首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today's strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy.  相似文献   

2.
Poor drug candidate safety profiles are often identified late in the drug development process, manifesting themselves in the preclinical and clinical phases and significantly contributing to the high cost and low yield of drug discovery. As a result, new tools are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process, from primary drug candidate screening to lead optimization. Although high-throughput screens exist for much of the discovery phase of drug development, translating such screening techniques into platforms that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology has proven difficult. Nevertheless, some success has been achieved in recent years, which may ultimately yield widespread acceptance in the pharmaceutical industry.  相似文献   

3.
Motility and feeding assays were assessed as in vitro systems for screening of novel compounds for anthelmintic activity against adult Haemonchus contortus. The study aimed to develop an assay with the parasitic adult stage of this species that could be used in conjunction with, or as an alternative to, the free-living larval stage screens commonly used for drug discovery with many parasitic nematode species. The feeding assay showed limitations due to the apparent continuation of a significant degree of feeding in worms showing greatly reduced motility in the presence of some drugs. Hence, it appeared most likely that the feeding assay would underestimate the toxicity of these drugs. The motility assay was able to detect toxicity of known anthelmintics, including the 'slow-acting' benzimidazoles. A small-scale screening exercise used the motility assay to detect toxicity towards adult parasites in 10 compounds out of a group of 200 chemicals (selected due to known toxic effects in larval development assays). The motility assay appeared suitable for drug screening against adult H. contortus. The use of the adult stage for drug screening in this way ensures that the drug is toxic towards the parasite life stage to be targeted in vivo. A lack of activity in subsequent in vivo trials could, therefore, be most likely attributable to host pharmacokinetic factors rather than an intrinsic lack of activity of the drug towards the adult parasite.  相似文献   

4.
The discovery of new therapeutic options against Trypanosoma cruzi, the causative agent of Chagas disease, stands as a fundamental need. Currently, there are only two drugs available to treat this neglected disease, which represents a major public health problem in Latin America. Both available therapies, benznidazole and nifurtimox, have significant toxic side effects and their efficacy against the life-threatening symptomatic chronic stage of the disease is variable. Thus, there is an urgent need for new, improved anti–T. cruzi drugs. With the objective to reliably accelerate the drug discovery process against Chagas disease, several advances have been made in the last few years. Availability of engineered reporter gene expressing parasites triggered the development of phenotypic in vitro assays suitable for high throughput screening (HTS) as well as the establishment of new in vivo protocols that allow faster experimental outcomes. Recently, automated high content microscopy approaches have also been used to identify new parasitic inhibitors. These in vitro and in vivo early drug discovery approaches, which hopefully will contribute to bring better anti–T. cruzi drug entities in the near future, are reviewed here.  相似文献   

5.
目的:综述噬菌体抗体库技术的研究进展,介绍该技术的原理,构建,筛选和应用,为抗肿瘤抗体药物研发提供参考。方法:采用文献综述的方法,筛选近5年来噬菌体抗体库技术试验论文,对噬菌体抗体库技术的原理,构建,筛选和应用进行总结。结果:噬菌体抗体库主要分为免疫抗体库和非免疫抗体库两大类;噬菌体抗体库筛选技术包括亲和筛选、细胞筛选和生物体内筛选三种;噬菌体抗体库技术主要应用于肿瘤标志物的识别和肿瘤诊断,抗肿瘤抗体药物的筛选和制备。结论:噬菌体抗体库技术方便、快速、高效,可以在体外环境下培养,这些特点决定了其在肿瘤标志物的发现和肿瘤抗体药物研发中的广泛应用。目前噬菌体抗体库技术还存在一定缺陷,但技术的不断发展和革新必然使噬菌体抗体库技术成为研制抗体药物的新思路,极大促进了肿瘤抗体药物的研发。  相似文献   

