首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resonance energy transfer between fluorescein-5-isothiocyanate (FITC) attached to Lys-61 and Co2+ bound to the high-affinity metal binding site was measured. The distance between FITC and Co2+ on the actin molecule was calculated to be either 1.9 nm, using the absorption spectrum of Co-EDTA or 2.8 nm, using the absorption spectrum of Co2+ bound to carboxypeptidase as a model spectrum of Co2+ bound to actin, respectively. The effects of the polymerization of actin and of the interaction of actin with myosin subfragment-1 (S1) on the solvent accessibility of the fluorescein molecule attached to Lys-61 or Cys-374 were measured. The accessibility of the probe at Lys-61 was reduced following polymerization and also appreciably reduced by interaction with S1. The accessibility of the probe attached to Cys-374 was affected to only a small degree. These results indicate that the Lys-61 residue is located close to an actin-actin contact region as well as being close to an S1 binding site, although it is not directly involved [Miki, M. (1987) Eur. J. Biochem. 164, 228-235]. The accessibility of the probe at Lys-61 was also decreased by the addition of the tropomyosintroponin complex, although the accessibility of the probe at Cys-374 was not affected at all. Thus, Lys-61 appears to be involved in the binding site of the regulatory proteins.  相似文献   

2.
Modification of Lys-61 in actin with fluorescein-5-isothiocyanate (FITC) blocks actin polymerization [Burtnick, L. D. (1984) Biochim. Biophys. Acta 791, 57-62]. FITC-labelled actin recovered its ability to polymerize on addition of phalloidin. The polymers had the same characteristic helical thread-like structure as normal F-actin and the addition of myosin subfragment-1 to the polymers formed the characteristic arrowhead structure in electron microscopy. The polymers activated the ATPase activity of myosin subfragment-1 as efficiently as normal F-actin. These results indicate that Lys-61 is not directly involved in an actin-actin binding region nor in myosin binding site. From static fluorescence polarization measurements, the rotational relaxation time of FITC-labelled actin filaments was calculated to be 20 ns as the value reduced in water at 20 degrees C, while any rotational relaxation time of 1,5-IAEDANS bound to Cys-374 on F-actin in the presence of a twofold molar excess of phalloidin could not be detected by static polarization measurements under the same conditions. This indicates that the Lys-61 side chain is extremely mobile even in the filamentous structure. Fluorescence resonance energy transfer between the donor 1,5-IAEDANS bound to SH1 of myosin subfragment-1 and the acceptor fluorescein-5-isothiocyanate bound to Lys-61 of actin in the rigor complex was measured. The transfer efficiency was 0.39 +/- 0.05 which corresponds to the distance of 5.2 +/- 0.1 nm, assuming that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime and that the transfer occurs between a single donor and an acceptor.  相似文献   

3.
The spatial relationships between Lys-61, Cys-374 on actin or SH1 on myosin subfragment-1 (S1) and Cys-190 on tropomyosin or Cys-133 on troponin-I (TnI) in a reconstituted thin filament were studied by fluorescence resonance energy transfer. 5-(2-Iodoacetylaminoethyl)aminonaphthalene 1-sulfonic acid (IAEDANS) attached to Lys-190 on tropomyosin or to Cys-133 on TnI was used as a donor. Fluorescein 5-isothiocyanate (FITC) attached to Lys-61 or 5-(iodoacetoamido)fluorescein (IAF) attached to Cys-374 on actin and 4-dimethylaminophenyl-azophenyl 4'-maleimide (DABMI) attached to SH1 on S1 were used as an acceptor. The transfer efficiency between AEDANS attached to Cys-190 on tropomyosin and FITC attached to Lys-61 on actin was 0.42 in the absence of troponin, 0.46 in the presence of troponin and Ca2+ and 0.55 in the presence of troponin and absence of Ca2+. The corresponding distances between the probes were calculated to be 4.7 nm, 4.6 nm and 4.3 nm respectively, assuming a random orientation factor K2 = 2/3. A large difference in the transfer efficiency from AEDANS attached to Cys-133 on TnI to FITC attached to Lys-61 on actin was observed between in the presence (0.52) and absence (0.70) of Ca2+. The corresponding distances between the probes were calculated to be 4.5 nm in the presence of Ca2+ and 3.9 nm in the absence of Ca2+. The distance between Cys-190 on tropomyosin and Cys-374 on actin was measured to be 5.1 nm and the transfer efficiency (0.35) did not change upon addition of troponin whether Ca2+ is present or not, in agreement with the previous report [Tao, T., Lamkin, M. & Lehrer, S. S. (1983) Biochemistry 22, 3059-3064]. The distance between Cys-133 on TnI and Cys-374 on actin was measured to be 4.4 nm. No detectable change in transfer efficiency (0.58) was observed between values in the presence and absence of Ca2+. These results suggest that a relative movement of the two domains of actin monomer in a reconstituted thin filament occurs in response to a change in Ca2+ concentration. The transfer efficiencies between DABMI attached to SH1 on S1 and AEDANS attached to Cys-190 on tropomyosin or Cys-133 on TnI were too small (less than 2%) for an accurate estimation of the distances, suggesting the distances are longer than 7.3 nm.  相似文献   

