首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Species are unevenly distributed among genera within clades and regions, with most genera species-poor and few species-rich. At regional scales, this structure to taxonomic diversity is generated via speciation, extinction and geographical range dynamics. Here, we use a global database of extant marine bivalves to characterize the taxonomic structure of climate zones and provinces. Our analyses reveal a general, Zipf–Mandelbrot form to the distribution of species among genera, with faunas from similar climate zones exhibiting similar taxonomic structure. Provinces that contain older taxa and/or encompass larger areas are expected to be more species-rich. Although both median genus age and provincial area correlate with measures of taxonomic structure, these relationships are interdependent, nonlinear and driven primarily by contrasts between tropical and extra-tropical faunas. Provincial area and taxonomic structure are largely decoupled within climate zones. Counter to the expectation that genus age and species richness should positively covary, diverse and highly structured provincial faunas are dominated by young genera. The marked differences between tropical and temperate faunas suggest strong spatial variation in evolutionary rates and invasion frequencies. Such variation contradicts biogeographic models that scale taxonomic diversity to geographical area.  相似文献   

2.
The latitudinal gradient of species richness has frequently been attributed to higher diversification rates of tropical groups. In order to test this hypothesis for mammals, we used a set of 232 genera taken from a mammalian supertree and, additionally, we reconstructed dated Bayesian phylogenetic trees of 100 genera. For each genus, diversification rate was estimated taking incomplete species sampling into account and latitude was assigned considering the heterogeneity in species distribution ranges. For both datasets, we found that the average diversification rate was similar among all latitudinal bands. Furthermore, when we used phylogenetically independent contrasts, we did not find any significant correlation between latitude and diversification parameters, including different estimates of speciation and extinction rates. Thus, other factors, such as the dynamics of dispersal through time, may be required to explain the latitudinal gradient of diversity in mammals.  相似文献   

3.
This paper provides a synopsis of the Chilean Asteraceae genera according to the most recent classification. Asteraceae is the richest family within the native Chilean flora, with a total of 121 genera and c . 863 species, currently classified in 18 tribes. The genera are distributed along the whole latitudinal gradient in Chile, with a centre of richness at 33°–34° S. Almost one-third of the genera show small to medium-small ranges of distribution, while two-thirds have medium-large to large latitudinal ranges of distribution. Of the 115 mainland genera, 46% have their main distribution in the central Mediterranean zone between 27°–37° S. Also of the mainland genera, 53% occupy both coastal and Andean environments, while 33% can be considered as strictly Andean and 20% as strictly coastal genera. The biogeographical analysis of relationships allows the distinction of several floristic elements and generalized tracks: the most marked floristic element is the Neotropical, followed by the antitropical and the endemic element. The biogeographical analysis provides important insights into the origin and evolution of the Chilean Asteraceae flora. The presence of many localized and endemic taxa has direct conservation implications.  相似文献   

4.
The geographic area hypothesis advances area as the primary cause of latitudinal gradients in diversity. The greater area of tropical zones, it suggests, stimulates speciation, inhibits extinction, and leads to increased species richness compared to the situation in smaller temperate and boreal zones. Because bats exhibit exceptionally strong latitudinal gradients of richness at multiple spatial scales in the New World, they are an appropriate system with which to test the geographic area hypothesis. We used range maps for 250 species of New World bats to estimate species richness in biogeographic zones at two hierarchical spatial scales: biome types and provinces. We then conducted a series of regression analyses to evaluate the ability of area to account for latitudinal gradients in species richness. However, spillover (zonal bleeding) of tropical species into extra-tropical zones may mask the species-area relationship and alter perceptions of the latitudinal gradient. To address this issue, we conducted additional analyses excluding tropical species, using a series of increasingly inclusive definitions of tropical ranges. Ecogeographic zones of the New World are not larger at tropical versus extra-tropical latitudes. Moreover, spillover of tropical species into ecogeographic zones within extra-tropical regions generally does not diminish the association between richness and area. Nonetheless, the latitudinal gradient of species richness is strong and significant at both ecogeographic scales. Clearly, area does not drive the latitudinal gradient of bat species richness in the New World. In fact, area represents a source of noise rather than a dominant signal at the focal scale of biome types and provinces in the Western Hemisphere.  相似文献   

