首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A full-length cDNA clone for the mouse mdr1 gene can confer multidrug resistance when introduced by transfection into otherwise drug-sensitive cells. In the same assay, a full-length cDNA clone for a closely related member of the mouse mdr gene family, mdr2, fails to confer multidrug resistance. To identify the domains of mdr1 which are essential for multidrug resistance and which may be functionally distinct in mdr2, we have constructed chimeric cDNA molecules in which discrete domains of mdr2 have been introduced into the homologous region of mdr1 and analyzed these chimeras for their capacity to transfer drug resistance. The two predicted ATP-binding domains of mdr2 were found to be functional, as either could complement the biological activity of mdr1. Likewise, a chimeric molecule in which the highly sequence divergent linker domain of mdr2 had been introduced in mdr1 could also confer drug resistance. However, the replacement of either the amino- or carboxy-terminus transmembrane (TM) domain regions of mdr1 by the homologous segments of mdr2 resulted in inactive chimeras. The replacement of as few as two TM domains from either the amino (TM5-6) or the carboxy (TM7-8) half of mdr1 by the homologous mdr2 regions was sufficient to destroy the activity of mdr1. These results suggest that the functional differences detected between mdr1 and mdr2 in our transfection assay reside within the predicted TM domains.  相似文献   

3.
S. M. Brower  J. E. Honts    AEM. Adams 《Genetics》1995,140(1):91-101
Yeast fimbrin is encoded by the SAC6 gene, mutations of which suppress temperature-sensitive mutations in the actin gene (ACT1). To examine the mechanism of suppression, we have sequenced 17 sac6 suppressor alleles, and found that they change nine different residues, all of which cluster in three regions of one of the two actin-binding domains of Sac6p. Two of these clusters occur in highly conserved regions (ABS1 and ABS3) that have been strongly implicated in the binding of related proteins to actin. The third cluster changes residues not previously implicated in the interaction with actin. As changes in any of nine different residues can suppress several different act1 alleles, it is likely that the suppressors restore the overall affinity, rather than specific lost interactions, between Sac6p and actin. Using mutagenesis, we have identified two mutations of the second actin-binding domain that can also suppress the act1 mutations of interest. This result suggests the two actin-binding domains of Sac6p interact with the same region of the actin molecule. However, differences in strength of suppression of temperature-sensitivity and sporulation indicate that the two actin-binding domains are distinct, and explain why second-domain mutations were not identified previously.  相似文献   

4.
The DNA replication, plasmid segregation and transactivation functions of Epstein-Barr nuclear antigen 1 (EBNA1) require the binding of EBNA1 to specific DNA recognition sites in the two non-contiguous functional elements of the Epstein-Barr virus latent origin of replication, oriP . EBNA1 molecules bound to these elements interact with each other resulting in the formation of looped individual DNA molecules and multiply linked DNA molecules. We have developed a glycerol gradient sedimentation assay suitable for quantitative analysis of the DNA linking activity of EBNA1 and used it to investigate the contribution of EBNA1 residues to the linking interaction and the mechanism of the interaction. Using overlapping internal deletion mutants, we found that two regions of EBNA1 can cause DNA linking, amino acids 40-100 and 327-377, but that the stabilities of the linked complexes formed by the two regions differ dramatically; only complexes formed through the latter region are stable to glycerol gradient sedimentation analysis. Mechanistic studies using EBNA1 in combination with GAL4-EBNA1 fusion proteins showed that linking interactions mediated by residues 327-377 are homotypic. Our results also suggest that only the DNA-bound form of EBNA1 participates in the protein-protein interactions seen in DNA linking.  相似文献   

