首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytopharyngeal basket of Pseudomicrothorax dubius , through which filamentous blue-green algae are ingested, consists of 22 (± 3) nemadesmata and nemadesmal lamellae, in the form of a tube. A cytostome, delimited by the cell membrane and surrounded by 22 (± 3) major and minor cortical corrugations, covers the end of the basket where the latter is attached to the cell cortex. Each nemadesm, at its greatest diameter, consists of about 200 microtubules which are joined together by sheet-like cross-bridges. The cross-bridges appear to be responsible for the high structural resilience of the nemadesmata. Each nemadesmal lamella is a ribbon of 20–30 microtubules, with two arm-like structures associated with one side of each microtubule. The arms are partially embedded in a fine filamentous layer. Except for a perforated zone, the wall of the basket is completely closed due to the presence of a filamentous sheath which extends between adjacent nemadesmata. Absence of the sheath allows movement of vesicles between the cytoplasm and the lumen of the basket in the perforated zone. The sheath is capable of elastic stretching during food uptake.  相似文献   

2.
The ciliate Pseudomicrothorax dubius feeds on filamentous blue-green algae, ingesting them at rates of up to 15 μm per second, by means of a cytopharyngeal basket. The wall of the basket is composed of 22 ± 3 nemadesmata, each of which is a bundle of about 200 microtubules which are cross-linked in a hexagonal pattern. The lumen of the non-feeding basket is filled with cytoplasma into which project the nemadesmal lamellae. Each nemadesmal lamella is attached to a nemadesm and consists of a single row of 20–30 microtubules. Each microtubule of the nemadesmal lamella bears a row of pairs of arm-like projections which are embedded in a filamentous matrix. During feeding, the lumen of the basket is occupied by the developing food vacuole. The nemadesmal lamellae are observed between the vacuole membrane and the nemadesmata, and the arms of the nemadesmal lamellae microtubules are oriented toward the membrane of the food vacuole or of small vesicles. A mechanism for the generation of force for phagocytosis by means of the microtubule arms is proposed.
During food uptake the membrane of the food vacuole increases rapidly at rates up to 270 μm2 per second. Vacuole growth results from the fusion of membrane-bound vesicles. During phagocytosis a fast streaming of these vesicles can be observed in the cytoplasm surrounding the basket. The direction of streaming is opposite to that of ingestion of the algal filament. The vesicles enter the lumen of the basket at its anterior end, in a zone where the wall of the basket is perforated.  相似文献   

3.
The cytopharyngeal basket of Pseudomicrothorax dubius is used to ingest filamentous blue-green algae. The basket has three main components: a sheath of microfilaments, bundles of microtubules (the nemadesmata), and ribbons of microtubules. The ribbons of microtubules (nemadesmal lamellae) are adpressed to the food vacuole during ingestion. Cytochemical techniques show that both the lamellae and the microfilamentous sheath possess ATPase activity, but the reaction product appears under different conditions in the two cases. The presence of ATPase activity within the microtubular lattices of the feeding organelle suggests the capacity for active motility. Consequently the basket seems to have two motile systems, one may be used to constrict and dilate the cytopharynx while the other is used in the inward propulsion of the forming food vacuole.  相似文献   

4.
Summary Fusiform cambial cells of the ash (Fraxinus excelsior L.), which are strongly elongated and vacuolated, contain a phragmosome which traverses the whole length of the cells during preprophase and karyokinesis and which remains present during cytokinesis until it is integrated in cell plate with adjacent cytoplasm.The phragmosome consists of a thin perforated cytoplasmic layer located in the plane of the future cell plate. Otherwise oriented transvacuolar cytoplasmic layers or strands are not present in these cells.The phragmosome contains cytoskeletal elements, namely microtubules and also microfilament bundles both of which are oriented mainly in longitudinal direction.The phragmosomal microtubules are a new category of microtubules associated with cell division; presumably they guide the centrifugally growing cell plate to the parental cell wall site previously marked by the preprophase band of microtubules.  相似文献   