5.
Aims (i) To describe at the level of local communities latitudinal gradients in the species richness of different families of New World bats and to explore the generality of such gradients. (ii) To characterize the relative effects of changes in the richness of each family to the richness of entire communities. (iii) To determine differences in the rate and direction of latitudinal gradients in species richness within families. (iv) To evaluate how differences among families regarding latitudinal gradients in species richness influence the latitudinal gradient in species richness of entire communities. Location Continental New World ranging from the northern continental United States (Iowa, 42° N) to eastern Paraguay (Canindeyú, 24° S). Methods Data on the species composition of communities came from 32 intensively sampled sites. Analyses focused on species richness of five of nine New World bat families. Multivariate analysis of variance and discriminant function analysis determined and described differences among temperate, subtropical, and tropical climatic zones regarding the species richness of bat families. Simple linear regression described latitudinal gradients in species richness of families. Path analysis was used to describe: (i) the direct effect of latitude on species richness of communities, (ii) the indirect effects of latitude on the species richness of communities through its effect on the species richness of each family, (iii) the relative effects of latitude on the species richness of bat families, and (iv) the relative contribution of each family to variation in the species richness of communities. Results Highly significant differences among climatic zones existed primarily because of a difference between the temperate zone and the tropical and subtropical zones combined. This difference was associated with the high number of vespertilionids in the temperate zone and the high number of phyllostomids in the tropical and subtropical zones. Latitudinal gradients in species richness were contingent on phylogeny. Although only three of the five families exhibited significant gradients, all families except for the Vespertilionidae exhibited indistinguishable increases in species richness with decreases in latitude. The Emballonuridae, Phyllostomidae and Vespertilionidae exhibited significant latitudinal gradients whereby the former two families exhibited the classical increase in species richness with decreasing latitude and the latter family exhibited the opposite pattern. Variation in species richness of all families contributed significantly to variation in the species richness of entire communities. Nonetheless, the Phyllostomidae made a significantly stronger contribution to changes in species richness of communities than did all other families. Much of the latitudinal gradient in species richness of communities could be accounted for by the effects of latitude on the species richness of constituent families. Main conclusions Ecological and evolutionary differences among higher taxonomic units, particularly those differences involving life‐history traits, predispose taxa to exhibit different patterns of diversity along environmental gradients. This may be particularly true along extensive gradients such as latitude. Nonetheless, species rich taxa, by virtue of their greater absolute rates of change, can dominate and therefore define the pattern of diversity at a higher taxonomic level and eclipse differences among less represented taxa in their response to environmental gradients. This is true not only with respect to how bats drive the latitudinal gradient in species richness for all mammals, but also for how the Phyllostomidae drives the latitudinal gradient for all bats in the New World. Better understanding of the mechanistic basis of latitudinal gradients of diversity may come from comparing and contrasting patterns across lower taxonomic levels of a higher taxon and by identifying key ecological and evolutionary traits that are associated with such differences.  相似文献   

6.
Climatic zonation drives latitudinal variation in speciation mechanisms   总被引:2,自引:0,他引:2  
Many groups of organisms show greater species richness in the tropics than in the temperate zone, particularly in tropical montane regions. Forty years ago, Janzen suggested that more limited temperature seasonality in the tropics leads to greater climatic zonation and more climatic barriers to organismal dispersal along elevational gradients in the tropics relative to temperate regions. These factors could lead to differences in how species arise in tropical versus temperate regions and possibly contribute to greater tropical diversity. However, no studies have compared the relationships among climate, elevational distribution and speciation in a group inhabiting both tropical and temperate regions. Here, we compare elevational and climatic divergence among 30 sister-species pairs (14 tropical, 16 temperate) within a single family of salamanders (Plethodontidae) that reaches its greatest species richness in montane Mesoamerica. In support of Janzen's hypothesis, we find that sister species are more elevationally and climatically divergent in the tropics than in the temperate zone. This pattern seemingly reflects regional variation in the role of climate in speciation, with niche conservatism predominating in the temperate zone and niche divergence in the tropics. Our study demonstrates how latitudinal differences in elevational climatic zonation may increase opportunities for geographical isolation, speciation and the associated build-up of species diversity in the tropics relative to the temperate zone.  相似文献   