5.
We have identified sequences that affect the efficient expression of Epstein-Barr virus nuclear antigen (EBNA 1) when the structural portion of its gene, found within the 2.9-kilobase-pair BamHI/HindIII fragment called Ilf, is expressed from a simian virus 40 vector. A set of nested deletions at the BamHI end of the fragment was constructed by using BAL 31 digestion, the addition of linkers, and ligation into pSVOd. The mutants were tested for their ability to express antigen in COS-1 monkey cells by using indirect immunofluorescence and immunoblotting. Deletion endpoints were determined by DNA sequencing of the 5' ends of the mutants. The deletion mutants could be subclassified into four groups based on their ability to express EBNA polypeptide. Mutants that retain more than 106 base pairs upstream from the start of the open reading frame in Ilf exhibit antigen expression indistinguishable from that of wild type. Mutants that invade the structural gene by 1,115 or more bases destroy antigen expression. Mutants that alter the splice acceptor site or invade the open reading frame by a short distance make antigen at a markedly lower frequency. There are three mutants, whose deletions map at -78, -70, and -44 base pairs upstream of the open reading frame, that make reduced levels of EBNA. Since these three mutants differ in the extent to which EBNA expression is impaired, the data suggest that there are several critical regions upstream of the open reading frame that regulate EBNA expression in COS-1 cells. It is not known whether these regulatory sequences, which would be located in an intron in the intact genome, play any role in the expression of EBNA in infected lymphocytes.  相似文献   

6.
The SAC1 gene product has been implicated in the regulation of actin cytoskeleton, secretion from the Golgi, and microsomal ATP transport; yet its function is unknown. Within SAC1 is an evolutionarily conserved 300-amino acid region, designated a SAC1-like domain, that is also present at the amino termini of the inositol polyphosphate 5-phosphatases, mammalian synaptojanin, and certain yeast INP5 gene products. Here we report that SAC1-like domains have intrinsic enzymatic activity that defines a new class of polyphosphoinositide phosphatase (PPIPase). Purified recombinant SAC1-like domains convert yeast lipids phosphatidylinositol (PI) 3-phosphate, PI 4-phosphate, and PI 3,5-bisphosphate to PI, whereas PI 4,5-bisphosphate is not a substrate. Yeast lacking Sac1p exhibit 10-, 2.5-, and 2-fold increases in the cellular levels of PI 4-phosphate, PI 3,5-bisphosphate, and PI 3-phosphate, respectively. The 5-phosphatase domains of synaptojanin, Inp52p, and Inp53p are also catalytic, thus representing the first examples of an inositol signaling protein with two distinct lipid phosphatase active sites within a single polypeptide chain. Together, our data provide a long sought mechanism as to how defects in Sac1p overcome certain actin mutants and bypass the requirement for yeast phosphatidylinositol/phosphatidylcholine transfer protein, Sec14p. We demonstrate that PPIPase activity is a key regulator of membrane trafficking and actin cytoskeleton organization and suggest signaling roles for phosphoinositides other than PI 4,5-bisphosphate in these processes. Additionally, the tethering of PPIPase and 5-phosphatase activities indicate a novel mechanism by which concerted phosphoinositide hydrolysis participates in membrane trafficking.  相似文献   

7.
8.
Ning S  Hahn AM  Huye LE  Pagano JS 《Journal of virology》2003,77(17):9359-9368
We have shown previously that interferon regulatory factor 7 (IRF7), a multifunctional protein intimately involved in latent Epstein-Barr virus (EBV) infection, is induced as well as activated by EBV latent membrane protein 1 (LMP1), the principal EBV oncoprotein. Since the LMP1 promoter (LMP1p) contains an interferon-stimulated response element (ISRE), we hypothesized that IRF7 might be able to regulate LMP1 expression and thus participate in a regulatory circuit between these two genes. In this study, IRF7 was shown first to activate LMP1p in transient transfection assays. Compared with EBV nuclear antigen 2 (EBNA2), the most potent viral transactivator of LMP1p, IRF7 has a lesser effect (approximately 10% that of EBNA2) on induction of LMP1p. Study with IRF7 deletion mutants showed that IRF7 functional domains have similar effects on both the beta interferon (IFN-beta) and LMP1 promoters in BJAB and 293 cells, and study with IRF7 phosphomimetic mutants showed that IRF7 phosphorylation may be involved in the activation of these two promoters. Further, the ISRE in LMP1p responds to IRF7 induction and IRF7 binds to this element. In the EBV-positive cell line P3HR1, which lacks the complete EBNA2 and EBV-encoded leader protein genes and hence expresses low-level LMP1, IRF7 alone can notably increase the endogenous LMP1 mRNA and protein levels. These results indicate that LMP1 is regulated by this host cell gene in addition to the viral factor, EBNA2, and may help to explain how LMP1 is expressed in type II latency in the absence of EBNA2. Moreover, IRF7 can regulate a viral gene in addition to a host cellular gene such as the IFN-beta gene. Together with the previous data that LMP1 can induce IRF7 expression and facilitate IRF7 phosphorylation and nuclear translocation, these results suggest a positive regulatory circuit between IRF7 and LMP1.  相似文献   