6.
Parasitic neglected diseases are in dire need of new drugs either to replace old drugs rendered ineffective because of resistance development, to cover clinical needs that had never been addressed or to tackle other associated problems of existing drugs such as high cost, difficult administration, restricted coverage or toxicity. The availability of transgenic parasites expressing reporter genes facilitates the discovery of new drugs through high throughput screenings, but also by allowing rapid screening in animal models of disease. Taking advantage of these, we propose an alternative pathway of drug development for neglected diseases, going from high throughput screening directly into in vivo testing of the top ranked compounds selected by medicinal chemistry. Rapid assessment animal models allow for identification of compounds with bona fide activity in vivo early in the development chain, constituting a solid basis for further development and saving valuable time and resources.  相似文献   

7.
基于靶点的体外药物筛选操作相对简单,成本较低,但是由于药物在体内的作用并不仅仅取决于其与靶点的作用程度,吸收、分布、代谢、排泄特征和毒性均会对早期先导物能否进入临床使用产生极大的影响,因此,药物的体内筛选受到重视。本文重点综述了秀丽隐杆线虫(C.elegans)在抗衰老、抗感染药物筛选中的应用情况。秀丽隐杆线虫结构简单、易于培养和可实现高通量筛选,在未来的药物筛选中必将发挥更重要的作用。  相似文献   

8.
Protein kinases are among the most promising targets for drug discovery and development, mostly in oncology but also in other fields such as inflammation, Alzheimer's, and infectious diseases. The Integrated Technology Platform Protein Kinases was designed as a comprehensive tool for drug discovery in thefield of oncology. It combines modules for the identification and validation of novel target protein kinases, a unique panel of active recombinant protein kinases, high-throughput screening, selectivity profiling, cellular testing, and in vivo tumor models. Here we give an overview of the Integrated Technology Platform Protein Kinases as well as data that validate each module.  相似文献   

9.
Direct drug screening against the mammalian stage of Leishmania has been hampered by cost and the time consuming effort required to accomplish it. The ability to derive transgenic Leishmania expressing reporter genes opened up new possibilities for the development of drug screening tests. Further developments to standardize and gather multiple informations could now be envisionned. We will discuss on such available methodologies that could improve sensitivity, reliability, versatility and the rapidity, of the screen based on intracellular model.  相似文献   

10.
Those pharmaceutical companies whose goal is to generate novel innovative drugs are faced with the challenge that only a fraction of the compounds tested in clinical trials eventually become a registered drug. This problem of attrition is compounded by the fact that the clinical trial or development stage is by far the most costly phase of bringing a new drug to market, consuming around 80 per cent of the total spend. Transgenic technology represents an attractive approach to reducing the attrition rate of compounds entering clinical trials by increasing the quality of the target and compound combinations making the transition from discovery into development. Transgenic technology can impact at many points in the discovery process, including target identification and target validation, and provides models designed to alert researchers early to potential problems with drug metabolism and toxicity, as well as providing better models for human diseases. In target identification, transgenic animals harbouring large DNA fragments can be used to narrow down genetic regions. Genetic studies often result in the identification of large genomic regions and one way to decrease the region size is to do complementation studies in transgenic animals using, for example, inserts from bacterial artificial chromosome (BAC) clones. In target validation, transgenic animals can be used for in vivo validation of a specific target. Considerable efforts are being made to establish new, rapid and robust tools with general utility for in vivo validation, but, so far, only transgenic animals work reliably on a wide range of targets. Transgenic animals can also be used to generate better disease models. Predictive animal models to test new compounds and targets will significantly speed up the drug discovery process and, more importantly, increase the quality of the compounds taken further in the research and development process. Humanised transgenic animals harbouring the human target molecule can be used to understand the effect of a compound acting on the human target in vivo. Also, models mimicking human drug metabolism will provide a means of assessing the effect of human-specific metabolites and of understanding the pharmacokinetic properties of potential drugs. In toxicology studies, transgenic animals are providing more predictive models. A good example of this are those models routinely used to look for carcinogenicity associated with new compounds.  相似文献   

11.
The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR), which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0) of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1) or induce parasite clearance (PRR >1) with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally) in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a feasible task.  相似文献   