5.
SYNOPSIS. Alveolar membranes and an epiplasm exist under the cell membrane of the noncontractile heterotrich ciliate Climacostomum virens. Postciliary microtubular ribbons join at the right of each somatic kinety to form a Km fiber. Two transverse microtubular fibers occur per kinetosomal pair. A myonemal network interconnects the kinetosomal bases intrakinetally and interkinetally. Ultrastructural comparisons are made between the contractile and noncontractile heterotrichs.
The buccal cortex consists of an adoral zone of membranelles, a peristomal field, a buccal tube, the apical membranelles, and a haplokinety. The kineties of the peristomal field and buccal tube are rows of paired kinetosomes, with a postciliary ribbon of microtubules arising from the posterior kinetosome of each pair, and a transverse ribbon and an oblique ribbon from the anterior kinetosome. No Km fibers exist in this region. The haplokinety is a collar of paired kinetosomes surrounding the cytostome; a postciliary microtubular ribbon descends from each kinetosomal pair into the cytostomal region. Ultrastructural details of the buccal cortex of C. virens and other heterotrichs are compared. The nemadesmata which lie under the membranelles are implicated in the body bending of C. virens.
Algae endosymbiotic in the cytoplasm of C. virens are described.  相似文献   

6.
Mary L. Parker 《Planta》1979,145(5):471-477
When a flowering stalk of Echinochloa colonum is held horizontally, growth is initiated in the lower side of each leaf sheath base, restoring the inflorescence to an upright position. Changes in the gravity vector are perceived by specialised statolithcontaining tissue which is associated with each of the symmetrically-arranged vascular bundles within the leaf sheath bases. The morphological and ultrastructural features of these gravity-sensitive regions have been examined by light and electron microscopy. Each statocyte cell contains a large central vacuole with a thin lining of cytoplasm. Up to 50 spherical starch statoliths lie along the lowermost side of the cells and these sediment readily following geotropic stimulation. Statoliths are found in contact with the plasmalemma, or may be prevented from touching it by bands of microtubules. Dictyosomes and mitochondria are numerous, but endoplasmic reticulum is sparse. The nuclei tend to remain at the original apex of each cell. Statocytes of the leaf sheath base are compared and contrasted with those of the root tip.Abbreviations GMA glycol methacrylate - PAS periodic acid-Schiff's reagent - ER endoplasmic reticulum  相似文献   

7.
The sequential changes in the three-dimensional organization of the filamentous components of human platelets following surface activation were investigated in whole-mount preparations. Examination of intact and Triton-extracted platelets by high voltage electron microscopy provides morphological evidence of increased polymerization of actin into the filamentous form and an increased organization of the cytoskeletal elements after activation. The structure of resting platelets consists of the circumferential band of microtubules and a small number of microfilaments randomly arranged throughout a dense cytoplasmic matrix. Increased spreading is accompanied by cytoskeletal reorganization resulting in the development of distinct ultrastructural zones including the peripheral web, the outer filamentous zone, the "trabecular-like" inner filamentous zone, and the granulomere . These zones are present only in well-spread platelets during the late stages of surface activation and are retained following Triton extraction. Extraction of the less stable cytoplasmic components provides additional information about the underlying structure and filament interactions within each zone.  相似文献   

8.
ABSTRACT. The cell surface of the synhymeniid ciliate, Zosterodasys agamalievi , consists of shallow kinetal grooves separated by low cortical ridges. Numerous electron-opaque bodies are located in the cortical ridges, inside the kinetal grooves, and are distributed in parallel rows between adjacent kineties. Well-developed alveoli are present beneath the cell surface membrane. Zosterodasys agamalievi has a single micronucleus and a homomerous macronucleus. The infraciliature of the somatic monokinetid consists of an anteriorly-directed kinetodesmal fiber, a well-developed divergent postciliary microtubular ribbon, radially-oriented transverse microtubules, and a short striated rootlet, which extends anteriorly from the base of the kinetosome into the cell. Zosterodasys agamalievi has a perioral band of paired cilia, the synhymenium, that winds obliquely across the ventral surface of the body, just posterior to the cytostome. The infraciliature of the anterior kinetosome of the synhymenium consists of two postciliary microtubules; a well-developed, divergent post-ciliary ribbon of microtubules and a short kinetodesmal fiber are associated with the posterior kinetosome. The cytopharynx is supported by 14-16 nematodesmata which are capped distally by a capitulum. The cytopharynx is bound proximally by a fibrous sheath and is lined by radially-arranged microtubular ribbons. No obvious oral ciliature is present.  相似文献   

