首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water permeability of thin lipid membranes   总被引:18,自引:11,他引:7  
The osmotic permeability coefficient, Pf, and the tagged water permeability coefficient, Pd, were determined for thin (<100 A) lipid membranes formed from ox brain lipids plus DL-α-tocopherol; their value of approximately 1 x 10-3 cm/sec is within the range reported for plasma membranes. It was established that Pf = Pd. Other reports that Pf > Pd can be attributed to the presence of unstirred layers in the experimental determination of Pd. Thus, there is no evidence for the existence of aqueous pores in these thin phospholipid membranes. The adsorption onto the membrane of a protein that lowers its electrical resistance by a factor of 103 was found not to affect its water permeability; however, glucose and sucrose were found to interact with the membrane to modify Pf. Possible mechanisms of water transport across these films are discussed, together with the implications of data obtained on these structures for plasma membranes.  相似文献   

2.
3.
The permeability of thin lipid membranes to bromide and bromine   总被引:3,自引:3,他引:0  
Thin lipid (optically black) membranes were made from sheep red cell lipids dissolved in n-decane. The flux of Br across these membranes was measured by the use of tracer 82Br. The unidirectional flux of Br (in 50–100 mM NaBr) was 1–3 x 10-12 mole/cm2sec. This flux is more than 1000 times the flux predicted from the membrane electrical resistance (>108 ohm-cm2) and the transference number for Br- (0.2–0.3), which was estimated from measurements of the zero current potential difference. The Br flux was not affected by changes in the potential difference imposed across the membrane (±60 mv) or by the ionic strength of the bathing solutions. However, the addition of a reducing agent, sodium thiosulfate (10-3 M), to the NaBr solution bathing the membrane caused a 90% reduction in the Br flux. The inhibiting effect of S2O3 = suggests that the Br flux is due chiefly to traces of Br2 in NaBr solutions. As expected, the addition of Br2 to the NaBr solutions greatly stimulated the Br flux. However, at constant Br2 concentration, the Br flux was also stimulated by increasing the Br- concentration, in spite of the fact that the membrane was virtually impermeable to Br-. Finally, the Br flux appeared to saturate at high Br2 concentrations, and the saturation value was roughly proportional to the Br- concentration. These results can be explained by a model which assumes that Br crosses the membrane only as Br2 but that rapid equilibration of Br between Br2 and Br- occurs in the unstirred layers of aqueous solution bathing the two sides of the membrane. A consequence of the model is that Br- "facilitates" the diffusion of Br across the unstirred layers.  相似文献   

4.
The effect of dolichyl monophosphate on the permeability properties of dimyristoylphosphatidylcholine bilayers to alkaline cations, Ca2+ and glucose has been determined by stop-flow spectrophotometry. The results show that, in contrast to free dolichol effects, the monophosphate derivative increased the permeability following a decreasing order of the permeating particle size. Phase diagrams indicate that dolichyl monophosphate is fully incorporated into the phosphatidylcholine bilayer around 0.75% weight/weight ratio. For these ratios, the permeation of ions is higher in the gel than in the liquid crystalline state.  相似文献   

5.
The effect of dolichyl monophosphate on the permeability properties of dimyristoylphosphatidylcholine bilayers to alkaline cations, Ca2+ and glucose has been determined by stop-flow spectrophotometry. The results show that, in con trast to free dolichol effects, the monophosphate derivative increased the permeability following a decreasing order of the permeating particle size. Phase diagrams indicate that dolichyl monophosphate is fully incorporated into the phosphatidylcholine bilayer around 0.75% weight/weight ratio. For these ratios, the permeation of ions is higher in the gel than in the liquid crystalline state.  相似文献   

6.
This paper reports the effects of amphotericin B, a polyene antibiotic, on the water and nonelectrolyte permeability of optically black, thin lipid membranes formed from sheep red blood cell lipids dissolved in decane. The permeability coefficients for the diffusion of water and nonelectrolytes (PDDi) were estimated from unidirectional tracer fluxes when net water flow (Jw) was zero. Alternatively, an osmotic water permeability coefficient (Pf) was computed from Jw when the two aqueous phases contained unequal solute concentrations. In the absence of amphotericin B, when the membrane solutions contained equimolar amounts of cholesterol and phospholipid, Pf was 22.9 ± 4.6 µsec-1 and P DDHDH2O was 10.8 ± 2.4 µsec-1. Furthermore, PDDi was < 0.05 µsec-1 for urea, glycerol, ribose, arabinose, glucose, and sucrose, and σi, the reflection coefficient of each of these solutes was one. When amphotericin B (10-6 M) was present in the aqueous phases and the membrane solutions contained equimolar amounts of cholesterol and phospholipid, P DDHDH2O was 18.1 ± 2.4 µsec-1; Pf was 549 ± 143 µsec-1 when glucose, sucrose, and raffinose were the aqueous solutes. Concomitantly, PDDi varied inversely, and σi directly, with the effective hydrodynamic radii of the solutes tested. These polyene-dependent phenomena required the presence of cholesterol in the membrane solutions. These data were analyzed in terms of restricted diffusion and filtration through uniform right circular cylinders, and were compatible with the hypothesis that the interactions of amphotericin B with membrane-bound cholesterol result in the formation of pores whose equivalent radii are in the range 7 to 10.5 A.  相似文献   