12.
The development of new therapeutic leads against leishmaniasis relies primarily on screening of a large number of compounds on multiplication of clinically irrelevant transgenic promastigotes. The advent of the successful in vitro culture of axenic amastigotes allows the development of transgenic axenic amastigotes as a primary screen which can test compounds in a high throughput mode like promastigotes, still representative of the clinically relevant mammalian amastigotes stage. The present study reports the development of luciferase-tagged axenic amastigotes of Leishmania donovani, the causative agent of Indian Kala-azar, for in vitro drug screening. Luciferase expressing promastigotes were transformed to axenic amastigotes at a low pH and high temperature without the loss of luciferase expression. As compared to transgenic promastigotes, the luciferase expressing axenic amastigotes exhibited more sensitivity to antileishmanial drugs, particularly to pentavalent antimony (~2.8-fold) and also to the test compounds. Hence, the developed luciferase expressing axenic amastigotes make an ideal choice for high throughput drug screening for antileishmanial compounds.  相似文献   

13.
Quantitative structure/retention relationships in affinity chromatography.   总被引:1,自引:0,他引:1  
Affinity chromatography (AC) followed by quantitative structure/retention relationships (QSRR) analysis provides information on both the analytes and the macromolecules forming the stationary phases. QSRR equations derived for test series of analytes (often drugs) are interpreted in terms of structural requirements of the specific binding sites on macromolecules. Chromatographically demonstrated differences in analyte/macromolecule interactions may be relevant to molecular pharmacology and rational drug design. Multiple regression analysis of appropriately designed sets of affinity-chromatographic data may help increase the speed and efficiency of search as for new drugs and reduce the need for in vivo screening. Specific high-performance affinity-chromatographic separations can be optimized by rational selection of chiral columns, the characteristics of which are provided by QSRR.  相似文献   

14.
Therapeutic monoclonal antibodies (mAbs) are mostly used in cancer, as anti-infectious agents and as immunomodulatory drugs, and are amongst the most active area of research and development in the pharmaceutical industry. This class of drugs comprises unconjugated antibodies or antibody fragments, antibody-drug conjugates, radio-immunoconjugates and bispecific/trispecific molecules. A better understanding of the mechanism of action of successful mAbs is fundamental for the selection of more active and less toxic mAbs of new generation. Furthermore reliable screening of new compounds at an early stage of preclinical development, for both efficacy and toxicity, should allow the selection of the best molecules at an early stage, and improve the rate of success of this class of drugs. Here we review the major methods that are employed for testing the activity of therapeutic mAbs in vitro and in vivo in small animal models and point out to some of the pitfalls in these assays.  相似文献   

15.
Sole reliance on one drug, Praziquantel, for treatment and control of schistosomiasis raises concerns about development of widespread resistance, prompting renewed interest in the discovery of new anthelmintics. To discover new leads we designed an automated label-free, high content-based, high throughput screen (HTS) to assess drug-induced effects on in vitro cultured larvae (schistosomula) using bright-field imaging. Automatic image analysis and Bayesian prediction models define morphological damage, hit/non-hit prediction and larval phenotype characterization. Motility was also assessed from time-lapse images. In screening a 10,041 compound library the HTS correctly detected 99.8% of the hits scored visually. A proportion of these larval hits were also active in an adult worm ex-vivo screen and are the subject of ongoing studies. The method allows, for the first time, screening of large compound collections against schistosomes and the methods are adaptable to other whole organism and cell-based screening by morphology and motility phenotyping.  相似文献   

16.
Most drugs and xenobiotics induce the expression of cytochrome P450 (CYP) enzymes, which reduce the bioavailability of the inducer and/or co-administered drugs. Therefore, evaluation of new drug candidates for their effect on CYP expression is an essential step in drug development. The available methods for this purpose are expensive and not amenable to high-throughput screening. We developed a fluorescence-based in vivo assay using transgenic Caenorhabditis elegans worms that express the green fluorescent protein (GFP) under the control of various CYP promoters. Using this assay, we found striking similarities between the worm CYPs and their human orthologs in their response to treatment with various drugs. For example,the antibiotic rifampicin, one of the strongest inducers of the human gene CYP3A4, was the strongest inducer of the worm ortholog CYP13A7. Since worms can be easily grown in liquid medium in microtitre plates, the assay described in this paper is suitable for the screening of a large number of potential lead compounds in the drug discovery process.  相似文献   