4.
The spatial relationship between Lys-61, the nucleotide binding site and Cys-374 was studied. Lys-61 was labelled with fluorescein-5-isothiocyanate as a resonance energy acceptor, the nucleotide-binding site was labelled with the fluorescent ATP analogues epsilon ATP or formycin-A 5'-triphosphate (FTP) and Cys-374 was labelled with 5-(2-[(iodoacetyl)amino]ethyl)aminonaphthalene-1-sulfonic acid (1,5-IAEDANS) as a resonance energy donor. The distances between the nucleotide binding site and Lys-61 or between Lys-61 and Cys-374 were calculated to be 3.5 +/- 0.3 nm and 4.60 +/- 0.03 nm, respectively. (The assumption has been made in calculating these distances that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime.) On the other hand, when doubly-labelled actin with 1,5-IAEDANS at Cys-374 and FITC at Lys-61 was polymerized in the presence of a twofold molar excess of phalloidin [Miki, M. (1987) Eur. J. Biochem. 164, 229-235], the fluorescence of 1,5-IAEDANS bound to actin was quenched significantly. This could be attributed to inter-monomer energy transfer. The inter-monomer distance between FITC attached to Lys-61 in a monomer and 1,5-IAEDANS attached to Cys-374 in its nearest-neighbour monomer in an F-actin filament was calculated to be 3.34 +/- 0.06 nm, assuming that the likely change in the intra-monomer distance does not change during polymerization by more than 0.4 nm. One possible spatial relationship between Lys-61, Cys-374 and the nucleotide binding site in an F-actin filament is proposed. The effect of myosin subfragment-1 (S1) binding on the energy transfer efficiency was studied. The fluorescence intensity of AEDANS-FITC-actin decreased by 30% upon interaction with S1. The fluorescence intensity of AEDANS-FITC-actin polymer in the presence of phalloidin increased by 21% upon interaction with S1. The addition of ATP led to the fluorescence intensity returning to the initial level. Assuming that the change of fluorescence intensity can be attributed to conformational change in the actin molecule induced by S1 binding, the intra-monomer distance was reduced by 0.4 nm and the inter-monomer distance was increased by 0.2 nm.  相似文献   

5.
Fluorescence polarization measurements were used to study changes in the orientation and order of different sites on actin monomers within muscle thin filaments during weak or strong binding states with myosin subfragment-1. Ghost muscle fibers were supplemented with actin monomers specifically labeled with different fluorescent probes at Cys-10, Gln-41, Lys-61, Lys-373, Cys-374, and the nucleotide binding site. We also used fluorescent phalloidin as a probe near the filament axis. Changes in the orientation of the fluorophores depend not only on the state of acto-myosin binding but also on the location of the fluorescent probes. We observed changes in polarization (i.e., orientation) for those fluorophores attached at the sites directly involved in myosin binding (and located at high radii from the filament axis) that were contrary to the fluorophores located at the sites close to the axis of thin filament. These altered probe orientations suggest that myosin binding alters the conformation of F-actin. Strong binding by myosin heads produces changes in probe orientation that are opposite to those observed during weak binding.  相似文献   

