首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Scavenger receptor-mediated endocytosis of maleyl-albumin was studied with rat sinusoidal liver cells. Upon maleylation of greater than 28 mol lysine residues per protein, bovine serum albumin became an active ligand. Further modification of up to 37 mol lysine residues per protein resulted in a sharp increase in the ligand activity, reaching a maximum level thereafter. Removal of maleyl moieties from maleyl-albumin (demaleylation) from 53 mol to 14 mol lysine residues per protein did not affect the ligand activity. However, further demaleylation to less than 5 mol lysine residues per protein led to complete loss of the ligand activity. Thus, the covalently incorporated maleyl moieties are needed for the ligand activity. The ligand activity was also generated when two peptides (Frag N and Frag C) from cyanogen bromide-cleaved albumin were maleylated, indicating that the formation of an active ligand would not require a whole albumin molecule. Maleyl Frag C was further separated into three peptides; maleyl Frag C-1 (261 amino acid residues), maleyl Frag C-2 (102 residues) and maleyl Frag C-3 (36 residues). The cellular binding and endocytic degradation of maleyl-albumin or acetylated low density lipoprotein were effectively competed for by maleyl Frag C-1 and maleyl Frag C-2 but not by maleyl Frag C-3. Thus, regional domains might be involved in the ligand recognition by the scavenger receptor.  相似文献   

2.
In endothelial cells cultured under high glucose conditions, methylglyoxal is the major intracellular precursor in the formation of advanced glycation endproducts. We found that endothelial cells incubated with 30 mM d-glucose produced approximately 2-fold higher levels of methylglyoxal but not 3-deoxyglucosone and glyoxal, as compared to 5 mM d-glucose. Under hyperglycaemic conditions, the methylglyoxal-arginine adduct argpyrimidine as detected with a specific antibody, but not N(e)-(carboxymethyl)lysine and N(e)-(carboxyethyl)lysine, was significantly elevated. The glyoxylase I inhibitor HCCG and the PPARgamma ligand troglitazone also increased argpyrimidine levels. Increased levels of argpyrimidine by glucose, HCCG and troglitazone are accompanied by a decrease in proliferation of endothelial cells. A 27 kDa protein was detected as a major argpyrimidine-modified protein. With in-gel digestion and mass spectrometric analysis, we identified this major protein as heat-shock protein 27 (Hsp27). This argpyrimidine modification of Hsp27 may contribute to changes in endothelial cell function associated to diabetes.  相似文献   

3.
Double-stranded RNA (dsRNA) fragments are readily internalized and processed by Drosophila S2 cells, making these cells a widely used tool for the analysis of gene function by gene silencing through RNA interference (RNAi). The underlying mechanisms are insufficiently understood. To identify components of the RNAi pathway in S2 cells, we developed a screen based on rescue from RNAi-induced lethality. We identified Argonaute 2, a core component of the RNAi machinery, and three gene products previously unknown to be involved in RNAi in Drosophila: DEAD-box RNA helicase Belle, 26 S proteasome regulatory subunit 8 (Pros45), and clathrin heavy chain, a component of the endocytic machinery. Blocking endocytosis in S2 cells impaired RNAi, suggesting that dsRNA fragments are internalized by receptor-mediated endocytosis. Indeed, using a candidate gene approach, we identified two Drosophila scavenger receptors, SR-CI and Eater, which together accounted for more than 90% of the dsRNA uptake into S2 cells. When expressed in mammalian cells, SR-CI was sufficient to mediate internalization of dsRNA fragments. Our data provide insight into the mechanism of dsRNA internalization by Drosophila cells. These results have implications for dsRNA delivery into mammalian cells.  相似文献   

