共查询到20条相似文献,搜索用时 0 毫秒
1.
Hongjie Pan 《Experimental cell research》2010,316(17):2825-2832
Translation of the small G protein RhoA in neurons is regulated by the eukaryotic translation initiation factor eIF4E. Here we show that this translation factor also regulates RhoA expression and activity in breast cancer cells. The introduction of eIF4E into breast tumor cells increased RhoA protein levels, while expression of an eIF4E siRNA reduced RhoA expression. Previous studies indicate that the axon repulsion factor Semaphorin3A (Sema3A) stimulates the eIF4E-dependent translation of RhoA in neurons, and breast tumor cells support autocrine Sema3A signaling. Accordingly, we next examined if autocrine Sema3A signaling drives eIF4E-dependent RhoA translation in breast cancer cells. The incubation of breast tumor cells with recombinant Sema3A rapidly increased eIF4E activity, RhoA protein levels, and RhoA activity. This Sema3A activity was blocked in tumor cells expressing an shRNA-specific for the Sema3A receptor, Neuropilin-1 (NP-1), as well as in cells incubated with an eIF4E inhibitor. Importantly, RhoA protein levels were reduced in Sema3A shRNA-expressing compared to control shRNA-expressing breast tumor cells, demonstrating that autocrine Sema3A increases RhoA expression in breast cancer. Considering that Sema3A suppresses axon extension by stimulating RhoA translation, we next examined if the Sema3A/RhoA axis impacts breast tumor cell migration. The incubation of control breast tumor cells, but not RhoA shRNA-expressing cells, with rSema3A significantly reduced their migration. Collectively, these studies indicate that Sema3A impedes breast tumor cell migration in part by stimulating RhoA. These findings identify common signaling pathways that regulate the navigation of neurons and breast cancer cells, thus suggesting novel targets for suppressing breast tumor cell migration. 相似文献
2.
Arabidopsis thaliana plants with mutations in the genes encoding eukaryotic initiation factor (eIF4E) or isoform of eIF4E (eIF(iso)4E) were tested for susceptibility to Clover yellow vein virus (ClYVV), a member of the genus Potyvirus. ClYVV accumulated in both inoculated and upper uninoculated leaves of mutant plants lacking eIF(iso)4E, but not in mutant plants lacking eIF4E. In contrast, Turnip mosaic virus (TuMV), another member of the genus Potyvirus, multiplied in mutant plants lacking eIF4E but not in mutant plants lacking eIF(iso)4E. These results suggest the selective involvement of members of the eIF4E family in infection by potyviruses. 相似文献
3.
4.
5.
6.
7.
Higher plant chloroplasts import the mRNA coding for the eucaryotic translation initiation factor 4E 总被引:1,自引:0,他引:1
Nicolaï M Duprat A Sormani R Rodriguez C Roncato MA Rolland N Robaglia C 《FEBS letters》2007,581(21):3921-3926
8.
Göke A Göke R Knolle A Trusheim H Schmidt H Wilmen A Carmody R Göke B Chen YH 《Biochemical and biophysical research communications》2002,297(1):78-82
To elucidate the molecular mechanisms of cell death, we have cloned a new gene, designated death-upregulated gene (DUG), from rat insulinoma cells. DUG is constitutively expressed at very low levels in normal cells but is dramatically upregulated in apoptotic cells following serum/glucose starvation or death receptor ligation by Fas ligand. The DUG mRNA is present in two splicing forms: a long form that encodes a protein of 469 amino acids and a short form that gives rise to a polypeptide of 432 amino acids. The predicted DUG protein sequence contains two putative nuclear localization signals and multiple phosphorylation sites for protein kinases and two conserved MA3 domains. Importantly, DUG is homologous to eukaryotic translation initiation factor (eIF) 4G and binds to eIF4A presumably through MA3 domains. Upon transfection, DUG inhibits both intrinsic and extrinsic pathways of apoptosis. Thus, DUG is a novel homologue of eIF4G that regulates apoptosis. 相似文献
9.