6.
Movements of different areas of polypeptide chains within F-actin monomers induced by S1 or pPDM-S1 binding were studied by polarized fluorimetry. Thin filaments of ghost muscle were reconstructed by adding G-actin labeled with fluorescent probes attached alternatively to different sites of actin molecule. These sites were: Cys-374 labeled with 1,5-IAEDANS, TMRIA or 5-IAF; Lys-373 labeled with NBD-Cl; Lys-113 labeled with Alexa-488; Lys-61 labeled with FITC; Gln-41 labeled with DED and Cys-10 labeled with 1,5-IAEDANS, 5-IAF or fluorescein-maleimid. In addition, we used TRITC-, FITC-falloidin and e-ADP that were located, respectively, in filament groove and interdomain cleft. The data were analysed by model-dependent and model-independent methods (see appendixes). The orientation and mobility of fluorescent probes were significantly changed when actin and myosin interacted, depending on fluorophore location and binding site of actomyosin. Strong binding of S with actin leads to 1) a decrease in the orientation of oscillators of derivatives of falloidin (TRITC-falloidin, FITC-falloidin) and actin-bound nucleotide (e-ADP); 2) an increase in the orientation of dye oscillators located in the "front' surface of the small domain (where actin is viewed in the standard orientation with subdomains 1/2 and 3/4 oriented to the right and to the left, respectively); 3) a decrease in the angles of dye oscillators located on the "back" surface of subdomain-1. In contrast, a weak binding of S1 to actin induces the opposite effects in orientation of these probes. These data suggest that during the ATP hydrolysis cycle myosin heads induce a change in actin monomer (a tilt and twisting of its small domain). Presumably, these alterations in F-actin conformation play an important role in muscle contraction.  相似文献   

7.
In this study, experiments were carried out in the conventional and saturation-transfer electron paramagnetic resonance (EPR) time domains to explore the effect of mDia1-FH2 formin fragments on the dynamic and conformational properties of actin filaments. Conventional EPR measurements showed that addition of formin to actin filaments produced local conformational changes in the vicinity of Cys-374 by increasing the flexibility of the protein matrix in the environment of the label. The results indicated that it was the binding of formin to the barbed end that resulted in these conformational changes. The conventional EPR results obtained with actin labeled on the Lys-61 site showed that the binding of formins could only slightly affect the structure of the subdomain 2 of actin, reflecting the heterogeneity of the formin-induced conformational changes. Saturation transfer EPR measurements revealed that the binding of formins decreased the torsional flexibility of the actin filaments in the microsecond time range. We concluded that changes in the local and the global conformational fluctuations of the actin filaments are associated with the binding of formins to actin. The results on the two EPR time domains showed that the effects of formins on the substantially different types of motions were uncoupled.  相似文献   

8.
New data on the movements of tropomyosin singly labeled at alpha- or beta-chain during the ATP hydrolysis cycle in reconstituted ghost fibers have been obtained by using the polarized fluorescence technique which allowed us following the azimuthal movements of tropomyosin on actin filaments. Pronounced structural changes in tropomyosin evoked by myosin heads suggested the "rolling" of the tropomyosin molecule on F-actin surface during the ATP hydrolysis cycle. The movements of actin-bound tropomyosin correlated to the strength of S1 to actin binding. Weak binding of myosin to actin led to an increase in the affinity of the tropomyosin N-terminus to actin with simultaneous decrease in the affinity of the C-terminus. On the contrary, strong binding of myosin to actin resulted in the opposite changes of the affinity to actin of both ends of the tropomyosin molecule. Caldesmon inhibited the "rolling" of tropomyosin on the surface of the thin filament during the ATP hydrolysis cycle, drastically decreased the affinity of the whole tropomyosin molecule to actin, and "freezed" tropomyosin in the position characteristic of the weak binding of myosin to actin.  相似文献   