7.
Aim  A latitudinal gradient in species richness, defined as a decrease in biodiversity away from the equator, is one of the oldest known patterns in ecology and evolutionary biology. However, there are also many known cases of increasing poleward diversity, forming inverse latitudinal biodiversity gradients. As only three processes (speciation, extinction and dispersal) can directly affect species richness in areas, similar factors may be responsible for both classical (high tropical diversity) and inverse (high temperate diversity) gradients. Thus, a modified explanation for differential species richness which accounts for both patterns would be preferable to one which only explains high tropical biodiversity.
Location  The New World.
Methods  We test several proposed ecological, temporal, evolutionary and spatial explanations for latitudinal diversity gradients in the New World snake tribe Lampropeltini, which exhibits its highest biodiversity in temperate regions.
Results  We find that an extratropical peak in species richness is not explained by latitudinal variation in diversification rate, the mid-domain effect, or Rapoport's rule. Rather, earlier colonization and longer duration in the temperate zones allowing more time for speciation to increase biodiversity, phylogenetic niche conservatism limiting tropical dispersal and the expansion of the temperate zones in the Tertiary better explain inverse diversity gradients in this group.
Main conclusions  Our conclusions are the inverse of the predictions made by the tropical conservatism hypothesis to explain higher biodiversity near the equator. Therefore, we suggest that the processes invoked are not intrinsic to the tropics but are dependent on historical biogeography to determine the distribution of species richness, which we refer to as the 'biogeographical conservatism hypothesis'.  相似文献   

8.
Abstract: Marine shelf diversity patterns correlate with macroecological features of basic importance that may play causal roles in macroevolution. We have investigated the global diversity pattern of living Bivalvia, which is dominated by the latitudinal diversity gradient (LDG), maintained by high tropical origination rates. Generic‐level lineages expand poleward, chiefly through speciation, so that species richness within provinces and globally is positively correlated with generic geographical ranges. A gradient in diversity accommodation progressively lowers both immigration and speciation rates in higher latitudes. The LDG correlates with seasonality of trophic resources but not with area; tropical provinces are not diverse because they are large but because they are tropical. A similar dynamic evidently underlays Jurassic and Carboniferous LDGs. Larval developmental modes correlate with the LDG and thus with resource seasonality, with tropical dominance of planktotrophs offset by increasing nonplanktotrophy to poleward. The acquisition of planktotrophy in several early Palaeozoic clades indicates a change in macroecological relationships during Cambrian and Ordovician radiations.  相似文献   

9.
The trend for increasing biodiversity from the poles to the tropics is one of the best-known patterns in nature. This latitudinal biodiversity gradient has primarily been documented so far with extant species as the measure of biodiversity. Here, we evaluate the global pattern in biodiversity across latitudes based on the magnitude of genetic population divergence within plant species, using a robust spatial design to compare published allozyme datasets. Like the pattern of plant species richness across latitudes, we expected the divergence among populations of current plant species would have a similar pattern and direction. We found that lower latitudinal populations showed greater genetic differentiation within species after controlling for geographical distance. Our analyses are consistent with previous population-level studies in animals, suggesting a high possibility of tropical peaks in speciation rates associated with observed levels of species richness.  相似文献   

