首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycine is converted to carbon dioxide and an intermediate attached to a lipoic acid group on H-protein in the P-protein-catalyzed partial reaction of the glycine cleavage reaction [K. Fujiwara and Y. Motokawa (1983) J. Biol. Chem. 258, 8156-8162]. The results presented in this paper indicate that the decarboxylation is not accompanied by the removal of a C-2 hydrogen atom of glycine and instead both C-2 hydrogens are transferred with the alpha carbon atom to the intermediate formed during the decarboxylation of glycine. The purified chicken liver cytosolic and mitochondrial serine hydroxymethyltransferase preparations could not catalyze the decarboxylation of glycine in the presence of either lipoic acid or H-protein. The decarboxylation activity of the serine hydroxymethyltransferase preparation purified from bovine liver by the method similar to that of L. R. Zieske and L. Davis [(1983) J. Biol. Chem. 258, 10355-10359] was completely inhibited by the antibody to P-protein, while the antibody had no effect on the activity of the phenylserine cleavage. Conversely, D-serine inhibited the activity of phenylserine cleavage but the activity of the decarboxylation of glycine was not affected by D-serine. Finally, the two activities were separated by the chromatography on hydroxylapatite. The results clearly demonstrate that serine hydroxymethyltransferase per se cannot catalyze the decarboxylation of glycine.  相似文献   

2.
Pyruvate, alpha-ketoglutarate, and branched-chain alpha-keto acids which were transaminated products of valine, leucine, and isoleucine inhibited glycine decarboxylation by rat liver mitochondria. However, glycine synthesis (the reverse reaction of glycine decarboxylation) was stimulated by those alpha-keto acids with the concomitant decarboxylation of alpha-keto acid added in the absence of NADH. Both the decarboxylation and the synthesis of glycine by mitochondrial extract were affected similarly by alpha-ketoglutarate and branched-chain alpha-keto acids in the absence of pyridine nucleotide, but not by pyruvate. This failure of pyruvate to have an effect was due to the lack of pyruvate oxidation activity in the mitochondrial extract employed. It indicated that those alpha-keto acids exerted their effects by providing reducing equivalents to the glycine cleavage system, possibly through lipoamide dehydrogenase, a component shared by the glycine cleavage system and alpha-keto acid dehydrogenase complexes. On the decarboxylation of pyruvate, alpha-ketoglutarate, and branched-chain alpha-keto acids in intact mitochondria, those alpha-keto acids inhibited one another. In similar experiments with mitochondrial extract, decarboxylations of alpha-ketoglutarate and branched-chain alpha-keto acid were inhibited by branched-chain alpha-keto acid and alpha-ketoglutarate, respectively, but not by pyruvate. NADH was unlikely to account for the inhibition. We suggest that the lipoamide dehydrogenase component is an indistinguishable constituent among alpha-keto acid dehydrogenase complexes and the glycine cleavage system in mitochondria in nature, and that lipoamide dehydrogenase-mediated transfer of reducing equivalents might regulate alpha-keto acid oxidation as well as glycine oxidation.  相似文献   

3.
Glucagon stimulates 14CO2 production from [1-14C] glycine by isolated rat hepatocytes. Maximal stimulation (70%) of decarboxylation of glycine by hepatocytes was achieved when the concentration of glucagon in the medium reached 10 nM; half-maximal stimulation occurred at a concentration of about 2 nM. A lag period of 10 min was observed before the stimulation could be measured. Inclusion of beta-hydroxybutyrate (10 mM) or acetoacetate (10 mM) did not affect the magnitude of stimulation suggesting that the effects of glucagon were independent of mitochondrial redox state. Glucagon did not affect either the concentration or specific activity of intracellular glycine, thus excluding the possibilities that altered concentration or specific activity of intracellular glycine contributes to the observed stimulation. The stimulation of decarboxylation of glycine by glucagon was further studied by monitoring 14CO2 production from [1-14C]glycine by mitochondria isolated from rats previously injected with glucagon. Glycine decarboxylation was significantly stimulated in the mitochondria isolated from the glucagon-injected rats. We suggest that glucagon is a major regulator of hepatic glycine metabolism through the glycine cleavage enzyme system and may be responsible for the increased hepatic glycine removal observed in animals fed high-protein diets.  相似文献   