4.
Endocytosis of formaldehyde-treated serum albumin (FSA) mediated by the scavenger receptor was studied in rat liver endothelial cells. Suspended cells had about 8000 receptors/cell, whereas cultured cells had about 19,000 receptors/cell. Kd was 10(-8) M in both systems. Cell-surface scavenger receptors were found exclusively in coated pits by electron microscopy, by using ligand labelled with colloidal gold. Cell-surface-bound FSA could be released by decreasing the pH to 6.0; it was therefore possible to assess the rate of internalization of surface-bound ligand. This rate was very high: t1/2 for internalization of ligand prebound at 4 degrees C was 24 s. The endocytic rate constant at 37 degrees C, Ke, measured as described by Wiley & Cunningham [(1982) J. Biol. Chem. 257, 4222-4229], was 2.44 min-1, corresponding to t1/2 = 12 s. Uptake of FSA at 37 degrees C after destruction of one cell-surface pool of receptors by Pronase was decreased to 60%. This finding is compatible with a relatively large intracellular pool of receptors. The intracellular handling of 125I-tyramine-cellobiose-labelled FSA (125I-TC-FSA) was studied by subcellular fractionation in sucrose gradients, Nycodenz gradients or by differential centrifugation. The density distributions of degraded and undegraded 125I-TC-FSA after fractionation of isolated non-parenchymal cells and whole liver were similar, when studied in Nycodenz and sucrose gradients, suggesting that the subcellular distribution of the ligand was not influenced by the huge excess of non-endothelial material in a whole liver homogenate. Fractionation in sucrose gradients showed that the ligand was sequentially associated with organelles banding at 1.14, 1.17 and 1.21 g/ml. At 9-12 min after intravenous injection the ligand was in a degradative compartment, as indicated by the accumulation of acid-soluble radioactivity at 1.21 g/ml. A rapid transfer of ligand to the lysosomes was also indicated by the finding that a substantial proportion of the ligand could be degraded by incubating mitochondrial fractions prepared 12 min after intravenous injection of the ligand. The results indicate that FSA is very rapidly internalized and transferred through an endosomal compartment to the lysosomes. The endosomes are gradually converted into lysosomes between 9 and 12 min after injection of FSA. The rate-limiting step in the intracellular handling of 125I-TC-FSA is the degradation in the lysosomes.  相似文献   

5.
Systemically administered phosphorothioate antisense oligodeoxynucleotides can specifically affect the expression of their target genes, which affords an exciting new strategy for therapeutic intervention. Earlier studies point to a major role of the liver in the disposition of these oligonucleotides. The aim of the present study was to identify the cell type(s) responsible for the liver uptake of phosphorothioate oligodeoxynucleotides and to examine the mechanisms involved. In our study we used ISIS-3082, a phosphorothioate antisense oligodeoxynucleotide specific for murine ICAM-1. Intravenously injected [3H]ISIS-3082 (dose: 1 mg/kg) was cleared from the circulation of rats with a half-life of 23.3+/-3.8 min. At 90 min after injection (>90% of [3H]ISIS-3082 cleared), the liver contained the most radioactivity, whereas the second-highest amount was recovered in the kidneys (40.5+/-1.4% and 17.9+/-1.3% of the dose, respectively). Of the remaining tissues, only spleen and bone marrow actively accumulated [3H]ISIS-3082. By injecting different doses of [3H]ISIS-3082, it was found that uptake by liver, spleen, bone marrow, and kidneys is saturable, which points to a receptor-mediated process. Subcellular fractionation of the liver indicates that ISIS-3082 is internalized and delivered to the lysosomes. Liver uptake occurs mainly (for 56.1+/-3.0%) by endothelial cells, whereas parenchymal and Kupffer cells account for 39.6+/-4.5 and 4.3+/-1.7% of the total liver uptake, respectively. Preinjection of polyinosinic acid substantially reduced uptake by liver and bone marrow, whereas polyadenylic acid was ineffective, which indicates that in these tissues scavenger receptors are involved in uptake. Polyadenylic acid, but not polyinosinic acid, reduced uptake by kidneys, which suggests renal uptake by scavenger receptors different from those in the liver. We conclude that scavenger receptors on rat liver endothelial cells play a predominant role in the plasma clearance of ISIS-3082. As scavenger receptors are also expressed on human endothelial liver cells, our findings are probably highly relevant for the therapeutic application of phosphorothioate oligodeoxynucleotides in humans. If the target gene is not localized in endothelial liver cells, the therapeutic effectiveness might be improved by developing delivery strategies that redirect the oligonucleotides to the actual target cells.  相似文献   