7.
This paper reports the effects of peptide PV (primary structure: cyclo-(D-val-L-pro-L-val-D-pro)δ) on the electrical properties of sheep red cell lipid bilayers. The membrane conductance (Gm) induced by PV in either Na+ or K+ medium is proportional to the concentration of PV in the aqueous phase. The PV concentration required to produce a comparable increase in Gm in K+ medium is about 104 times greater than for its analogue, valinomycin (val). Although the selectivity sequence for PV and val is similar, K+ ≳ Rb+ > Cs+ > NH4 + > TI+ > Na+ > Li+; the ratio of GGm in K+ to that in Na+ is about 10 for PV compared to > 103 for val. When equal concentrations of PV are added to both sides of a bilayer, the membrane current approaches a maximum value independent of voltage when the membrane potential exceeds 100 mV. When PV is added to only one side of a bilayer separating identical salt solutions of either Na+ or K+ salts, rectification occurs such that the positive current flows more easily away rather than toward the side containing the carrier. Under these conditions, a large, stable, zero-current potential (VVm) is also observed, with the side containing PV being negative. The magnitude of this VVm is about 90 mV and relatively independent of PV concentration when the latter is larger than 2 Times; 10–5 M. From a model which assumes that Vm equals the equilibrium potential for the PV-cation complexes (MS +) and that the reaction between PV and cations is at equilibrium on the two membrane surfaces, we compute the permeability of the membrane to free PV to be about 10–5 cm s–1, which is about 10–7 times the permeability of similar membranes to free val. This interpretation is supported by the fact that the observed values of Vm are in agreement with the calculated equilibrium potential for MS+ over a wide range of ratios of concentrations of total PV in the two bathing solutions, if the unstirred layers are taken into account in computing the MS+ concentrations at the membrane surfaces.  相似文献   

8.
On the basis of data obtained with thin lipid membranes, phloretin's inhibition of chloride, urea and glucose transport in biological membranes has been suggested to be due to the effects of interfacial dipole fields on the translocator of these molecules (Andersen, O.S., Finkelstein, A., Katz,I. and Cass, A. (1976) J. Gen. Physiol. 67, 749–771).From the systematic analysis made in the present paper it effectively appears that the ability of phloretin analogs to inhibit chloride permeability in red-cell membrane depends on the capacity they have to alter the interfacial dipole potential: the magnitude of the potential change depending on the dipole moment of the molecule and its membrane concentration, it follows that the inhibitory capacity of a phloretin analog is a function of the dipole moment and the lipid solubility of the compound.  相似文献   

9.
Glucose permeability of lipid bilayer membranes   总被引:4,自引:0,他引:4  
  相似文献   

10.
The permeability of lipid membranes to non-electrolytes   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
 The interaction of phloretin with single lipid bilayers on a spherical support and with multilamellar vesicles was studied by differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR). The results indicated that phloretin interacts with the lipid layer and changes its structural parameters. In DSC experiments, phloretin in its neutral form strongly decreased the lipid phase transition temperature and slightly reduced the cooperativity of the phase transition within the lipid layer. In NMR measurements, phloretin led to an increase of the transverse relaxation time constant but had no effect on the spin-lattice relaxation time constant. The overall dipole moment of phloretin was experimentally determined and was found to be roughly 40% lower than has been published previously. This result suggested that the size of the dipole moment of phloretin does not provide such a high contribution to the effect of phloretin on the dipole potential of monolayers and bilayers as has been published previously. To understand the discrepancy between phloretin adsorption and dipole potential change, we performed computational conformational analysis of phloretin in the gas phase. The results showed that a wide distribution of the dipole moments of phloretin conformers exists, which mainly depends on the orientation of the OH moieties. The adsorption of phloretin as determined from its binding to solid supported bilayers differed from the one determined from dipole potential measurements on black lipid membranes. The difference between the phloretin dissociation constants of both types of experiments suggested a change of its dipole moment normal to the membrane surface in a concentration-dependent manner, which was in agreement with the results of the computational conformational analysis. Received: 21 June 1999 / Revised version: 7 January 2000 / Accepted: 31 March 2000  相似文献   