4.
The catabolism of glycine in the isolated perfused rat liver was investigated by measuring the production of 14CO2 from [1-14C]- and [2-14C]glycine. Production of 14CO2 from [1-14C]glycine was maximal as the perfusate glycine concentration approached 10 mM and exhibited a maximal activity of 125 nmol of 14CO2 X g-1 X min-1 and an apparent Km of approximately 2 mM. Production of 14CO2 from [2-14C]glycine was much lower, approaching a maximal activity of approximately 40 nmol of 14CO2 X g-1 X min-1 at a perfusate glycine concentration of 10 mM, with an apparent Km of approximately 2.5 mM. Washout kinetic experiments with [1-14C]glycine exhibited a single half-time of 14CO2 disappearance, indicating one metabolic pool from which the observed 14CO2 production is derived. These results indicate that the glycine cleavage system is the predominant catabolic fate of glycine in the perfused rat liver and that production of 14CO2 from [1-14C]glycine is an effective monitor of metabolic flux through this system. Metabolic flux through the glycine cleavage system in the perfused rat liver was inhibited by processes which lead to reduction of the mitochondrial NAD(H) redox couple. Infusion of beta-hydroxybutyrate or octanoate inhibited 14CO2 production from [1-14C]glycine by 33 and 50%, respectively. Alternatively, infusion of acetoacetate stimulated glycine decarboxylation slightly and completely reversed the inhibition of 14CO2 production by octanoate. Metabolic conditions which are known to cause a large consumption of mitochondrial NADPH (e.g. ureogenesis from ammonia) stimulated glycine decarboxylation by the perfused rat liver. Infusion of pyruvate and ammonium chloride stimulated production of 14CO2 from [1-14C]glycine more than 2-fold. Lactate plus ammonium chloride was equally as effective in stimulating glycine decarboxylation by the perfused rat liver, while alanine plus ammonium chloride was ineffective in stimulating 14CO2 production.  相似文献   

5.
Reactions of glycine cleavage were assayed in mitochondria isolated from cotyledons of germinating pea seeds. These reactions, which included the exchange of bicarbonate with C-1 of glycine and an NAD-stimulated decarboxylation of glycine, were maximal under aerobic conditions at pH 7·8. The apparent Michaelis-Menten constants for glycine and bicarbonate in the exchange reaction were 1·8 and 12·5 mM respectively. The Km for NAD in the decarboxylation reaction was 47 μM. Maximal enzyme activity was observed when mitochon-drial integrity was maintained. Up to 40% inhibition of the decarboxylation reaction was observed when NADH, NADPH or l-methionine were added to the reaction system. When glycine-[2-14C] was incubated with the isolated mitochondria, labelled CO2 was evolved in nanomolar quantities. It is concluded that glycine decarboxylase may be of importance in supplying C-1 units for the de novo synthesis of methionine in pea mitochondria.  相似文献   

6.
Serine hydroxymethyltransferase and the glycine cleavage system are both present in liver mitochondria and both bind glycine to form a pyridoxal 5'-phosphate carbanionic quinoid species. Lipoic acid has been shown to have the ability to intercept the carbanionic intermediate formed from the binary complex of serine hydroxymethyltransferase and glycine and form an intermediate adduct which is ultimately processed to yield CO2 and a methylamine adduct. Kinetic studies have shown that the lipoic acid-dependent decarboxylation of glycine catalyzed by serine hydroxymethyltransferase proceeds through a sequential mechanism. This lipoic acid-dependent decarboxylation catalyzed by serine hydroxymethyltransferase is similar to the initial reaction of the glycine cleavage system and to the lipoic acid-dependent decarboxylation of glycine by the P-protein alone suggesting that both enzymes could serve in lieu of each other.  相似文献   