The infection of baby hamster kidney (BHK) cells by Sindbis virus gives rise to a drastic inhibition of cellular translation, while under these conditions the synthesis of viral structural proteins directed by the subgenomic 26S mRNA takes place efficiently. Here, the requirement for intact initiation factor eIF4G for the translation of this subgenomic mRNA has been examined. To this end, SV replicons that contain the protease of human immunodeficiency virus type 1 (HIV-1) or the poliovirus 2A(pro) replacing the sequences of SV glycoproteins have been constructed. BHK cells electroporated with the different RNAs synthesize protein C and the corresponding protease at late times. Notably, the proteolysis of eIF4G by both proteases has little effect on the translation of the 26S mRNA. In addition, recombinant viable SVs were engineered that encode HIV-1 PR or poliovirus 2A protease under the control of a duplicated late promoter. Viral protein synthesis at late times of infection by the recombinant viruses is slightly affected in BHK cells that contain proteolysed eIF4G. The translatability of SV genomic 49S mRNA was assayed in BHK cells infected with a recombinant virus that synthesizes luciferase and transfected with a replicon that expresses poliovirus 2Apro. Under conditions where eIF4G has been hydrolysed significantly the translation of genomic SV RNA was deeply inhibited. These findings indicate a different requirement for intact eIF4G in the translation of genomic and subgenomic SV mRNAs. Finally, the translation of the reporter gene that encodes green fluorescent protein, placed under the control of a second duplicate late promoter, is also resistant to the cleavage of eIF4G. In conclusion, despite the presence of a cap structure in the 5' end of the subgenomic SV mRNA, intact eIF4G is not necessary for its translation. 相似文献
10.
Cap-dependent ribosome recruitment to eukaryotic mRNAs during translation initiation is stimulated by the eukaryotic initiation factor (eIF) 4F complex and eIF4B. eIF4F is a heterotrimeric complex composed of three subunits: eIF4E, a 7-methyl guanosine cap binding protein; eIF4A, a DEAD-box RNA helicase; and eIF4G. The interactions of eIF4E, eIF4A, and eIF4B with mRNA have previously been monitored by chemical- and UV-based cross-linking approaches aimed at characterizing the initial protein/mRNA interactions that lead to ribosome recruitment. These studies have led to a model whereby eIF4E interacts with the 7-methyl guanosine cap structure in an ATP-independent manner, followed by an ATP-dependent interaction of eIF4A and eIF4B. Herein, we apply a splint-ligation-mediated approach to generate 4-thiouridine-containing mRNA adjacent to a radiolabel group that we utilize to monitor cap-dependent cross-linking of proteins adjacent to, and downstream from, the cap structure. Using this approach, we demonstrate interactions between eIF4G, eIF4H, and eIF3 subunits with the mRNA during the cap recognition process. 相似文献
11.
The position of mRNA on 40S ribosomal subunits in eukaryotic initiation complexes was determined by UV crosslinking using mRNAs containing uniquely positioned 4-thiouridines. Crosslinking of mRNA positions (+)11 to ribosomal protein (rp) rpS2(S5p) and rpS3(S3p), and (+)9-(+)11 and (+)8-(+)9 to h18 and h34 of 18S rRNA, respectively, indicated that mRNA enters the mRNA-binding channel through the same layers of rRNA and proteins as in prokaryotes. Upstream of the P-site, the proximity of positions (-)3/(-)4 to rpS5(S7p) and h23b, (-)6/(-)7 to rpS14(S11p), and (-)8-(-)11 to the 3'-terminus of 18S rRNA (mRNA/rRNA elements forming the bacterial Shine-Dalgarno duplex) also resembles elements of the bacterial mRNA path. In addition to these striking parallels, differences between mRNA paths included the proximity in eukaryotic initiation complexes of positions (+)7/(+)8 to the central region of h28, (+)4/(+)5 to rpS15(S19p), and (-)6 and (-)7/(-)10 to eukaryote-specific rpS26 and rpS28, respectively. Moreover, we previously determined that eukaryotic initiation factor2alpha (eIF2alpha) contacts position (-)3, and now report that eIF3 interacts with positions (-)8-(-)17, forming an extension of the mRNA-binding channel that likely contributes to unique aspects of eukaryotic initiation. 相似文献
12.
