large deletions in BglII-U and -C are devoid of EBNA 2. The data presented provide evidence that a second EBNA protein is encoded by the region of the EBV genome which is deleted in the non-transforming P3HR-1 strain. 相似文献