7.
Three allelic mutants of Arabidopsis thaliana which lack mitochondrial serine transhydroxymethylase activity due to a recessive nuclear mutation have been characterized. The mutants were shown to be deficient both in glycine decarboxylation and in the conversion of glycine to serine. Glycine accumulated as an end product of photosynthesis in the mutants, largely at the expense of serine, starch, and sucrose formation. The mutants photorespired CO2 at low rates in the light, but this evolution of photorespiratory CO2 was abolished by provision of exogenous NH3. Exogenous NH3 was required by the mutants for continued synthesis of glycine under photorespiratory conditions. These and related results with wild-type Arabidopsis suggested that glycine decarboxylation is the sole site of photorespiratory CO2 release in wild-type plants but that depletion of the amino donors required for glyoxylate amination may lead to CO2 release from direct decarboxylation of glyoxylate. Photosynthetic CO2 fixation was inhibited in the mutants under atmospheric conditions which promote photorespiration but could be partially restored by exogenous NH3. The magnitude of the NH3 stimulation of photosynthesis indicated that the increase was due to the suppression of glyoxylate decarboxylation. The normal growth of the mutants under nonphotorespiratory atmospheric conditions indicates that mitochondrial serine transhydroxymethylase is not required in C3 plants for any function unrelated to photorespiration.  相似文献   

8.
—The activity of the glycine cleavage system (GCS) was determined in homogenates from five specific regions of the rat CNS (telencephalon, midbrain, cerebellum, medulla-pons, and spinal cord). An inverse trend was noted between the glycine content and the specific activity of the GCS in the regions. A 25-fold range in the enzyme activities was found between the telencephalon (highest) and the spinal cord (lowest). The properties of the GCS activity in CNS homogenates agreed with those properties previously described for this system in partially purified preparations of liver and brain mitochondria (Kikuchi , 1973; Bruin et al., 1973). Within the CNS homogenates, the liberation of CO2 from the carboxyl carbon of glycine was quantitatively coupled to the formation of serine. The presence of an endogenous inhibitor(s) within neural tissues was suggested by the non-additivity of the activities when homogenates from the various regions were combined. Moreover, homogenates of CNS tissue inhibited the GCS activity of liver homogenates, and an inverse relationship was found between the level of GCS activity in a given region of the CNS and its ability to inhibit the GCS activity of liver homogenates. This inhibition of liver activity was greatest when liver was incubated with homogenates of spinal cord (86%) and lowest when incubated with homogenates of telencephalon (20%). Because of this endogenous inhibition, the apparent activity of the GCS measured in vitro may not reflect the contribution of this enzyme system in the metabolism of glycine in vivo. Although the significance of this inhibition is not known, a possible role is discussed for the regulation of the levels in glycine and one-carbon pools within the CNS.  相似文献   

9.
The relationship between glycine oxidation and nitrate reduction was studied using tobacco (Nicotiana tabacum L.) leaf disks and reconstituted system of isolated mitochondria and NR (Nitrate reductase). It was found that glycine, either vacuum-infiltrated in to leaf disks or added to the reconstituted system, could increase the rate of nitrate reduction. The stimulating effect of glycine on nitrate reduction was greatly influenced by preillumination treatment of tobacco leaves, and also by the activity of respiratory chain. The rate of glycinedependent O2 consumption by mitochondria was lowered when KNO3 and NR were added to the system. It was also found that the activity of glycine decarboxylase increased with increase in nitrate concentrations in the sandculture medium. It was concluded that oxidative decarboxylation of glycine in mitochondria of leaf cells of C3 plants could provide NADH for nitrate reduction in cytoplasm in the light, and nitrate reduction and glycine oxidation were influenced by each other.  相似文献   

10.
Abstract— Of the amino acids found in the CNS of 10-day-old rats the concentration of glycine alone was significantly higher in the spinal cord than in all other regions. Spinal levels of glycine, cystathionine, isoleucine and lysine from 1- and 10-day-old rats did not differ significantly from adult values, whereas the levels of most other amino acids, including GABA, glutamate, glutamine and taurine, were higher in the young animals than in the adults. Aspartate was the only amino acid found in lower concentration in the spinal cord of young animals than in adult animals. These and other observations support the conclusion that glycine is used as an inhibitory transmitter in rat spinal cord early in postnatal life. There was a general decrease in the activity of serine hydroxymethyltransferase and a slight increase in the activity of glycine:2-oxoglutarate aminotransferase in the CNS during development. The activity of neither enzyme correlated on a regional basis with the glycine content. The high level of hydroxymethyltransferase activity in the cerebellum of 10-day-old rats suggests that the activity of this enzyme reflects cell growth rate.  相似文献   