9.
Excretory and circulatory systems in Prostomatella arenicola are examined at the ultrastructural level. Interdigitating cells, which rest on a thin fibrillar basal lamina, line the lumina of the lateral vessels. A layer of muscle cells and an underlying sheath of fibrillar extracellular material surround each vessel.The excretory system consists of one pair of laterally situated branched protonephridia. Each protonephridium is composed of several terminal cells, an efferent duct and a nephridiopore. The terminal parts of the protonephridia are not restricted to the vicinity of the circulatory system; they can also be found dorsally or laterally to the nerve cords between muscle cells. The presumed filtration area arises as a hollow cylinder from the terminal cell. This cylinder is perforated by numerous clefts which are never bridged by a filter diaphragm. Instead, each terminal cell cylinder is surrounded by an extracellular matrix. The terminal cells neither extend into the lumen of the lateral vessel nor contact the vessel lining cells.Phylogenetic implications of the results are discussed.  相似文献   

10.
The structure and innervation of the sensory setae which are present in large numbers on the penis of Balanus balanoides (L.) have been established by scanning and transmission electron microscopy. Each seta contains a small number of sensory dendrites surrounded by an extracellular supporting tube which is presumed to be secreted by the enclosing sheath cell. The dendrites, which distally extend beyond both the sheath cell and supporting tube, terminate at the tip of the seta within a pore-like invagination of the cuticle and thus are in direct contact with the environment. Proximally bundles of dendrites pass into the penis tissue where they are surrounded by several sheath cells. The supporting tube terminates at a point within the body of the penis where a series of intracellular rods arise. The ciliary character of the dendrites is evident in this region, the microtubules being organized into the (9 × 2) +2 pattern. It is deduced that the sensilla are chemosensory; their structure is compared with that of other crustacean sensilla which are presumed to be chemosensory.  相似文献   

11.
Summary Cerebella of 3- to 6-week-old chickens were cryofixed in a nitrogen-cooled propane jet, deep-etched and rotary-shadowed. The use of a brief perfusion of 0.32 M sucrose improved the quality of the cryofixation and allowed the study of the deeper layers of the cerebellar cortex. It is reported that the cytoskeleton of the Purkinje cells (PC) shows distinct domains and composition of filamentous structures in the different regions of the cell cytoplasm, such as the perikaryon, the cytoplasm of dendrites and the axoplasm. The perikaryon is occupied by a meshwork of fine filaments, 4–7 nm in diameter, that extends from the nuclear outer membrane to the cell membrane. In this zone the cell organelles (e.g., endoplasmic reticulum, mitochondria) adopt a circular arrangement around the nucleus. All structures are anchored by microfilaments to the cytoplasmic network. The dendrites show a dense cytoplasmic network including bundles of microtubules, neurofilaments and microfilaments. Numerous aggregated globular components are attached to this cytoskeleton. The cytoskeleton of the dendritic spines shows axially oriented 10-nm bundles of filaments, which are interconnected and anchored also to the cell membrane and the components of the agranular endoplasmic reticulum by cross-linkers. As described in peripheral nerves, the axoplasm of axons in the central nervous system exhibits predominantly neurofilaments and microtubules aligned along the axis of the neuntes in a three-dimensional arrangement and interconnected by cross-linker filaments and filamentous structures.  相似文献   

12.
Fine structure studies show that (1) the terminal cell is an elongated thin-walled and fenestrated basket with a multiciliary flame. Many short curved microvilli are confined to the cell lumen, while longer straight microvilli project from the cell's apical end into the proximal part of the protonephri-dial capillary, forming a sheath around the flame. The filtration area consists of slits between narrow cytoplasmic bars and is entirely confined to the terminal cell, which consequently is defined as a flame bulb, not closely similar to those of other phyla. (2) The protonephridial capillary is short and narrow, with few scattered cilia and luminal microvilli. (3) The coiled tubule is thick-walled, with several ciliated cells very rich in glycogen. The luminal border shows specializations probably concerned with modifying the ultrafiltrate.  相似文献   