17.
Despite the urgent need for new antitubercular drugs, few are on the horizon. To combat the problem of emerging drug resistance, structurally unique chemical entities that inhibit new targets will be required. Here we describe our investigations using whole cell screening of a diverse collection of small molecules as a methodology for identifying novel inhibitors that target new pathways for Mycobacterium tuberculosis drug discovery. We find that conducting primary screens using model mycobacterial species may limit the potential for identifying new inhibitors with efficacy against M. tuberculosis. In addition, we confirm the importance of developing in vitro assay conditions that are reflective of in vivo biology for maximizing the proportion of hits from whole cell screening that are likely to have activity in vivo. Finally, we describe the identification and characterization of two novel inhibitors that target steps in M. tuberculosis cell wall biosynthesis. The first is a novel benzimidazole that targets mycobacterial membrane protein large 3 (MmpL3), a proposed transporter for cell wall mycolic acids. The second is a nitro-triazole that inhibits decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1), an epimerase required for cell wall biosynthesis. These proteins are both among the small number of new targets that have been identified by forward chemical genetics using resistance generation coupled with genome sequencing. This suggests that methodologies currently employed for screening and target identification may lead to a bias in target discovery and that alternative methods should be explored.  相似文献   

18.
Protein kinases are important regulators of signal-transduction pathways. Dysregulated kinase activity is observed in a variety of human diseases such as cancer, making them targets for the development of molecular therapies. Identification of new drugs is greatly aided by molecular imaging tools which enable real time, non-invasive, dynamic and quantitative imaging of kinase activity in vivo. We have recently described a new reporter platform based on conformation dependent complementation of firefly luciferase to monitor serine/threonine kinase (Akt) activity. The reporter system provides unique insights into the pharmacokinetics and pharmacodynamics of drugs that modulate kinase activity in living subjects and also provide a platform for cell based high-throughput drug screening for modulators of kinase activity.  相似文献   

19.
Yeast cells as tools for target-oriented screening   总被引:1,自引:0,他引:1  
  相似文献   

20.
Efficient delivery of therapeutics across the neuroprotective blood–brain barrier (BBB) remains a formidable challenge for central nervous system drug development. High‐fidelity in vitro models of the BBB could facilitate effective early screening of drug candidates targeting the brain. In this study, we developed a microfluidic BBB model that is capable of mimicking in vivo BBB characteristics for a prolonged period and allows for reliable in vitro drug permeability studies under recirculating perfusion. We derived brain microvascular endothelial cells (BMECs) from human induced pluripotent stem cells (hiPSCs) and cocultured them with rat primary astrocytes on the two sides of a porous membrane on a pumpless microfluidic platform for up to 10 days. The microfluidic system was designed based on the blood residence time in human brain tissues, allowing for medium recirculation at physiologically relevant perfusion rates with no pumps or external tubing, meanwhile minimizing wall shear stress to test whether shear stress is required for in vivo‐like barrier properties in a microfluidic BBB model. This BBB‐on‐a‐chip model achieved significant barrier integrity as evident by continuous tight junction formation and in vivo‐like values of trans‐endothelial electrical resistance (TEER). The TEER levels peaked above 4000 Ω · cm2 on day 3 on chip and were sustained above 2000 Ω · cm2 up to 10 days, which are the highest sustained TEER values reported in a microfluidic model. We evaluated the capacity of our microfluidic BBB model to be used for drug permeability studies using large molecules (FITC‐dextrans) and model drugs (caffeine, cimetidine, and doxorubicin). Our analyses demonstrated that the permeability coefficients measured using our model were comparable to in vivo values. Our BBB‐on‐a‐chip model closely mimics physiological BBB barrier functions and will be a valuable tool for screening of drug candidates. The residence time‐based design of a microfluidic platform will enable integration with other organ modules to simulate multi‐organ interactions on drug response. Biotechnol. Bioeng. 2017;114: 184–194. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号