首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Suppressor of cytokine signaling (SOCS) proteins have emerged as important regulators of cytokine signals in lymphocytes. In this study, we have investigated regulation of SOCS expression and their role in Th cell growth and differentiation. We show that SOCS genes are constitutively expressed in naive Th cells, albeit at low levels, and are differentially induced by Ag and Th-polarizing cytokines. Whereas cytokines up-regulate expression of SOCS1, SOCS2, SOCS3, and cytokine-induced Src homology 2 protein, Ags induce down-regulation of SOCS3 within 48 h of Th cell activation and concomitantly up-regulate SOCS1, SOCS2, and cytokine-induced Src homology 2 protein expression. We further show that STAT1 signals play major roles in inducing SOCS expression in Th cells and that induction of SOCS expression by IL-4, IL-12, or IFN-gamma is compromised in STAT1-deficient primary Th cells. Surprisingly, IL-4 is a potent inducer of STAT1 activation in Th2 but not Th1 cells, and SOCS1 or SOCS3 expression is dramatically reduced in STAT1(-/-) Th2 cells. To our knowledge, this is the first report of IL-4-induced STAT1 activation in Th cells, and suggests that its induction of SOCS, may in part, regulate IL-4 functions in Th2 cells. In fact, overexpression of SOCS1 in Th2 cells represses STAT6 activation and profoundly inhibits IL-4-induced proliferation, while depletion of SOCS1 by an anti-sense SOCS1 cDNA construct enhances cell proliferation and induces constitutive activation of STAT6 in Th2 cells. These results are consistent with a model where IL-4 has dual effects on differentiating T cells: it simulates proliferation/differentiation through STAT6 and autoregulates its effects on Th2 growth and effector functions via STAT1-dependent up-regulation of SOCS proteins.  相似文献   

3.
STAT1 mediates signaling in response to IFN-alpha, -beta, and -gamma, cytokines required for protective immunity against several viral, bacterial, and eukaryotic pathogens. The protective role of STAT1 in the control of intranasal infection with the obligate intracellular bacterium Chlamydia pneumoniae was analyzed. IFN-gamma-/- or IFN-gamma receptor (R)-/- mice were highly susceptible to infection with C. pneumoniae. We found that STAT1-/- mice were even more susceptible to C. pneumoniae than IFN-gamma-/- or IFN-gammaR-/- mice. Phosphorylation of STAT1 was detected in the lungs of C. pneumoniae-infected wild-type, IFN-gammaR-/-, and IFN-alphabetaR-/- mice, but not in mice lacking both IFN-alphabetaR and IFN-gammaR. In line with this, IFN-alphabetaR-/-/IFN-gammaR-/- mice showed increased susceptibility to infection compared with IFN-gammaR-/- mice. However, C. pneumoniae-infected IFN-alphabetaR-/- or IFN regulatory factor 3-/- mice showed no increased susceptibility and similar IFN-gamma expression compared with wild-type mice. CD4+ or CD8+ cells released IFN-gamma in vivo and conferred protection against C. pneumoniae in a STAT1-independent manner. In contrast, STAT1 mediated a nonredundant protective role of nonhemopoietic cells but not of hemopoietic cells. Nonhemopoietic cells accounted for the expression of STAT1-mediated indoleamine 2, 3-dioxygenase and the p47 GTPase LRG-47, but not inducible NO synthase mRNA. In summary, we demonstrate that STAT1 mediates a cooperative effect of IFN-alphabeta and IFN-gamma on nonhemopoietic cells, resulting in protection against C. pneumoniae.  相似文献   

4.
The production of eotaxin, which is a critical mediator for airway inflammation, is inhibited by IFN-gamma. Here, we investigated the precise mechanisms underlying IFN-gamma-dependent inhibition of eotaxin production using mouse embryonic fibroblasts (MEF). MEF produced high levels of eotaxin in STAT6-dependent manner when they were cultured with both IL-4 and TNF-alpha. However, the eotaxin production by MEF was strongly inhibited by addition of IFN-gamma. Western-blotting analysis demonstrated that IFN-gamma downmodulated STAT6 phosphorylation induced by IL-4 and TNF-alpha. Moreover, IFN-gamma did not exhibit its inhibitory effect on both STAT6-phosphorylation and eotaxin production in MEF obtained from deficient mice in STAT1, a key molecule of IFN-gamma signaling. We also demonstrated that SOCS-1, a potent inhibitory molecule of IL-4 signaling, was induced by IFN-gamma in STAT1-dependent manner. This indicated that SOCS-1 might be involved in IFN-gamma-mediated STAT1-dependent inhibition of eotaxin production. In SOCS-1(-/-) MEF, IFN-gamma inhibited neither STAT6 phosphorylation nor eotaxin production induced by IL-4 and TNF-alpha. Conversely, retroviral transduction of SOCS-1 into MEF inhibited STAT6 phosphorylation and eotaxin production induced by IL-4 and TNF-alpha, in the absence of IFN-gamma. Thus, we demonstrated that IFN-gamma-induced inhibition of STAT6 phosphorylation and eotaxin production were mediated by SOCS-1 induced in STAT1-dependent manner.  相似文献   