13.
The infective third-stage juvenile of Trichostrongylus colubriformis is surrounded by its own cuticle as well as the incompletely moulted cuticle of the second-stage juvenile, which is referred to as the sheath. The sheath comprises an outer epicuticle, an amorphous cortical zone, a fibrous basal zone and an inner electron-dense layer. The basal zone of the sheath consists of three layers of fibres; the fibres are parallel within each layer, but the fibre direction of the middle layer is at an angle to that of the inner and outer layers. The cuticle comprises a complex outer epicuticle, an amorphous cortical zone and a striated basal zone. The lateral alae of the cuticle and the sheath are aligned and overlie the lateral hypodermal cords. The lateral alae of the sheath consist of two wing-like expansions of the cortical zone with associated specializations of the inner electron-dense layer which form a groove. The cuticular lateral alae consist of two tube-like expansions of the cortical zone. The lateral alar complex of the cuticle and the sheath may maximise locomotory efficiency and prevent rotation of the juvenile within the sheath.  相似文献   

14.
The shape and ultrastructure of sensillum t1 on the foretarsus of the proturan, Acerentomon majus Berlese have been described by means of scanning and transmission electron microscopy. Sensillum t1 is a club-shaped structure, innervated by 3 sensory cells. Each cell is bipolar, with a single dendrite whose ciliary region has a 9-doublet structure. The terminal parts of 2 of the 3 dentrites, filled with many single microtubules, penetrate the cuticular hair, and in the apical swollen region of the sensillum divide into several dendritic branches. The third dendrite terminates as a tubular body at the base of the peg. A sheath-producing cell, a trichogen cell, and one tormogen cell envelop the dendrites. The latter cell has abundant smooth endoplasmic reticulum and produces a very peculiar secretion that is discharged in the space between the cuticular sheath around the dendrites and the cuticle of the hair. A palisade of tubules, 14nm high, is present beneath the cuticle of the apical part of the sensillum; at this level, the cuticle is perforated by numerous pores through which passes a dense material, forming a continuous layer over the cuticle. An olfactory function of sensillum t1 has been proposed.  相似文献   

15.
The organization of microtubules within the surface caps of Drosophila embryos is described for the mitotic cycles of the syncytial blastoderm stage (particularly cycle 10), and for the subsequent cellularization process. Tubulin was labelled with the well characterized monoclonal antibody YL 1/2 (Kilmartin et al., J cell biol 93 (1982) 576). Each surface cap was found to contain an array of microtubules running around the nucleus. The microtubules originated at prominent centrosomes located close to the apical surface of each cap nucleus. During mitosis the spindle microtubules stained strongly for tubulin. A novel finding was that the spindle microtubules of the interzone region appeared to reduce their connections with the centrosomes at the end of anaphase. The spindle remnant remained in position during telophase but then became smaller in size, disappearing by interphase. At this phase of the cell cycle duplication of the aster centrosomes occurred. The cellular blastoderm stage was marked by a change in the main axis of microtubule orientation. The centrosomes of each cap separated somewhat and formed initiation centres for the development of a well developed basket of microtubules around each nucleus, but now perpendicular to the surface. The microtubule baskets were seen to extend in parallel with nuclear elongation, but not in concert with growth of the cell membranes, which extended some way beneath the bases of the nuclei.  相似文献   

16.
In frayed axonemes of cilia isolated from Tetrahymena pyriformis, observed in negative stain, the central apparatus remains intact, stabilized in part by the sheath projections that encircle the two singlet central microtubules. The projections terminate ca. 1.5 +/- 0.5 micron before the microtubules themselves end. The microtubules are capped together at their tips by a distinct structure, the central pair cap. The cap, ca. 50 nm across and 90 nm long, consists of a stack of two disks and a ball, similar in shape to a finial. The cap is the only part of the axoneme that extends to the distalmost point of the ciliary membrane and, therefore, it may be of significance in length determination or in shaping the ciliary tip.  相似文献   