9.
Actin modified at Lys-61 with fluorescein 5-isothiocyanate (FITC) recovers the ability to polymerize following the binding of phalloidin. The resulting polymer (FITC-P-actin) activates the S1-Mg2+-ATPase activity to the same extent as non-labeled F-actin. However, in the absence of phalloidin, FITC-actin (0.5 mg/ml) neither polymerized nor activated the S1-Mg2+-ATPase activity effectively even when it was preincubated with S1 for 3 h in 0.1 mM ATP, 0.1 mM CaCl2, and 1 mM Tris/HCl (pH 8.0), in contrast to the previous report [Miller, L., Phillips, M., & Reisler, E. (1988) Eur. J. Biochem. 174, 23-29]. The modification of Lys-61 did not impair the ability to bind tropomyosin or tropomyosin-troponin. On the other hand, the fluorescence polarization of FITC-P-actin increased when tropomyosin or troponin-tropomyosin was added. Moreover, the modification of Lys-61 affected the regulation of the actin activation of the S1-Mg2+-ATPase activity by the tropomyosin and troponin complex. In 30 mM KCl, 2.5 mM ATP, and 5 mM MgCl2, tropomyosin alone has been shown to inhibit the actin-activated S1-Mg2+-ATPase. This inhibition did not occur with FITC-P-actin even though tropomyosin was tightly bound. When troponin-tropomyosin was added, the FITC-P-actin activation of S1-Mg2+-ATPase activity was regulated in response to micromolar Ca2+ concentrations. On the other hand, in 30 mM KCl, 2.5 mM ATP, and 2 mM MgCl2, tropomyosin alone did not inhibit the actin-activated S1-Mg2+-ATPase activity with either non-labeled F-actin or FITC-actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Fluorescence resonance energy transfer between points on tropomyosin (positions 87 and 190) and actin (Gln-41, Lys-61, Cys-374, and the ATP-binding site) showed no positional change of tropomyosin relative to actin on the thin filament in response to changes in Ca2+ concentration (Miki et al. (1998) J. Biochem. 123, 1104-1111). This is consistent with recent electron cryo-microscopy analysis, which showed that the C-terminal one-third of tropomyosin shifted significantly towards the outer domain of actin, while the N-terminal half of tropomyosin shifted only a little (Narita et al. (2001) J. Mol. Biol. 308, 241-261). In order to detect any significant positional change of the C-terminal region of tropomyosin relative to actin, we generated mutant tropomyosin molecules with a unique cysteine residue at position 237, 245, 247, or 252 in the C-terminal region. The energy donor probe was attached to these positions on tropomyosin and the acceptor probe was attached to Cys-374 or Gln-41 of actin. These probe-labeled mutant tropomyosin molecules retain the ability to regulate the acto-S1 ATPase activity in conjunction with troponin and Ca2+. Fluorescence resonance energy transfer between these points of tropomyosin and actin showed a high transfer efficiency, which should be very sensitive to changes in distance between probes attached to actin and tropomyosin. However, the transfer efficiency did not change appreciably upon removal of Ca2+ ions, suggesting that the C-terminal region of tropomyosin did not shift significantly relative to actin on the reconstituted thin filament in response to the change of Ca2+ concentration.  相似文献   