5.
6.
IL-4 is involved in type 2 T helper cell (Th)2-type immune responses and, in some cases, can promote Th1 responses. However, the proinflammatory potential of IL-4 alone is unclear. In this study, we examined the ability of IL-4 to induce colitis after its overexpression in the colon using an adenoviral vector (Ad5) and compared results with those obtained after overexpression of IL-12, a cytokine implicated in several models of colitis. Overexpression of IL-4 or IL-12 caused a fatal colitis within 24 h in 60% of animals and was dose and strain dependent. IL-12-induced colitis was accompanied by the local expression of IFN-gamma and TNF-alpha but not IL-4 mRNA and protein. Conversely, IL-4-induced colitis was accompanied by the local expression of IL-4 and TNF-alpha but not IFN-gamma mRNA and protein. The Ad5-IL4-induced colitis did not persist beyond 3 days and was present in recombinase activation gene-2 (RAG-2)-/- mice but not in STAT6-/- mice. Acute lethal colitis induced by Ad5IL12 was T cell mediated and IFN-gamma receptor (IFN-gamma R) dependent. Furthermore, TNF-alpha was found to be important in the pathogenesis of Ad5IL-4 and Ad5IL-12-induced colitis. Results of this study indicate that IL-4 alone can act as a proinflammatory cytokine in the gut of normal mice, inducing a rapid onset and short-lived colonic injury while maintaining a Th2-type cytokine profile that functions via a local T cell-independent mechanism involving TNF-alpha.  相似文献   

7.
8.
Polarized Th1 cells show a stable phenotype: they become insensitive to IL-4 stimulation and lose the potential to produce IL-4. Previously, we reported that IFN-gamma played a critical role in stabilizing Th1 phenotype. However, the mechanism by which IFN-gamma stabilizes Th1 phenotype is not clear. In this study, we compared STAT6 phosphorylation in wild-type (WT) and IFN-gamma receptor knockout (IFNGR(-/-)) Th1 cells. We found a striking diminution of STAT6 phosphorylation in differentiated WT Th1 cells, but not in differentiated IFNGR(-/-) Th1 cells. The impairment of STAT6 phosphorylation in differentiated WT Th1 cells was not due to a lack of IL-4R expression or phosphorylation. Jak1 and Jak3 expression and phosphorylation were comparable in both cell types. No differential expression of suppressor of cytokine signaling 1 (SOCS1), SOCS3, or SOCS5 was observed in the two cell types. In addition, Src homology 2-containing phosphatase mutation did not affect IL-4-induced STAT6 phosphorylation in differentiated Th1 cells derived from viable motheaten (me(v)/me(v)) mice. These results led us to focus on a novel mechanism. By using a pulldown assay, we observed that STAT6 in WT Th1 cells bound less effectively to the phosphorylated IL-4R/GST fusion protein than that in IFNGR(-/-) Th1 cells. Our results suggest that IFN-gamma may suppress phosphorylation of STAT6 by inhibiting its recruitment to the IL-4R.  相似文献   

9.
During infection, the functional status of the innate immune system is tightly regulated. Although signals resulting in activation have been well characterized, counterregulative mechanisms are poorly understood. Suppressor of cytokine signaling (SOCS) proteins have been characterized as cytokine-inducible negative regulators of Janus kinase/STAT signaling in cells of hemopoietic origin. To analyze whether SOCS proteins could also be induced by pathogen-derived stimuli, we investigated the induction of SOCS-1 and SOCS-3 after triggering of macrophage cell lines, bone marrow-derived dendritic cells, and peritoneal macrophages with CpG-DNA. In this study, we show that CpG-DNA, but not GpC-DNA, induces expression of mRNA for SOCS-1 and SOCS-3 in vitro and in vivo. SOCS mRNA expression could be blocked by chloroquine and was independent of protein synthesis. Inhibitors of the mitogen-activated protein kinase pathway triggered by CpG-DNA were able to impede induction of SOCS mRNA. CpG-DNA triggered synthesis of SOCS proteins that could be detected by Western blotting. SOCS proteins were functional because they inhibited IFN-gamma as well as IL-6- and GM-CSF-induced phosphorylation of STAT proteins. Furthermore, IFN-gamma-induced up-regulation of MHC class II molecules was also prevented. The same effects could be achieved by overexpression of SOCS-1. Hence, the results indicate a substantial cross-talk between signal pathways within cells. They provide evidence for regulative mechanisms of Janus kinase/STAT signaling after triggering Toll-like receptor signal pathways.  相似文献   