11.
Summary The glycine cleavage enzyme system is composed of four different proteins tentatively called P-protein, H-protein, T-protein and L-protein, and catalyzes the following reaction reversibly: Glycine + tetrahydrofolate + NAD+ 5, 10-methylene-tetrahydrofolate + NH3 + CO2 + NADH + H Glycine decarboxylase, tentatively called P-protein, is able by itself to catalyze glycine decarboxylation, yielding methylamine as product, but at an extremely low rate. P-Protein alone is also able to catalyze slightly the exchange of carboxyl carbon of glycine with CO2. However, the rates of the P-protein-catalyzed reactions are greatly increased by the co-existence of aminomethyl carrier protein, a lipoic acid-containing enzyme tentatively called H-protein. Several lines of evidence suggest that H-protein brings about a conformational change of P-protein which may be relevant to the expression of the decarboxylase activity of P-protein and that the functional glycine decarboxylase may be an enzyme complex composed of both P-protein and H-protein. H-Protein seems to play a dual role in the glycine decarboxylation; the one as a regulatory protein of P-protein, and the other as an electron-pulling agent and concomitantly as a carrier of the aminomethyl moiety derived from glycine. The idea that H-protein functions as a modulator of P-protein was further supported by the study of a patient with nonketotic hyperglycinemia. The primary lesion in this patient appeared to consist in structural abnormality in H-protein; the H-protein purified from the liver of this patient was apparently devoid of functional lipoic acid. Nevertheless, H-protein from the patient could stimulate the P-protein-catalyzed exchange of the carboxyl carbon of glycine and CO2, although only to a limited extent. The observed activity should be independent of the functioning of lipoic acid and would be a reflection of a conformational change in P-protein brought about by H-protein.P-Protein was inactivated when it was incubated with glycine in the presence of II-protein, and the inactivation was completely prevented when bicarbonate was further added so as to allow the glycine-CO2 exchange to proceed. The inactivation was accompanied by a spectral change of P-protein. The inactivation of P-protein seemed to take place as a side reaction of the glycine decarboxylation and to reflect the formation of a ternary complex of P-protein, H-protein and aminomethyl moiety of glycine through a Schiff base linkage of the H-protein-bound aminomethyl moiety with the pyridoxal phosphate of P-protein.  相似文献   

12.
Isonicotinic acid hydrazide (INH), an inhibitor of the photorespiratory pathway blocking the conversion of glycine to serine and CO2, has been used as a selective agent to obtain INH-resistant tobacco (Nicotiana tabacum) callus cells. Of 22 cell lines that were INH-resistant, none were different from wild-type cells in their ability to take up [3H]INH or to oxidize INH to isonicotinic acid. In 7 of the 22 cell lines, INH resistance was associated with decreased inhibition of NAD-dependent glycine decarboxylation activity in isolated mitochondrial preparations. In the cell line that was most extensively investigated (I 24), this biochemical phenotype (exhibiting a 3-fold higher Ki with INH) was observed in leaf mitochondria of regenerated plants and of plants produced from them by self-fertilization. After crosses between resistant and sensitive plants, the decreased inhibition of glycine decarboxylation was observed among F2 and backcross progeny only in those plants previously identified as INH-resistant by callus growth tests. In contrast, in siblings identified as INH-sensitive, glycine decarboxylation was inhibited by INH at the wild-type level. This demonstration of the transfer of an altered enzyme property from callus to regenerated plants and through seed progeny fulfills an important requirement for the use of somatic cell genetics to produce biochemical mutants of higher plants.  相似文献   

13.
In our preceding work (A. Yokota, Y. Nakano, and S. Kitaoka, 1978, Agric. Biol. Chem. 42, 121-129), extensive decarboxylation of glycolate carboxyl carbon during its metabolism in Euglena gracilis suggested occurrence of a metabolic pathway of glycolate different from that of higher C3 plants. In the present report, we establish the Euglena glycolate pathway from characteristics of the decarboxylation of the carboxyl carbon and from the metabolic fate of hydroxymethyl carbon of glycolate. The ratio of the decarboxylation of the carboxyl carbon of glycolate to the total metabolized carbon increased with increasing metabolic rate in an asymptotic fashion. Thus, the ratio was 20% at the metabolic rate of 0.05 nmol of glycolate/10(6) cells/min, but it was over 60% at the rate of more than 0.35 nmol/10(6) cells/min after 2 min of incubation. Metabolic products were also changed depending on the rate of metabolism of glycolate; glycine was the main product at the low rate of glycolate metabolism and the contribution of glycine was reversed by the increased contribution of evolved CO2 at the high rates. At the metabolic rate of 1.5 nmol of glycolate/10(6) cells/min, the rate of the decarboxylation was 1.0 nmol of CO2/10(6) cells/min, which could not be explained by the extremely low activity of glycine synthase in Euglena. Experiments with [2-14C]glycolate showed that exogenously added formate and methionine caused accumulation of radioactive formate. Based on these results, we have proposed that the glycolate metabolism of E. gracilis consists of glycine and formate pathways and that the relative contribution of both pathways to the glycolate metabolism depends on the metabolic rate of glycolate.  相似文献   