9.
Epstein-Barr nuclear antigen 1 (EBNA1) activates DNA replication from the Epstein-Barr virus latent origin, oriP. This activation involves the direct interaction of EBNA1 dimers with multiple sites within the two noncontiguous functional elements of the origin, the family of repeats (FR) element and the dyad symmetry (DS) element. The efficient interaction of EBNA1 dimers bound to these two elements in oriP results in the formation of DNA loops in which the FR and DS elements are bound together through EBNA1. In order to elucidate the mechanism by which EBNA1 induces oriP DNA looping, we have investigated the DNA sequences and EBNA1 amino acids required for EBNA1-mediated DNA looping. Using a series of truncation mutants of EBNA1 produced in baculovirus and purified to apparent homogeneity, we have demonstrated that the EBNA1 DNA binding and dimerization domain is not sufficient to mediate oriP DNA looping and that an additional region(s) located between amino acids 346 and 450 is required. Single EBNA1-binding sites, separated by 930 bp of plasmid DNA, were also shown to support EBNA1-mediated looping, indicating that the formation of large EBNA1 complexes, such as those observed on oriP FR and DS elements, is not a requirement for looping.  相似文献   

10.
The Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is a virus-encoded latent antigen essential for primary B-cell transformation. In this report we demonstrate that although the carboxy terminus of EBNA3C predominantly regulates cyclin A-dependent kinase activity, the region of greatest affinity for cyclin A lies within the EBNA3 amino-terminal homology domain of EBNA3C. Detailed mapping studies employing both in vitro binding assays and coimmunoprecipitation experiments implicated a small region of EBNA3C, amino acids 130 to 159 within the EBNA3 homology domain, as having the greatest affinity for cyclin A. The EBNA3 homology domain has the highest degree of amino acid similarity (approximately 30%) between the EBNA3 proteins, and, indeed, EBNA3B, but not EBNA3A, showed binding activity with cyclin A. We also show that EBNA3C binds to the alpha1 helix of the highly conserved mammalian cyclin box, with cyclin A amino acids 206 to 226 required for strong binding to EBNA3C amino acids 130 to 159. Interestingly, EBNA3C also bound human cyclins D1 and E in vitro, although the affinity was approximately 30% of that seen for cyclin A. Previously it was demonstrated that full-length EBNA3C rescues p27-mediated suppression of cyclin A-dependent kinase activity (J. S. Knight and E. S. Robertson, J. Virol. 78:1981-1991, 2004). It was also demonstrated that the carboxy terminus of EBNA3C recapitulates this phenotype. Surprisingly, the amino terminus of EBNA3C with the highest affinity for cyclin A was unable to rescue p27 suppression of kinase activity and actually downregulates cyclin A activity when introduced into EBV-infected cells. The data presented here suggests that the amino terminus of EBNA3C may play an important role in recruiting cyclin A complexes, while the carboxy terminus of EBNA3C is necessary for the functional modulation of cyclin A complex kinase activity.  相似文献   