10.
11.
Several reports have indicated that cell lineages apart from NK and T cells can also express IFN-gamma. However, the biological relevance of this finding is uncertain. We show in this study that bone marrow-derived macrophages (BMMs) express IFN-gamma at the mRNA and protein level early after infection with Chlamydia pneumoniae. Increased IFN-gamma mRNA accumulation by infected BMMs is early, transient, and requires both bacterial and host protein synthesis. The induction of IFN-gamma mRNA levels is independent of IL-12 and was dramatically enhanced in IL-10(-/-) BMMs. Such IL-10(-/-) BMMs contained less bacteria than the wild-type controls, whereas IFN-gammaR(-/-) BMMs showed increased C. pneumoniae load. Inducible NO synthase (iNOS) also participates in the control of bacterial load, as shown by the enhanced numbers of C. pneumoniae in iNOS(-/-) BMMs. However, the increased accumulation of iNOS mRNA and NO in C. pneumoniae-infected BMMs depended on the presence of IFN-alphabeta, but was independent of IFN-gamma. Interestingly, IFN-alphabeta are also required for increased IFN-gamma mRNA accumulation in C. pneumoniae-infected BMMs. Accordingly, IFN-alphabetaR(-/-) BMMs showed higher levels of C. pneumoniae than wild-type BMMs. Our findings unravel an autocrine/paracrine macrophage activation pathway by showing an IFN-alphabeta-dependent IFN-gamma and iNOS induction in response to infection, which protects macrophages against intracellular bacterial growth.  相似文献   

12.
13.
T lymphocyte survival, proliferation, and death in the periphery are dependent on several cytokines. Many of these cytokines induce the expression of suppressor of cytokine signaling-1 (SOCS1), a feedback inhibitor of JAK kinases. However, it is unclear whether the cytokines that regulate T lymphocyte homeostasis are critically regulated by SOCS1 in vivo. Using SOCS1(-/-)IFN-gamma(-/-) mice we show that SOCS1 deficiency causes a lymphoproliferative disorder characterized by decreased CD4/CD8 ratio due to chronic accumulation of CD8+CD44(high) memory phenotype T cells. SOCS1-deficient CD8+ T cells express elevated levels of IL-2Rbeta, show increased proliferative response to IL-15 and IL-2 in vitro, and undergo increased bystander proliferation and vigorous homeostatic expansion in vivo. Sorted CD8+CD44(high) T cells from SOCS1(-/-)IFN-gamma(-/-) mice respond 5 times more strongly than control cells, indicating that SOCS1 is a critical regulator of IL-15R signaling. Consistent with this idea, IL-15 stimulates sustained STAT5 phosphorylation in SOCS1-deficient CD8+ T cells. IL-15 strongly induces TNF-alpha production in SOCS1-deficient CD8+ T cells, indicating that SOCS1 is also a critical regulator of CD8+ T cell activation by IL-15. However, IL-15 and IL-2 induce comparable levels of Bcl-2 and Bcl-x(L) in SOCS1-deficient and SOCS1-sufficient CD8+ T cells, suggesting that cytokine receptor signals required for inducing proliferation and cell survival signals are not identical. These results show that SOCS1 differentially regulates common gamma-chain cytokine signaling in CD8+ T cells and suggest that CD8+ T cell homeostasis is maintained by distinct mechanisms that control cytokine-mediated survival and proliferation signals.  相似文献   