17.
The primary phloem in the shoot apex of the mangrove Rhizophora mangle L. is largely confined to the comparatively condensed area between the first three leaf pairs. The main extension zone, surrounded by the stipular sheath of the third leaf pair, contains vascular bundles arranged in a procambial ring and characterized by a well-developed primary phloem and a less advanced xylem. The phloem consists of a great number of sieve elements, an equal number of associated companion cells, and a few phloem-parenchyma cells. The differentiation of the sieve-element protoplast (with e.g., chromatolytic nuclear degeneration, loss of the vacuole and most organelles) proceeds largely according to a well-known pattern. Their P-type plastids, however, form their protein crystals rather late and therefore cannot be used as an early cell marker. Lateral sieve-element walls are distinct from other wall parts and walls of other cells by their heavy nacreous thickenings, the formation of which is shown to be strictly correlated with the occurrence and orderly arrangement of cortical microtubules.  相似文献   

18.
Cell division and semicell expansion in the filamentous desmid Bambusina brebissonii Kütz. were investigated using transmission and scanning electron microscopy. Interphase cells are typical of desmids, containing a full complement of organelles and a cell wall penetrated by complex pores, but the cells lack a well-defined median constriction. Cell division involves an open spindle and the centripetal growth of a primary septum formed by the fusion of small, dark-staining vesicles probably derived from dictyosomes. Telophase nuclei are separated by a system of interzonal microtubules and numerous large, lighter-staining vesicles also derived from the dictyosomes. Following cell division, an elaborate replicate cross wall is formed which consists of both primary and secondary wall layers. During semicell expansion, a portion of the primary wall splits apart as the new semicells evaginate and expand to their full size. The primary wall stops splitting at a thick ring of secondary wall material leaving the cells united by the remaining common layer of primary wall. When semicell expansion is completed, the primary wall is not shed from the lateral walls of the new semicells, and pores through both primary and secondary wall layers begin to produce sheath material. However, pores in the end walls of cells do not function unless the filament is broken. The intact primary wall between cells and the absence of sheath production between cells comprise the mechanism serving to hold the cells of Bambusina brebissonii together in long filaments.  相似文献   

19.
Summary Ultrastructural study of the buccal tentacles of Holothuria forskali revealed that each tentacle bears numerous apical papillae. Each papilla consists of several differentiated sensory buds.The epidermis of the buds is composed of three cell types, i.e. mucus cells, ciliated cells, and glandular vesicular cells (GV cells). The GV cells have apical microvilli; they contain bundles of cross striated fibrillae associated with microtubules. Ciliated cells have a short non-motile cilium. Bud epidermal cells intimately contact an epineural nervous plate which is located slightly above the basement membrane of the epidermis. The epineural plate of each bud connects with the hyponeural nerve plexus of the tentacle. This nerve plexus consists of an axonic meshwork surrounded in places by sheath cells. The buccal tentacles have well-developed mesothelial muscles. Direct innervation of these muscles by the hyponeural nerve plexus was not seen.It is suggested that the buccal tentacles of H. forskali are sensory organs. They would recognize the organically richest areas of the sediment surface through the chemosensitive abilities of their apical buds. Tentacles presumably trap particles by wedging them between their buds and papillae.  相似文献   

20.
The mature sperm of A. perniciosus are organized into bundles, about 350 μm long by 9–10 μm wide. Each bundle contains 32 sperm enclosed by a common sheath. The sperm contains an elongated ‘central core’, representing nuclear material, surrounded by a spiral microtubular sheath and cytoplasm. The electron-dense nuclear material is localized in the more pointed half of the sperm. The spiral microtubular sheath is composed of 30— 100 microtubules (depending on the cross-sectional level), situated parallel to the longitudinal axis of the sperm. On the basis of this ultrastructural organization, the motility of the sperm and sperm bundle as a whole is discussed. The sperm of A. perniciosus provide strong evidence that the microtubules arranged asymmetrically represent the elements directly involved in sperm motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号