11.
12.
Previous molecular genetic analyses of Epstein-Barr virus nuclear protein 2 (EBNA2) identified a negative effect of deletion of codons 19 to 33 on transformation and gene transactivation, while deletion of codons 19 to 110 was a null mutation for transformation and gene transactivation. We here report the surprising finding that codons 2 to 88, which encode the highly conserved unique N terminus (amino acids 1 to 58) and most of the polyproline repeat (amino acids 59 to 95), can be deleted with only minimal effects on transformation. Codons 97 to 122 can also be deleted with only minimal effects on transformation. However, deletion of 35 of the 37 prolines (amino acids 59 to 93) or deletion of codons 2 to 95 results in a null transforming phenotype. Although EBNA2 from which codons 59 to 93 were deleted was a null mutation for transformation, it was similar to some transforming mutants of EBNA2 in abundance, in interaction with RBPJK, and in transactivation of the LMP1 promoter in transient transfection assays. These data indicate that between three and seven prolines are critical for EBNA2 structure or for intermolecular interaction. Aside from these seven prolines, codons encoding the rest of the N-terminal half (amino acids 2 to 230) of EBNA2 are nonessential for primary B-lymphocyte growth transformation.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1)-infected subjects show a high incidence of Epstein-Barr virus (EBV) infection. This suggests that EBV may function as a cofactor that affects HIV-1 activation and may play a major role in the progression of AIDS. To test this hypothesis, we generated two EBV-negative human B-cell lines that stably express the EBNA2 gene of EBV. These EBNA2-positive cell lines were transiently transfected with plasmids that carry either the wild type or deletion mutants of the HIV-1 long terminal repeat (LTR) fused to the chloramphenicol acetyltransferase (CAT) gene. There was a consistently higher HIV-1 LTR activation in EBNA2-expressing cells than in control cells, which suggested that EBNA2 proteins could activate the HIV-1 promoter, possibly by inducing nuclear factors binding to HIV-1 cis-regulatory sequences. To test this possibility, we used CAT-based plasmids carrying deletions of the NF-kappa B (pNFA-CAT), Sp1 (pSpA-CAT), or TAR (pTAR-CAT) region of the HIV-1 LTR and retardation assays in which nuclear proteins from EBNA2-expressing cells were challenged with oligonucleotides encompassing the NF-kappa B or Sp1 region of the HIV-1 LTR. We found that both the NF-kappa B and the Sp1 sites of the HIV-1 LTR are necessary for EBNA2 transactivation and that increased expression resulted from the induction of NF-kappa B-like factors. Moreover, experiments with the TAR-deleted pTAR-CAT and with the tat-expressing pAR-TAT plasmids indicated that endogenous Tat-like proteins could participate in EBNA2-mediated activation of the HIV-1 LTR and that EBNA2 proteins can synergize with the viral tat transactivator. Transfection experiments with plasmids expressing the EBNA1, EBNA3, and EBNALP genes did not cause a significant HIV-1 LTR activation. Thus, it appears that among the latent EBV genes tested, EBNA2 was the only EBV gene active on the HIV-1 LTR. The transactivation function of EBNA2 was also observed in the HeLa epithelial cell line, which suggests that EBV and HIV-1 infection of non-B cells may result in HIV-1 promoter activation. Therefore, a specific gene product of EBV, EBNA2, can transactivate HIV-1 and possibly contribute to the clinical progression of AIDS.  相似文献   

14.
The replication and stable maintenance of latent Epstein-Barr virus (EBV) DNA episomes in human cells requires only one viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). To gain insight into the mechanisms by which EBNA1 functions, we used a yeast two-hybrid screen to detect human proteins that interact with EBNA1. We describe here the isolation of a protein, EBP2 (EBNA1 binding protein 2), that specifically interacts with EBNA1. EBP2 was also shown to bind to DNA-bound EBNA1 in a one-hybrid system, and the EBP2-EBNA1 interaction was confirmed by coimmunoprecipitation from insect cells expressing these two proteins. EBP2 is a 35-kDa protein that is conserved in a variety of organisms and is predicted to form coiled-coil interactions. We have mapped the region of EBNA1 that binds EBP2 and generated internal deletion mutants of EBNA1 that are deficient in EBP2 interactions. Functional analyses of these EBNA1 mutants show that the ability to bind EBP2 correlates with the ability of EBNA1 to support the long-term maintenance in human cells of a plasmid containing the EBV origin, oriP. An EBNA1 mutant lacking amino acids 325 to 376 was defective for EBP2 binding and long-term oriP plasmid maintenance but supported the transient replication of oriP plasmids at wild-type levels. Thus, our results suggest that the EBNA1-EBP2 interaction is important for the stable segregation of EBV episomes during cell division but not for the replication of the episomes.  相似文献   