14.
Suppressor of cytokine signaling 1 inhibits IL-10-mediated immune responses   总被引:8,自引:0,他引:8  
IL-10 has proved to be a key cytokine in regulating inflammatory responses by controlling the production and function of various other cytokines. The suppressor of cytokine signaling (SOCS) gene products are a family of cytoplasmic molecules that are essential mediators for negatively regulating cytokine signaling. It has been previously shown that IL-10 induced SOCS3 expression and that forced constitutive expression of SOCS3 inhibits IL-10/STAT3 activation and LPS-induced macrophage activation. In this report, we show that, in addition to SOCS3 expression, IL-10 induces SOCS1 up-regulation in all cell lines tested, including Ba/F3 pro-B cells, MC/9 mast cells, M1 leukemia cells, U3A human fibroblasts, and primary mouse CD4(+) T cells. Induction of SOCS molecules is dependent on STAT3 activation by IL-10R1. Cell lines constitutively overexpressing SOCS proteins demonstrated that SOCS1 and SOCS3, but not SOCS2, are able to partially inhibit IL-10-mediated STAT3 activation and proliferative responses. Pretreatment of M1 cells with IFN-gamma resulted in SOCS1 induction and a reduction of IL-10-mediated STAT3 activation and cell growth inhibition. IL-10-induced SOCS is associated with the inhibition of IFN-gamma signaling in various cell types, and this inhibition is independent of C-terminal serine residues of the IL-10R, previously shown to be required for other anti-inflammatory responses. Thus, the present results show that both SOCS1 and SOCS3 are induced by IL-10 and may be important inhibitors of both IL-10 and IFN-gamma signaling. IL-10-induced SOCS1 may directly inhibit IL-10 IFN-gamma signaling, while inhibition of other proinflammatory cytokine responses may use additional IL-10R1-mediated mechanisms.  相似文献   

15.
The potential of some proinflammatory mediators to inhibit gp130-dependent STAT3 activation by enhancing suppressor of cytokine signaling (SOCS) 3 expression represents an important molecular mechanism admitting the modulation of the cellular response toward gp130-mediated signals. Thus, it is necessary to understand the mechanisms involved in the regulation of SOCS3 expression by proinflammatory mediators. In this study, we investigate SOCS3 expression initiated by the proinflammatory cytokine TNF-alpha. In contrast to IL-6, TNF-alpha increases SOCS3 expression by stabilizing SOCS3 mRNA. Activation of the MAPK kinase 6 (MKK6)/p38(MAPK)-cascade is required for TNF-alpha-mediated stabilization of SOCS3 mRNA and results in enhanced SOCS3 protein expression. In fibroblasts or macrophages deficient for MAPK-activated protein kinase 2 (MK2), a downstream target of the MKK6/p38(MAPK) cascade, basal SOCS3-expression is strongly reduced and TNF-alpha-induced SOCS3-mRNA stabilization is impaired, indicating that MK2 is crucial for the control of SOCS3 expression by p38(MAPK)-dependent signals. As a target for SOCS3 mRNA stability-regulating signals, a region containing three copies of a pentameric AUUUA motif in close proximity to a U-rich region located between positions 2422 and 2541 of the 3' untranslated region of SOCS3 is identified. One factor that could target this region is the zinc finger protein tristetraprolin (TTP), which is shown to be capable of destabilizing SOCS3 mRNA via this region. However, data from TTP-deficient cells suggest that TTP does not play an irreplaceable role in the regulation of SOCS3 mRNA stability by TNF-alpha. In summary, these data indicate that TNF-alpha regulates SOCS3 expression on the level of mRNA stability via activation of the MKK6/p38(MAPK) cascade and that the activation of MK2, a downstream target of p38(MAPK), is important for the regulation of SOCS3 expression.  相似文献   

16.
Listeria monocytogenes (LM), a facultative intracellular Gram-positive bacterium, often causes lethal infection of the host. In this study we investigated the molecular mechanism underlying LM eradication in the early phase of infection. Upon infection with LM, both IL-12 and IL-18 were produced, and then they synergistically induced IFN-gamma production, leading to normal LM clearance in the host. IFN-gamma knockout (KO) mice were highly susceptible to LM infection. IL-12/IL-18 double knockout mice were also highly susceptible. Their susceptibility was less than that of IFN-gamma KO mice, but more than that of single IL-12 or IL-18 KO mice. Mice deficient in myeloid differentiation factor 88 (MyD88), an essential adaptor molecule used by signal transduction pathways of all members of the Toll-like receptor (TLR) family, showed an inability to produce IL-12 and IFN-gamma following LM infection and were most susceptible to LM. Furthermore, MyD88-deficient, but not IFN-gamma-deficient, Kupffer cells could not produce TNF-alpha in response to LM in vitro, indicating the importance of MyD88-dependent TNF-alpha production for host defense. As TLR2 KO, but not TLR4 KO, mice showed partial impairment in their capacity to produce IL-12, IFN-gamma, and TNF-alpha, TLR2 activation partly contributed to the induction of IL-12-mediated IFN-gamma production. These results indicated a critical role for TLRs/MyD88-dependent IL-12/TNF-alpha production and for IL-12- and IL-18-mediated IFN-gamma production in early phase clearance of LM.  相似文献   