10.
The resource-use hypothesis predicts that generalist species have lower speciation and extinction rates than specialists. In this work we test several subsidiary predictions of the resource-use hypothesis using the biomic specialization index (BSI) for each African large mammal species, which is based on its geographical range within different climate zones. This index can be used globally allowing intercontinental and intertaxa comparisons. Our results are consistent with the axioms of the resource-use hypothesis theory, which predicts (1) a high frequency of stenobiomic species, (2) carnivores are more eurybiomic than herbivore clades (particularly, Artiodactyla and Primates), (3) the higher incidence of these biomic specialists in the tropical rainforest and desert biomes, and (4) the fact that certain combinations of inhabited biomes occur more frequently among species than do others. We also found that the tropical deciduous woodland is an important source of new species, and that there is a macroevolutionary segregation between extreme eurybiomic species (inhabitants of five or more biomes) and ‘semi-eurybiomic’ species (inhabitants of 2–5 biomes). These results can also be explained within the premises of the resource-use hypothesis. Finally, we discuss the relevance of our results to the understanding of the latitudinal gradient in species richness.Co-ordinating editor: N. Chr. Stenseth  相似文献   

11.
According to the global latitudinal diversity gradient, a decrease in animal and plant species richness exists from the tropics towards higher latitudes. The aim of this study was to describe the latitudinal distribution patterns of Chilean continental flora and delineate biogeographic regions along a 4270‐km north–south gradient. We reviewed plant lists for each of the 39 parallels of continental Chile to build a database of the geographical distribution of vascular plant species comprising 184 families, 957 genera and 3787 species, which corresponded to 100%, 94.9% and 74.2% of the richness previously defined for Chile, respectively. Using this latitudinal presence–absence species matrix, we identified areas with high plant richness and endemism and performed a Cluster analysis using Jaccard index to delineate biogeographic regions. This study found that richness at family, genus and species levels follow a unimodal 4270‐km latitudinal distribution curve, with a concentration of richness in central Chile (31–42°S). The 37th parallel south (central Chile) presented the highest richness for all taxonomic levels and in specific zones the endemism (22–37°S) was especially high. This unimodal pattern contrasts the global latitudinal diversity gradient shown by other studies in the Northern hemisphere. Seven floristic regions were identified in this latitudinal gradient: tropical (18–22°S), north Mediterranean (23–28°S), central Mediterranean (29–32°S), south Mediterranean (33–37°S), north temperate (38–42°S), south temperate (43–52°S) and Austral (53–56°S). This regionalization coincides with previous bioclimatic classifications and illustrates the high heterogeneity of the biodiversity in Chile and the need for a reconsideration of governmental conservation strategies to protect this diversity throughout Chile.  相似文献   

12.
Rates of speciation in the fossil record   总被引:9,自引:0,他引:9  
Data from palaeontology and biodiversity suggest that the global biota should produce an average of three new species per year. However, the fossil record shows large variation around this mean. Rates of origination have declined through the Phanerozoic. This appears to have been largely a function of sorting among higher taxa (especially classes), which exhibit characteristic rates of speciation (and extinction) that differ among them by nearly an order of magnitude. Secular decline of origination rates is hardly constant, however; many positive deviations reflect accelerated speciation during rebounds from mass extinctions. There has also been general decline in rates of speciation within major taxa through their histories, although rates have tended to remain higher among members in tropical regions. Finally, pulses of speciation appear sometimes to be associated with climate change, although moderate oscillations of climate do not necessarily promote speciation despite forcing changes in species' geographical ranges.  相似文献   

13.
The missing Madagascan mid-domain effect   总被引:1,自引:0,他引:1  
Species richness varies enormously across geographical gradients, a well-known phenomenon for which there are many hypothesized explanations. One recent hypothesis uses null models to demonstrate that random re-distribution of species' ranges within a given domain leads to a 'mid-domain effect' (MDE): increasing species richness towards the centre of the area. Madagascar is especially well-suited for empirical evaluation of mid-domain models by virtue of its large endemic fauna and its clearly defined boundaries. Lees et al. [ Biol. J. Linn. Soc. 67 (1999) 529] observed patterns of species richness consistent with MDEs in the Madagascan rainforest (a slim, north–south belt). In this study, we test one-dimensional and two-dimensional mid-domain model predictions for the birds and mammals of the entire island of Madagascar. When only latitudinal extents of species' distribution are considered, patterns of richness in Madagascar show an MDE. However, this pattern disappears for both taxa after accounting for the tendency of latitudinal bands nearer the middle of the country to be larger. Two-dimensional mid-domain model predictions of species richness are qualitatively opposite to observed patterns. Instead, island-wide spatial gradients of species richness in Madagascar relate strongly to patterns of primary productivity and amount of remaining natural habitat. Earlier work that showed a mid-domain peak within the rainforest biome (effectively after controlling for climate and natural habitat) seems likely to have reflected methodological artefacts. The classic case in which MDEs should occur is, in fact, inconsistent with the mid-domain hypothesis.  相似文献   