Wen T. Ji Ru C. Lin Hung J. Liu 《Biochemical and biophysical research communications》2009,384(3):301-305
Viral infection usually influences cellular protein synthesis either actively or passively via modification of various translation initiation factors. Here we demonstrated that infection with avian reovirus (ARV) interfered with cellular protein synthesis. This study demonstrated for the first time that ARV influenced the phosphorylation of translation initiation factors including eIF4E and eIF-4G. Interestingly, ARV also induced phosphorylation of eukaryotic translation elongation factor (eEF2) in a time- and dose-dependent manner. Inhibition of mTOR by rapamycin notably increased the level of phosphorylated eEF2 in infected cells. However, rapamycin did not show any negative effects on ARV replication, suggesting that phosphorylation of eEF2 in infected cells did not reduce ARV propagation. These results demonstrated for the first time that ARV promotes phosphorylation of eEF2 which in turn influenced host protein production not simply by modulating the function of translation initiation factors but also by regulating elongation factor eEF2. 相似文献
13.
Okazaki Y Suzuki A Sawada T Ohtake-Yamanaka M Inoue T Hasebe T Yamada R Yamamoto K 《Biochemical and biophysical research communications》2006,341(1):94-100
Antibodies against citrullinated proteins are highly specific for rheumatoid arthritis. We previously reported that functional variants of the gene encoding peptidylarginine deiminase type 4 were closely associated with RA. The purpose of this study was to investigate the citrullinated autoantigens recognized by serum samples from patients with RA. The human chondrocyte cDNA expression library was citrullinated by PADI4 and was immunoscreened with anti-modified citrulline antibodies and sera from patients with rheumatoid arthritis. One immunoreactive cDNA clone containing a 2480-base pair insert was isolated and sequence analysis revealed that the cDNA included a part of the eukaryotic translation initiation factor 4G1. Immunoreactivity against a recombinant citrullinated eIF4G1 fragment was observed with high specificity in 50.0% of RA patients. The levels of antibodies against citrullinated eIF4G1 were correlated with those of anti-CCP antibodies. Citrullinated eIF4G1 was identified as a candidate citrullinated autoantigen in RA patients. Citrullination of eIF4G1 may thus be involved in the pathogenesis of RA. 相似文献
14.
Potyvirus RNA contains at the 5' end a covalently linked virus-encoded protein VPg, which is required for virus infectivity. This role has been attributed to VPg interaction with the eukaryotic translation initiation factor eIF4E, a cap-binding protein. We characterized the dissociation constants for the interaction of the potato virus Y VPg with different plant eIF4Es and its isoforms and mapped the eIF(iso)4E attachment region on VPg. VPg/eIF4E interaction results in the inhibition of cell-free protein synthesis, and we show that it stems from the liberation of the cap moiety from the complex with eIF4E. Since VPg does not attach the cap, it appears that VPg induces changes in the eIF4E structure, diminishing its affinity to the cap. We show here that the initiation complex scaffold protein eIF(iso)4G increases VPg interaction with eIF(iso)4E. These data together suggest similar cap and VPg interactions with eIF4E and characterize VPg as a novel eIF4E-binding protein, which inhibits host protein synthesis at a very early stage of the initiation complex formation through the inhibition of cap attachment to the initiation factor eIF4E. 相似文献
15.
Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases 总被引:7,自引:0,他引:7
Raught B Peiretti F Gingras AC Livingstone M Shahbazian D Mayeur GL Polakiewicz RD Sonenberg N Hershey JW 《The EMBO journal》2004,23(8):1761-1769
The eucaryotic translation initiation factor 4B (eIF4B) stimulates the helicase activity of the DEAD box protein eIF4A to unwind inhibitory secondary structure in the 5' untranslated region of eucaryotic mRNAs. Here, using phosphopeptide mapping and a phosphospecific antiserum, we identify a serum-responsive eIF4B phosphorylation site, Ser422, located in an RNA-binding region required for eIF4A helicase-promoting activity. Ser422 phosphorylation appears to be regulated by the S6Ks: (a) Ser422 phosphorylation is sensitive to pharmacological inhibitors of phosphoinositide-3 kinase and the mammalian target of rapamycin; (b) S6K1/S6K2 specifically phosphorylate Ser422 in vitro; and (c) rapamycin-resistant S6Ks confer rapamycin resistance upon Ser422 phosphorylation in vivo. Substitution of Ser422 with Ala results in a loss of activity in an in vivo translation assay, indicating that phosphorylation of this site plays an important role in eIF4B function. We therefore propose that eIF4B may mediate some of the effects of the S6Ks on translation. 相似文献
16.
Aptamers are short single-stranded DNA or RNA sequences that are selected in vitro based on their high affinity to a target molecule. Here we demonstrate that an RNA aptamer selected against eukaryotic initiation factor 4A (eIF4A) serves as an efficient biosensor. The aptamer, when immobilized to resin, purifies eIF4A from crude cell extracts by affinity pull-down, and 32P-labeled aptamer can detect some 300 ng of eIF4A by dot-blot analysis. Moreover, by use of an aptamer-immobilized sensor chip, we developed a surface plasmon resonance assay to detect eIF4A at the nanogram level within whole cell lysates after optimizing sample preparation, thereby showing a real-time sensor for eIF4A in cell extract solution. 相似文献
17.
Goodfellow IG Roberts LO 《The international journal of biochemistry & cell biology》2008,40(12):2675-2680
Eukaryotic translation initiation factor 4E (eIF4E) is perhaps best known for its function in the initiation of protein synthesis on capped mRNAs in the cytoplasm. However, recent studies have highlighted that eIF4E has many additional functions, which include the nuclear export of specific mRNAs as well as roles in ageing and the translation of some uncapped viral RNAs. This review aims to update the reader on recent developments, including the potential of eIF4E as a therapeutic target. 相似文献
18.
Vincent Leroux Lapointe Matthias Trost Pierre Thibault Catherine Bangeranye Serafin Piñol‐Roma Katherine L B Borden 《The EMBO journal》2009,28(8):1087-1098
The eukaryotic translation initiation factor 4E (eIF4E) controls gene expression through its effects on mRNA export and cap‐dependent translation, both of which contribute to its oncogenic potential. In contrast to its translation function, the mRNA export function of eIF4E is poorly understood. Using an RNP isolation/mass spectrometry approach, we identified candidate cofactors of eIF4E mRNA export including LRPPRC. This protein associates with mRNAs containing the eIF4E‐sensitivity element (4E‐SE), and its overexpression alters the nuclear export of several eIF4E‐sensitive mRNAs. LRPPRC‐mediated alteration of eIF4E's mRNA export function requires the integrity of its eIF4E‐binding site and it coincides with the subcellular re‐distribution of eIF4E. The eIF4E export RNP is distinct in composition from the bulk mRNA export pathway, in that eIF4E‐ and eIF4E‐sensitive mRNAs do not associate with general mRNA export factors such as TAP/NXF1 or REF/Aly. Our data indicate that mRNA export pathways have evolved for specific mRNAs enabling the differential regulation of biochemical pathways by modulating the expression of groups of genes at the level of their export. 相似文献
19.
Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin. 相似文献