11.
Interaction of phalloidin with chemically modified actin   总被引:3,自引:0,他引:3  
Modification of Tyr-69 with tetranitromethane impairs the polymerizability of actin in accordance with the previous report [Lehrer, S. S. and Elzinga, M. (1972) Fed. Proc. 31, 502]. Phalloidin induces this chemically modified actin to form the same characteristic helical thread-like structure as normal F-actin. The filaments bind myosin heads and activate the myosin ATPase activity as effectively as normal F-actin. When a dansyl group is introduced at the same point [Chantler, P. D. and Gratzer, W. B. (1975) Eur. J. Biochem. 60, 67-72], phalloidin still induces the polymerization. The filaments bind myosin heads and activate the myosin ATPase activity. These results indicate that Tyr-69 is not directly involved in either an actin-actin binding site or the myosin binding site on actin. Moreover, the results suggest that phalloidin binds to actin monomer in the presence of salt and its binding induces a conformational change in actin which is essential for polymerization, or that actin monomer fluctuates between in unpolymerizable and polymerizable form while phalloidin binds to actin only in the polymerizable form and its binding locks the conformation which causes the irreversible polymerization of actin. Modification of Tyr-53 with 5-diazonium-(1H)tetrazole blocks actin polymerization [Bender, N., Fasold, H., Kenmoku, A., Middelhoff, G. and Volk, K. E. (1976) Eur. J. Biochem. 64, 215-218]. Phalloidin is unable to induce the polymerization of this modified actin nor does it bind to it. Phalloidin does not induce the polymerization of the trypsin-digested actin core. These results indicate that the site at which phalloidin binds is involved in polymerization and the probable conformational change involved in polymerization may be modulated through this site.  相似文献   

12.
Modification of actin with fluorescein isothiocyanate   总被引:2,自引:0,他引:2  
Reaction of rabbit skeletal muscle G-actin at pH 8.5 with fluorescein isothiocyanate (FITC) resulted in incorporation of up to 1.20 mol FITC/mol actin. At pH 8.8, the level of incorporation was raised to 1.98 mol FITC/mol actin. When excited with ultraviolet light, the FITC-actin samples fluoresced strongly with an emission maximum near 517 nm. Tryptic digests of FITC-actin containing about 1.0 mol FITC/mol actin could be separated into a nonfluorescent 33.5 kDa trypsin-resistant core protein and a fluorescent pool of small peptides. Chromatography on DEAE-Bio-Gel or two-dimensional separation on cellulose TLC plates of the peptide pool revealed that FITC was highly selective in the site of its reaction with actin, resulting in a single highly fluorescent peptide after tryptic digestion. NH2-terminal and amino acid analyses demonstrated this peptide to be derived from residues 51 to 62, with Lys-61 proposed as the major FITC-sensitive site on actin. FITC-actin is similar to G-actin in gross conformation; circular dichroism spectra of actin before and after labelling are identical. FITC-actin is also able to interact strongly with deoxyribonuclease I. However, FITC-actin solution viscosities and fluorescence properties are not altered by the addition of KCl or MgCl2. Therefore, either a localized conformational change near Lys-61 or steric hindrance due to the FITC attached to Lys-61 blocks the polymerization of actin.  相似文献   

13.
Cyclic conformational changes in the myosin head are considered essential for muscle contraction. We hereby show that the extension of the fluorescence resonance energy transfer method described originally by Taylor et al. (Taylor, D. L., Reidler, J., Spudich, J. A., and Stryer, L. (1981) J. Cell Biol. 89, 362-367) allows determination of the position of a labeled point outside the actin filament in supramolecular complexes and also characterization of the conformational heterogeneity of an actin-binding protein while considering donor-acceptor distance distributions. Using this method we analyzed proximity relationships between two labeled points of S1 and the actin filament in the acto-S1 rigor complex. The donor (N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonate) was attached to either the catalytic domain (Cys-707) or the essential light chain (Cys-177) of S1, whereas the acceptor (5-(iodoacetamido)fluorescein) was attached to the actin filament (Cys-374). In contrast to the narrow positional distribution (assumed as being Gaussian) of Cys-707 (5 +/- 3 A), the positional distribution of Cys-177 was found to be broad (102 +/- 4 A). Such a broad positional distribution of the label on the essential light chain of S1 may be important in accommodating the helically arranged acto-myosin binding relative to the filament axis.  相似文献   