14.
Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean‐warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small‐ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances.  相似文献   

15.
Six regions of northwestern (NW) Baja California (Sierra de Juárez, Sierra de San Pedro Mártir, Punta Banda, Colonet, San Quintín and Valle Tranquilo) were compared for their floristic diversity. Checklists for each region were analyzed by their total, native, and endemic floras to give measures of floristic similarity and overlap, and to identify the strongest gradients affecting species distributions. Each region was floristically distinct, with significant variation in the distribution of state endemic taxa. The six regions are readily differentiated by their geographical position in a Principal Components Analysis. The strongest gradients were (a) the W–E gradient from the coast to the mountains and (b) the latitudinal gradient from N to S. These six adjacent regions are found within a local and global biodiversity hotspot that is subject to intense conservation challenges. Conservation of many areas is essential to adequately preserve the diversity of locally endemic taxa with restricted ranges, yet the coast lacks any protected areas at the state and federal level. Private reserves such as Reserva Natural San Quintín may be critical to the conservation of regionally endemic taxa.  相似文献   

16.
A crucial step in understanding the origin and maintenance of biological diversity is the assessment of its distribution over space and time and across environmental gradients. At the regional scale, two important attributes of species can be assessed that provide insight into speciation processes: species geographical and environmental ranges. The endemic tree flora of the Western Ghats is an interesting case for analyzing broad-scale biodiversity patterns because of the steep environmental gradients that characterize this tropical region of India. We analysed species geographical and environmental ranges by Canonical Correlation Analysis of point data from herbarium collections. We performed partial analyses to discriminate spatial and environmental correlates of species distribution, and evaluate the contribution of higher taxonomic ranks to these ranges. We identified different levels of organization in the distribution of endemism: 1) general features, such as the concentration of endemic species in the southern part of the Western Ghats, and the decrease in endemic species richness along the altitudinal and the dry season length gradients, and 2) patterns specific to genera or families, such as species niche separation along the environmental gradients. Our analyses enabled us to formulate hypotheses about the diversification of the endemic tree flora of the Western Ghats. They also confirm the value of Canonical Correlation Analysis as the suitable method for collection data analysis.  相似文献   

17.
Biodiversity and biogeography of southern temperate and polar bryozoans   总被引:2,自引:0,他引:2  
Aim To describe the distribution of biodiversity and endemism of bryozoans in southern temperate and polar waters. We hypothesized that we would find: (1) no strong latitudinal richness gradient; (2) striking contrasts in richness and endemism between clades and between regions; and (3) that faunal similarity of regions would cluster geographically around each southern continent. Location South Atlantic, Indian and Pacific Oceans and the Southern Ocean. Methods We constructed a data base from known literature, regional data bases and recent finds. We regionalized each southern continent, calculated levels of richness and endemism for each region and continent, and used primer 5 to perform multivariate statistical analysis. Results A third (1681) of global bryozoan species described occur south of 30° S, of which c. 87% were cheilostomes. In richness we found no latitudinal cline and change across longitude was stronger. New Zealand was richest and had the most (60%) endemic species, followed by Antarctica at 57%. There were striking contrasts in regional richness and endemism between clades but the highest levels of between‐region similarity were around Antarctica. The timing of past continent connectivity was reflected. Main conclusions Bryozoans show strong hemispherical asymmetry in richness and, like molluscs and corals, decrease away from Australasia rather than with latitude. Species endemism is much lower in Antarctic bryozoans than previously thought, and as this taxon is not particularly dispersive and is now amongst the best studied regionally, maybe Antarctic endemism in general is lower and Antarctica less cut‐off to species dispersal than previously thought. However, Antarctic generic endemism is double the level previously calculated and regional faunal similarities are much higher than around other continents – both reflecting long‐term isolation. Bryozoans, in contrast to the paradigm of Antarctic fauna, may be fairly robust to predicted climate change. Paradoxically, they may also be one of the best taxa to monitor to sensitively detect marine benthic responses.  相似文献   