14.
A mutant of Arabidopsis thaliana (L.) Heyn. (a small plant in the crucifer family) that lacks glycine decarboxylase activity owing to a recessive nuclear mutation has been isolated on the basis of a growth requirement for high concentrations of atmospheric CO2. Mitochondria isolated from leaves of the mutant did not exhibit glycine-dependent O2 consumption, did not release 14CO2 from [14C]glycine, and did not catalyse the glycine-bicarbonate exchange reaction that is considered to be the first partial reaction associated with glycine cleavage. Photosynthesis in the mutant was decreased after illumination under atmospheric conditions that promote partitioning of carbon into intermediates of the photorespiratory pathway, but was not impaired under non-photorespiratory conditions. Thus glycine decarboxylase activity is not required for any essential function unrelated to photorespiration. The photosynthetic response of the mutant in photorespiratory conditions is probably caused by an increased rate of glyoxylate oxidation, which results from the sequestering of all readily transferable amino groups in a metabolically inactive glycine pool, and by a depletion of intermediates from the photosynthesis cycle. The rate of release of 14CO2 from exogenously applied [14C]glycollate was 14-fold lower in the mutant than in the wild type, suggesting that glycine decarboxylation is the only significant source of photorespiratory CO2.  相似文献   

15.
beta-N-Oxalylamino-L-alanine (BOAA) is a dicarboxylic diamino acid present in Lathyrus sativus (chickling pea). Excessive oral intake of this legume in remote areas of the world causes humans and animals to develop a type of spastic paraparesis known as lathyrism. BOAA is one of several neuroactive glutamate analogs reported to stimulate excitatory receptors and, in high concentrations, cause neuronal vacuolation and necrosis. The present study investigates the action of BOAA in vitro on CNS high-affinity transport systems for glutamate, gamma-aminobutyric acid (GABA), aspartate, glycine, and choline and in the activity of glutamate decarboxylase (GAD), the rate-limiting enzyme in the decarboxylation of glutamate to GABA. Crude synaptosomal fractions (P2) from rat brain and spinal cord were used for all studies. [3H]Aspartate transport in brain and spinal cord synaptosomes was reduced as a function of BOAA concentration, with reductions to 40 and 30% of control values, respectively, after 15-min preincubation with 1 mM BOAA. Under similar conditions, transport of [3H]glutamate was reduced to 74% (brain) and 60% (spinal cord) of control values. High-affinity transport of [3H]GABA, [3H]glycine, and [3H]choline, and the enzyme activity of GAD, were unaffected by 1 mM BOAA. While these data are consistent with the excitotoxic (convulsant) activity of BOAA, their relationship to the pathogenesis of lathyrism is unknown.  相似文献   

16.
Glycine supports in vivo reduction of nitrate in barley leaves   总被引:1,自引:0,他引:1       下载免费PDF全文
Kumar PA  Nair TV  Abrol YP 《Plant physiology》1988,88(4):1486-1488
Glycine, a photorespiratory intermediate, enhanced the in vivo reduction of nitrate in barley (Hordeum vulgare L.) leaf slices, when included in the assay medium. Isonicotinyl hydrazide, an inhibitor of glycine oxidation, partially reduced NO2 production. The enhancement caused by glycine treatment was reversed by isonicotinyl hydrazide when both were present together in the medium. Similar effects were observed when the excised leaves were preincubated with the metabolite and the inhibitor. Glycine also partially relieved the inhibition of nitrate reduction caused by malonate, an inhibitor of the tricarboxylic acid cycle. The results support the hypothesis that glycine decarboxylation activity is a source of NADH for nitrate reductase activity.  相似文献   