14.
M Brauer  B D Sykes 《Biochemistry》1986,25(8):2187-2191
G-Actin is a globular protein (Mr 42 300) known to have three cysteine residues that are at least partially exposed and chemically reactive (Cys-10, -284, and -374). When G-actin was reacted with 3-bromo-1,1,1-trifluoropropanone, three resolvable 19F resonances were observed in the 19F NMR spectrum. This fluorinated G-actin derivative remained fully polymerizable, and its 31P NMR spectrum was not significantly different from that of unmodified G-actin, indicating that the chemical modification did not denature the actin and the modified residues do not interfere with the extent of polymerization or the binding of adenosine 5'-triphosphate. One of the three 19F resonances was assigned to fluorinated Cys-374 on the basis of its selective reaction with N-ethylmaleimide. This resonance was dramatically broadened after polymerization of fluorinated G-actin, while the other two resonances were not markedly broadened or shifted. Thus, Cys-10 and -284 are not involved in or appreciably affected by the polymerization of G-actin, while the mobility of the 19F label at Cys-374 is markedly reduced.  相似文献   

15.
Earlier studies using polarized microphotometry have shown that caldesmon inhibits the alterations in structure and flexibility of actin in ghost fibers that take place upon the binding of myosin heads (Ga?azkiewicz et al. (1987) Biochim. Biophys. Acta 916, 368-375). The present investigations, performed with an IAEDANS label attached to myosin subfragment 1 (S-1), revealed that this inhibition results from the weakening of the binding between myosin heads and actin as indicated by the caldesmon-induced increase in the random movement of S-1. Parallel experiments with actin labeled at Cys-374 demonstrated that this effect of caldesmon is transmitted to the C-terminus of the actin molecule resulting in a conformational adjustment in this region of the molecule.  相似文献   

16.
Pyridoxal 5'-phosphate (PLP), a lysine-specific reagent, has been used to modify G-actin. At pH 7.5, PLP reacted with 1.7-2 lysines on G-actin. Limited proteolytic digestion experiments indicated that, in agreement with previous works, essentially lysine-61 was modified in a 1:1 fashion by PLP, other lysines being much less reactive. A PLP-derivatized affinity label of ATP binding sites, AMPPLP, reacted with two additional lysines that do not appear to be located in the ATP site on G-actin. PLP-G-actin did not polymerize spontaneously up to 30 microM; however, it retained other essential native properties of G-actin. PLP-actin bound to the barbed ends of actin filaments with an equilibrium dissociation constant of 4 microM and prevented dilution-induced depolymerization like a capping protein. PLP-actin copolymerized with unmodified actin. The stability of F-actin copolymers decreased with the fraction of PLP-actin incorporated, consistent with a model within which the actin-PLP-actin interactions in the copolymer are 50-fold weaker, and PLP-actin-PLP-actin interactions are 200-fold weaker than regular actin-actin interactions. PLP-actin bound DNase I with an equilibrium association constant of 2 nM-1, i.e., 10-fold lower than that of unmodified actin. PLP modification did not affect the binding of G-actin to myosin subfragment 1. However, polymerization of PLP-actin by myosin subfragment 1 was not observed in low ionic strength buffers, whereas PLP-F-actin-S1 filaments, in which the stoichiometry PLP-actin:S1 is 1:1, were formed with an apparent critical concentration of 4.5 microM in the presence of 0.1 M KCl.  相似文献   

17.
Equine platelet tropomyosin was labeled with the sulfhydryl-specific fluorescent reagent 6-acryloyl-2-dimethylaminonaphthalene (acrylodan). The extent of labeling at 4 degrees C could be regulated between 0.5 and 1.3 acrylodans per tropomyosin chain by varying the reaction time from 1 to 4.5 h. Acrylodan-labeled platelet tropomyosin, AD-P-TM, was highly fluorescent, having an emission maximum near 518 nm on excitation at 365 nm. Steady-state measurements of polarization of the fluorescence of AD-P-TM in both low and high ionic strength solutions gave Perrin plots that exhibited sharp changes in slope near 50 degrees C, indicative of a sharp increase in mobility of the label at that temperature. This correlates with the melting temperature of the platelet tropomyosin coiled coil observed by circular dichroism [G. P. C?té, W. G. Lewis, M. D. Pato, and L. B. Smillie, (1978) FEBS Lett. 91, 237-241]. Perrin plots of carboxypeptidase A-treated platelet tropomyosin that was labeled with acrylodan after digestion resembled more closely those of acrylodan-labeled cardiac tropomyosin rather than those of AD-P-TM, suggesting that the observed emission arose from label at Cys-153 on each truncated platelet tropomyosin chain. In solutions containing 150 mM KCl and 5 mM MgCl2, addition of actin at up to a sixfold molar excess over AD-P-TM caused both the fluorescence emission intensities and fluorescence polarization values of samples to increase. In the presence of actin, the wavelength of maximal emission was shifted to shorter values by about 5 to 7 nm. These changes indicate that actin does bind to AD-P-TM and that the binding affects the environment of the label, both by making it more hydrophobic and by reducing the freedom of the label to tumble in solution.  相似文献   