18.
The latitudinal decline of species richness is a general spatial pattern of biodiversity, and it applies to marine species as well. Based on a latitudinal gradient of marine species richness, potential stocks of marine ecosystem services are expected to be higher in lower latitudes through increment in biodiversity. However, little is known about the relationships of the marine ecosystem services with latitude and biodiversity. We estimated the latitudinal patterns and relationships with the biodiversity of potential stocks of three major reef fish-based ecosystem services (fisheries production, aquarium fish production, and recreational diving) at ten coral habitats from tropical to temperate zones in the Kuroshio Current region (8°37′N–33°24′N) using field survey data and information from relevant websites and administrative statistics. We found a latitudinal declin from south to north in potential stocks of aquarium fish production and diving in this region, whereas the peaks of fisheries production were found around both tropical and sub-tropical zones. Our results also showed strong positive effects of biodiversity on potential stocks of the three ecosystem services, highlighting the importance of conserving diverse fish species to sustain multiple services at high levels. Broad spatial patterns of the reef fish-based ecosystem services are useful as baselines for future evaluation of their changes. As the effects of climate change on reef fishes are predicted to vary among different latitude zones, our estimates of the ecosystem services infer specific management and economic actions for the respective zones against climate change.  相似文献   

19.
The notion of a positive relation between geographical range and speciation rate or speciation probability may go back to Darwin, but a negative relation between these parameters is equally plausible. Here, we test these alternatives in fossil and living molluscan taxa. Late Cretaceous gastropod genera exhibit a strong negative relation between the geographical ranges of constituent species and speciation rate per species per million years; this result is robust to sampling biases against small-bodied taxa and is not attributable to phylogenetic effects. They also exhibit weak inverse or non-significant relations between geographical range and (i) the total number of species produced over the 18 million year timeframe, and (ii) the number of species in a single timeplane. Sister-group comparisons using extant molluscan species also show a non-significant relation between median geographical range and species richness of genera. These results support the view that the factors promoting broad geographical ranges also tend to damp speciation rates. They also demonstrate that a strong inverse relation between per-species speciation rate and geographical range need not be reflected in analyses conducted within a single timeplane, underscoring the inadequacy of treating net speciation as a proxy for raw per-taxon rates.  相似文献   

20.
A brief general characteristic and review of distribution of the subfamily Ceutorhynchinae over zoogeographical realms are given, with an emphasis on the distribution within the Holarctic and Palaearctic. The potential of exploiting landscapes of all natural zones of the Holarctic by a low-rank taxon is exemplified by the Holarctic Ceutorhynchus cochleariae (Gyll.) species-group comprising ca. 20 species evenly distributed between the Palaearctic and Nearctic. Although neighboring with the powerful centers of tropical biota, the Holarctic fauna of the subfamily Ceutorhynchinae is formed mostly of endemic and subendemic genera which are especially abundant in the Palaearctic. This region possesses the most diversified generic and species composition of the fauna consisting of predominantly endemic and subendemic genera (in the Mediterranean and Saharo-Gobian regions, also of the highly diversified tribe Oxyonychini) up to its southern border. The existence of characteristic transitional faunas in the zones of contact of the Holarctic fauna with the faunas of the tropical regions in East Asia and Mexico is shown. These transitional faunas include a considerable number of endemic taxa of the genus and species groups. A conspicuous feature of the Palaearctic ceutorhynchine fauna is the rather numerous complex of the upland and high-latitude species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号