13.
14.
Summary The effect of endotoxin fromSalmonella typhimurium orEscherichia coli was studied on bilayer lipid membranes (1% lecithin–1% cholesterol in n-decane) formed in buffered 0.1m NaCl solution (pH 6.8). Endotoxin was added to the buffered solution either prior to membrane formation or after stable membranes were formed. In both cases, concentrations of 110 to 720 g/ml endotoxin initiated a decrease in the electrical resistance of the membranes followed by their rupture. A 50 g/ml concentration of the agent was unable to elicit any response. Also, the addition of an equal volume of buffer solution, serving as a control, caused no decrease in membrane resistance or survival time. Treatment of the endotoxin with alkaline hydroxylamine to remove esterand amide-bound fatty acids likewise abolished the membrane effect. This is the first report of an endotoxin effect on lipid bilayer membranes. The potential correlation of this interaction of bilayer and endotoxin with the diverse biologic effects of endotoxin is discussed.  相似文献   

15.
In membranes containing aqueous pores (channels), the osmotic water permeability coefficient, P f, is greater than the diffusive water permeability coefficient, P d. In fact, the magnitude of P f/P d is commonly used to determine pore radius. Although, for membranes studied to date, P f/P d monotonically declines with decreasing pore radius, there is controversy over the value it theoretically assumes when that radius is so small that water molecules cannot overtake one another within the channel (single-file transport). In one view it should equal 1, and in another view it should equal N, the number of water molecules in the pore. Gramicidin A forms, in lipid bilayer membranes, narrow aqueous channels through which single-file transport may occur. For these channels we find that P f/P d approximately 5. In contrast, for the wider nystatin and amphotericin B pores, P f/P d approximately 3. These findings offer experimental support for the view that P f/P d = N for single-file transport, and we therefore conclude that there are approximately five water molecules in a gramicidin A channel. A similar conclusion was reached independently from streaming potential data. Using single-channel conductance data, we calculate the water permeability of an individual gramicidin A channel. In the Appendix we report that there is a wide range of channel sizes and lifetimes in cholesterol-containing membranes.  相似文献   

16.
Vasopressin markedly stimulated the water permeability of bilayer lipid membranes: a two-fold increase was measured at 25° in presence of 1.7·10−9 M (50 μunits/ml) vasopressin. Oxytocin and a mixture of the amino acids comprising the vasopressin molecule could not substitute for vasopressin at comparable concentration. The experimental activation energy of water transport was reduced in the presence of vasopressin from 14 to 4 kcal/mole, in agreement with the effect of the hormone on water permeability of toad bladder.  相似文献   

17.
18.
The nonelectrolyte permeability of planar lipid bilayer membranes   总被引:9,自引:4,他引:5       下载免费PDF全文
The permeability of lecithin bilayer membranes to nonelectrolytes is in reasonable agreement with Overton's rule. The is, Pd alpha DKhc, where/Pd is the permeability coefficient of a solute through the bilayer, Khc is its hydrocarbon:water partition coefficient, and D is its diffusion coefficient in bulk hydrocarbon. The partition coefficients are by far the major determinants of the relative magnitudes of the permeability coefficients; the diffusion coefficients make only a minor contribution. We note that the recent emphasis on theoretically calculated intramembranous diffusion coefficients (Dm'S) has diverted attention from the experimentally measurable and physiologically relevant permeability coefficients (Pd'S) and has obscured the simplicity and usefulness of Overton's rule.  相似文献   

19.
Water and nonelectrolyte permeability of lipid bilayer membranes   总被引:17,自引:9,他引:8       下载免费PDF全文
Both the permeability coefficients (Pd's) through lipid bilayer membranes of varying composition (lecithin [L], lecithin:cholesterol [LC], and spingomyelin:cholesterol [SC]) and the n-hexadecane:water partition coefficients (Knc's) of H2O and seven nonelectrolytes (1,6 hexanediol, 1,4 butanediol, n-butyramide, isobutyramide, acetamide, formamide, and urea) were measured. For a given membrane compositiin, Pd/DKnc (where D is the diffusion constant in water) is the same for most of the molecules tested. There is no extraordinary dependence of Pd on molecular weight; thus, given Pd(acetamide), Pd(1,6 hexanediol) is correctly predicted from the Knc and D values for the two molecules. The major exceptions are H2O, whose value of Pd/DKnc is about 10-fold larger, and urea, whose value is about 5-fold smaller than the general average. In a "tight" membrane such as SC, Pd(n- butyramide)/Pd(isobutyramide)=2.5; thus this bilayer manifests the same sort of discrimination between branched and straight chain molecules as occurs in many plasma membranes. Although the absolute values of the Pd's change by more than a factor of 100 in going from the tightest membrane (SC) to the loosest (L), the relative values remain approximately constant. The general conclusion of this study is that H2O and nonelectrolytes cross lipid bilayer membranes by a solubility- diffusion mechanism, and that the bilayer interior is much more like an oil (a la Overton) than a rubber-like polymer (a la Lieb and Stein).  相似文献   

20.
The permeability to water of bimolecular lipid membranes   总被引:6,自引:0,他引:6  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号