15.
The Saccharomyces cerevisiae SAC1 gene was identified via independent analyses of mutations that modulate yeast actin function and alleviate the essential requirement for phosphatidylinositol transfer protein (Sec14p) activity in Golgi secretory function. The SAC1 gene product (Sac1p) is an integral membrane protein of the endoplasmic reticulum and the Golgi complex. Sac1p shares primary sequence homology with a subfamily of cytosolic/peripheral membrane phosphoinositide phosphatases, the synaptojanins, and these Sac1 domains define novel phosphoinositide phosphatase modules. We now report the characterization of a rat counterpart of Sac1p. Rat Sac1 is a ubiquitously expressed 65-kDa integral membrane protein of the endoplasmic reticulum that is found at particularly high levels in cerebellar Purkinje cells. Like Sac1p, rat Sac1 exhibits intrinsic phosphoinositide phosphatase activity directed toward phosphatidylinositol 3-phosphate, phosphatidylinositol 4-phosphate, and phosphatidylinositol 3,5-bisphosphate substrates, and we identify mutant rat sac1 alleles that evoke substrate-specific defects in this enzymatic activity. Finally, rat Sac1 expression in Deltasac1 yeast strains complements a wide phenotypes associated with Sac1p insufficiency. Biochemical and in vivo data indicate that rat Sac1 phosphatidylinositol-4-phosphate phosphatase activity, but not its phosphatidylinositol-3-phosphate or phosphatidylinositol-3, 5-bisphosphate phosphatase activities, is essential for the heterologous complementation of Sac1p defects in vivo. Thus, yeast Sac1p and rat Sac1 are integral membrane lipid phosphatases that play evolutionary conserved roles in eukaryotic cell physiology.  相似文献   

16.
Summary A single-strand conformational polymorphism found in the DNA of a patient with neurofibromatosis 1 (NF1) was shown to be caused by a deletion of a CCACC or CACCT sequence and an adjacent transversion, located about 500 base pairs downstream from the region that codes for a functional domain of the NF1 gene product. This mutation could also be detected in the patient and in his affected daughter by heteroduplex analysis. The deletion removes the proximal half of a small potential stem-loop and interrupts the reading frame in exon 1. A severely truncated protein with a grossly altered carboxy terminus lacking one third of its sequence is expected to be formed from the mutant allele.  相似文献   

17.
18.
THR1, the gene from Saccharomyces cerevisiae, encoding homoserine kinase, one of the threonine biosynthetic enzymes, has been cloned by complementation. The nucleotide sequence of a 3.1-kb region carrying this gene reveals an open reading frame of 356 codons, corresponding to about 40 kDa for the encoded protein. The presence of three canonical GCN4 regulatory sequences in the upstream flanking region suggests that the expression of THR1 is under the general amino acid control. In parallel, the enzyme was purified by four consecutive column chromatographies, monitoring homoserine kinase activity. In SDS gel electrophoresis, homoserine kinase migrates like a 40-kDa protein; the native enzyme appears to be a homodimer. The sequence of the first 15 NH2-terminal amino acids, as determined by automated Edman degradation, is in accordance with the amino acid sequence deduced from the nucleotide sequence. Computer-assisted comparison of the yeast enzyme with the corresponding activities from bacterial sources showed that several segments among these proteins are highly conserved. Furthermore, the observed homology patterns suggest that the ancestral sequences might have been composed from separate (functional) domains. A block of very similar amino acids is found in the homoserine kinases towards the carboxy terminus that is also present in many other proteins involved in threonine (or serine) metabolism; this motif, therefore, may represent the binding site for the hydroxyamino acids. Limited similarity was detected between a motif conserved among the homoserine kinases and consensus sequences found in other mono- or dinucleotide-binding proteins.  相似文献   

19.
20.
Epstein-Barr virus (EBV) episomal genomes are stably maintained in human cells and are partitioned during cell division by mitotic chromosome attachment. Partitioning is mediated by the viral EBNA1 protein, which binds both the EBV segregation element (FR) and a mitotic chromosomal component. We previously showed that the segregation of EBV-based plasmids can be reconstituted in Saccharomyces cerevisiae and is absolutely dependent on EBNA1, the EBV FR sequence, and the human EBNA1-binding protein 2 (EBP2). We have now used this yeast system to elucidate the functional contribution of human EBP2 to EBNA1-mediated plasmid partitioning. Human EBP2 was found to attach to yeast mitotic chromosomes in a cell cycle-dependent manner and cause EBNA1 to associate with the mitotic chromosomes. The domain of human EBP2 that binds both yeast and human chromosomes was mapped and shown to be functionally distinct from the EBNA1-binding domain. The functionality and localization of human EBP2 mutants and fusion proteins indicated that the attachment of EBNA1 to mitotic chromosomes is crucial for EBV plasmid segregation in S. cerevisiae, as it is in humans, and that this is the contribution of human EBP2. The results also indicate that plasmid segregation in S. cerevisiae can occur through chromosome attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号