17.
Cytokines have been implicated in the progression of acetaminophen (APAP)-induced acute liver injury. Suppressors of cytokine signaling (SOCS) proteins are negative regulators of cytokine signaling by inhibiting the JAK-STAT pathway, but their role in APAP hepatotoxicity is unknown. In this present study, we attempted to explore the role of SOCS3 in T cells in APAP-induced liver injury. Mice with a cell-specific overexpression of SOCS3 in T cells (SOCS3Tg, in which Tg is transgenic) exhibited exaggerated hepatic injury after APAP challenge, as evidenced by increased serum alanine aminotransferase levels, augmented hepatic necrosis, and decreased survival relative to the wild-type mice. Adaptive transfer of SOCS3Tg-CD4(+) T cells into T and B cell-deficient RAG-2(-/-) mice resulted in an exacerbated liver injury relative to the control. In SOCS3Tg mice, hepatocyte apoptosis was enhanced with decreased expression of antiapoptotic protein bcl-2, whereas hepatocyte proliferation was reduced with altered cell cycle-regulatory proteins. Levels of IFN-gamma and TNF-alpha in the circulation were augmented in SOCS3Tg mice relative to the control. Studies using neutralizing Abs indicated that elevated IFN-gamma and TNF-alpha were responsible for the exacerbated hepatotoxicity in SOCS3Tg mice. Activation of STAT1 that is harmful in liver injury was augmented in SOCS3Tg hepatocytes. Alternatively, hepatoprotective STAT3 activation was decreased in SOCS3Tg hepatocytes, an event that was associated with augmented SOCS3 expression in the hepatocytes. Altogether, these results suggest that forced expression of SOCS3 in T cells is deleterious in APAP hepatotoxicity by increasing STAT1 activation while decreasing STAT3 activation in hepatocytes, possibly through elevated IFN-gamma and TNF-alpha.  相似文献   

18.
Interleukin-6 (IL-6) exerts pro- as well as anti-inflammatory activities in response to infection, injury, or other stimuli that affect the homeostasis of the organism. IL-6-induced expression of acute-phase protein genes in the liver is tightly regulated through both IL-6-induced feedback inhibitors and the activity of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-1beta. In previous studies mechanisms for how IL-1beta counteracts IL-6-dependent acute-phase protein gene induction have been proposed. Herein we analyzed IL-1beta-mediated regulation of IL-6-induced expression of the feedback inhibitor SOCS3. In hepatocytes IL-1beta alone does not induce SOCS3 expression, but it counteracts SOCS3-promoter activation in long term studies. Surprisingly, short term stimulation revealed IL-1beta to be a potent enhancer of SOCS3 expression in concert with IL-6. This activity of IL-1beta does not depend on IL-1beta-dependent STAT1-serine phosphorylation but on NF-kappaB-dependent gene induction. Such a regulatory network allows IL-1beta to counteract IL-6-dependent expression of acute-phase protein genes without inhibiting IL-6-induced SOCS3 expression and provides a reasonable mechanism for the IL-1beta-dependent inhibition of acute-phase gene induction, because reduced SOCS3 expression would lead to enhanced IL-6 activity.  相似文献   

19.
20.
Recently, it has been demonstrated that TNF-alpha and LPS induce the expression of suppressor of cytokine signaling 3 (SOCS3) and inhibit IL-6-induced STAT3 activation in macrophages. Inhibitor studies suggested that both induction of SOCS3 and inhibition of IL-6-induced STAT3 activation depend on the activation of p38 mitogen-activated protein kinase. Since recruitment of the tyrosine phosphatase Src homology protein tyrosine phosphatase 2 (SHP2) to the signal-transducing receptor subunit gp130 attenuates IL-6-mediated STAT-activation, we were interested in whether TNF-alpha also induces the association of SHP2 to the gp130 receptor subunit. In this study we demonstrate that stimulation of macrophages and fibroblast cell lines with TNF-alpha causes the recruitment of SHP2 to the gp130 signal-transducing subunit and leads to tyrosine phosphorylation of SHP2 and gp130. In this context the cytoplasmic SHP2/SOCS3 recruitment site of gp130 tyrosine 759 is shown to be important for the inhibitory effects of TNF-alpha, since mutation of this residue completely restores IL-6-stimulated activation of STAT3 and, consequently, of a STAT3-dependent promoter. In this respect murine fibroblasts lacking exon 3 of SHP2 are not sensitive to TNF-alpha, indicating that functional SHP2 and its recruitment to gp130 are key events in inhibition of IL-6-dependent STAT activation by TNF-alpha. Furthermore, activation of p38 mitogen-activated protein kinase is shown to be essential for the inhibitory effect of TNF-alpha on IL-6 signaling and TNF-alpha-dependent recruitment of SHP2 to gp130.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号