18.
Y Ishii  S S Lehrer 《Biochemistry》1985,24(23):6631-6638
The fluorescence of pyrene-TM [rabbit skeletal tropomyosin (TM) labeled at Cys with N-(1-pyrenyl)maleimide] consists of monomer and excimer bands [Betcher-Lange, S., & Lehrer, S.S. (1978) J. Biol. Chem. 253, 3757-3760]; an increase in excimer fluorescence with temperature is due to a shift in equilibrium from a chain-closed state (N) to a chain-open state (X) associated with a helix pretransition [Graceffa, P., & Lehrer, S.S. (1980) J. Biol. Chem. 255, 11296-11300]. In this study, we show that the presence of appreciable excimer fluorescence at temperatures below the N----X pretransition (initial excimer) is due to perturbation of the TM chain-chain interaction by the pyrenes at Cys-190. Fluorescence and ATPase titrations indicated that the label caused a decrease in TM binding to F-actin primarily due to reduced end to end TM interactions on the actin filament. Under conditions where pyrene-TM was bound to F-actin, however, the excimer fluorescence did not increase with temperature, indicating that F-actin stabilizes tropomyosin by inhibiting the N----X transition. The binding of myosin subfragment 1 (S1) to pyrene-TM-F-actin at low ratios to actin caused time-dependent changes in fluorescence. After equilibrium was reached, the initial excimer fluorescence was markedly reduced and remained constant over the pretransition temperature range. Further stabilization of tropomyosin conformation on F-actin is therefore associated with S1 binding. Effects of the binding of S1 to the F-actin-tropomyosin thin filament on the state of tropomyosin were studied by monitoring the monomer fluorescence of pyrene-TM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Photoaffinity labeling of the nucleotide binding site of actin   总被引:5,自引:0,他引:5  
G Hegyi  L Szilagyi  M Elzinga 《Biochemistry》1986,25(19):5793-5798
Rabbit skeletal muscle actin was photoaffinity-labeled by the nucleotide analogue 8-azidoadenosine 5'-triphosphate. In both G-actin and F-actin about 25% covalent incorporation was achieved. The labeled actins were digested with cyanogen bromide, and the labeled peptides were isolated and sequenced. In F-actin the label was bound primarily to Lys-336, while in G-actin the label was bound to Lys-336 or to Trp-356. The results indicate that the nucleotide binding site is near the phalloidin binding site of actin [Vanderkerckhove, J., Deboben, A., Nassal, M., & Wieland, T. (1985) EMBO J. 4, 2815-2818]. The binding of the azido group to Trp-356 in G-actin but not in F-actin may indicate that a change in the conformation of actin occurs in this region.  相似文献   

20.
A pyrene label attached to Cys-374 of actin has been shown to be a useful probe for monitoring the interaction of actin with myosin subfragments [Kouyama & Mihashi (1981) Eur. J. Biochem. 114, 33-38]. We report that the presence of this label decreases the affinity of actin for myosin subfragment 1 by less than a factor of 2. The rate of actin binding is unaffected by the label and the dissociation rate is increased by up to a factor of 2. Both the rate of actin binding to, and the rate of actin dissociation from, heavy meromyosin show two phases when monitored by pyrene fluorescence. Thin filiments reconstituted from pyrene-labelled actin show a 5% increase in pyrene fluorescence on binding Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号