17.
The activities of d -glycerate dehydrogenase, 3-phosphoglycerate dehydrogenase and lactate dehydrogenase have been measured in high-speed supernatant fractions from different regions of the cat CNS. Only d -glycerate dehydrogenase showed any significant regional variation in levels of activity, and this regional distribution correlated well with the regional distribution of glycine. In view of the previous finding that glycine inhibits d -glycerate dehydrogenase of rat cortex in a non-competitive manner suggesting endproduct inhibition (Uhr and Sneddon , 1971) this correlation is considered additional evidence to suggest that d -glycerate may be an important source of glycine in the CNS.  相似文献   

18.
The keto form of oxaloacetate (OAA), a product of phosphoenolpyruvate carboxylase (PEPC) activity, can undergo various nonenzymatic conversions which make conventional methods of assaying the enzyme difficult, because the products may either act as inhibitors or go undetected. In studies with PEPC isolated from leaves of maize, an assay coupled with reduction of OAA to malate was compared with product analysis using high-performance liquid chromatography and an assay based on Pi release. The results show that activity of the enzyme in the assay coupled to malate dehydrogenase is underestimated, to varying extents, depending on magnesium concentration, buffer, and pH. In the assay coupled to malate dehydrogenase, inaccuracies occur due to conversion of the keto form of OAA to the enol form, which is not utilized as a substrate, and due to loss of OAA by decarboxylation to pyruvate. The assay based on Pi formation is considered to give the true rate of catalysis. With this assay the pH optimum is 7.8, compared to 8.3-8.5 for the assay coupled to malate dehydrogenase. The metal enol complex of oxaloacetate (M-OAAenol) is an inhibitor of PEPC and conditions which are favorable for forming this tautomer, high pH with divalent metal ions or high concentrations of Tris buffer at a pH below its pKa value, limit catalysis. Glycine stimulates enzyme activity, and it may have its effect by preventing the formation of the hydrated M-OAAenol complex and maintaining more of the OAA in the keto form. This interpretation is consistent with glycine stimulation of malate synthesis in the assay of PEPC coupled to malate dehydrogenase, with glycine stimulation of the decarboxylation of OAA, and with a reduction in the level of the M-OAAenol complex in the presence of glycine.  相似文献   

19.
Plants form ethanolamine (Etn) moieties by decarboxylating serine or phosphatidylserine (PtdSer), and use them to make phosphatidylethanolamine, phosphatidylcholine, choline, and glycine betaine. Serine decarboxylation is mediated by a serine decarboxylase (SDC) that is unique to plants and has a characteristic N-terminal extension. This extension was shown to have little influence on function of the enzyme in vitro. To explore the importance of SDC and its extension in vivo, native or truncated versions of the Arabidopsis enzyme were expressed in tobacco. Transgene expression increased SDC activity by up to 10-fold and free Etn level up to 6-fold, but did not change levels of serine, choline, phosphocholine, or phosphatidyl bases. The truncated enzyme gave significantly higher Etn levels. These results show that SDC activity exerts substantial control over flux to Etn, and suggest that the enzyme's N-terminus may have a regulatory role. In complementary studies with Arabidopsis, we showed that a mutant with 9-fold elevated mitochondrial PtdSer decarboxylase activity had normal pools of serine, Etn, and Etn metabolites. Taken together, these data indicate that serine decarboxylation is the main source of Etn moieties in plants. The ability to enhance serine --> Etn flux should advance engineering of choline and glycine betaine accumulation.  相似文献   

20.
Oliver DJ 《Plant physiology》1981,68(5):1031-1034
Mechanically isolated soybean leaf cells metabolized added glycolate by two mechanisms, the direct oxidation of glyoxylate and the decarboxylation of glycine. The rate of glyoxylate oxidation was dependent on the cellular glyoxylate concentration and was linear between 0.58 and 2.66 micromoles glyoxylate per milligram chlorophyll. The rate extrapolated to zero at a concentration of zero. The concentration and, therefore, the rate of oxidation of glyoxylate could be decreased by adding glutamate or serine to the cells. These substrates were amino donors for the transamination of glyoxylate to glycine. In the presence of these amino acids more CO2 was released from added glycolate via the glycine decarboxylation reaction and less by the direct oxidation of glyoxylate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号