6.
CD36, a membrane protein that facilitates fatty acid uptake, is highly expressed in the intestine on the luminal surface of enterocytes. Cd36 null (Cd36(-/-)) mice exhibit impaired chylomicron secretion but no overall lipid absorption defect. Because chylomicron production is most efficient proximally we examined whether CD36 function is important for proximal lipid absorption. CD36 levels followed a steep decreasing gradient along three equal-length, proximal to distal intestinal segments (S1-S3). Enterocytes isolated from the small intestines of Cd36(-/-) mice, when compared with wild type counterparts, exhibited reduced uptake of fatty acid (50%) and cholesterol (60%) in S1. The high affinity fatty acid uptake component was missing in Cd36(-/-) cells. Fatty acid incorporation into triglyceride and triglyceride secretion were also reduced in Cd36(-/-) S1 enterocytes. In vivo, proximal absorption was monitored using mass spectrometry from oleic acid enrichment of S1 lipids, 90 min (active absorption) and 5 h (steady state) after intragastric olive oil (70% triolein). Oleate enrichment was 50% reduced at 90 min in Cd36(-/-) tissue consistent with defective uptake whereas no differences were measured at 5 h. In Cd36(-/-) S1, mRNA for L-fabp, Dgat1, and apoA-IV was reduced. Protein levels for FATP4, SR-BI, and NPC1L1 were similar, whereas those for apoB48 and apoA-IV were significantly lower. A large increase in NPC1L1 was observed in Cd36(-/-) S2 and S3. The findings support the role of CD36 in proximal absorption of dietary fatty acid and cholesterol for optimal chylomicron formation, whereas CD36-independent mechanisms predominate in distal segments.  相似文献   

7.
Long term incubation of proteins with glucose, named the Maillard reaction (Maillard, L. C. (1912) C. R. Acad. Sci. (Paris) 154, 66-68), gives rise to advanced glycosylation end product (AGE) with fluorescence, color, as well as cross-linked properties. The receptor-mediated endocytosis of AGE-proteins by macrophages was reported (Vlassara, H., Brownlee, M., and Cerami, A. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5588-5592). The present study on the binding of AGE-bovine serum albumin (BSA) to rat peritoneal macrophages and sinusoidal liver cells demonstrated the presence of a saturable, high affinity receptor for AGE-BSA with Kd = 2.4 x 10(-7) M (macrophages) and 2.1 x 10(-7) M (sinusoidal cells). The cellular binding of AGE-BSA and its endocytic uptake by these cells were competitively inhibited by BSA preparations modified with aliphatic aldehydes such as formaldehyde or glycolaldehyde, ligands known to be specific for a scavenger receptor for aldehyde-modified proteins (Horiuchi, S., Murakami, M., Takata, K., and Morino, Y. (1986). J. Biol. Chem. 261, 4962-4966). These ligands also had a profound in vivo effect on the plasma clearance of 125I-AGE-BSA as well as its hepatic uptake. Thus, endocytic uptake of AGE-proteins by macrophages appeared to be mediated by a scavenger receptor for aldehyde-modified proteins. This provides evidence for the biological importance of the scavenger receptor in eliminating senescent macromolecules from the circulation.  相似文献   

8.
Modified forms of LDL, including oxidized low density lipoprotein (OxLDL), contribute to macrophage lipid accumulation in the vessel wall. Despite the pathophysiological importance of uptake pathways for OxLDL, the molecular details of OxLDL endocytosis by macrophages are not well understood. Studies in vitro demonstrate that the class B scavenger receptor CD36 mediates macrophage uptake and degradation of OxLDL. Although the closely related scavenger receptor class B type I (SR-BI) binds OxLDL with high affinity, evidence that SR-BI plays a role in OxLDL metabolism is lacking. In this study, we directly compared OxLDL uptake and degradation by CD36 and SR-BI. Our results indicate that although CD36 and SR-BI internalize OxLDL, SR-BI mediates significantly less OxLDL degradation. Endocytosis of OxLDL by both SR-BI and CD36 is independent of caveolae, microtubules, and actin cytoskeleton. However, OxLDL uptake by CD36, but not SR-BI, is dependent on dynamin. The analysis of chimeric SR-BI/CD36 receptors shows that the CD36 C-terminal cytoplasmic tail is necessary and sufficient for dynamin-dependent OxLDL internalization by class B scavenger receptors. These findings indicate that different mechanisms are involved in OxLDL uptake by SR-BI and CD36, which may segregate these two structurally homologous receptors at the cell surface, leading to differences in intracellular trafficking and degradation.  相似文献   

9.
Recipient monocytes, T cells, and donor endothelial cells (ECs) are recognized as critical components of allograft rejection. We have recently shown that human monocytes infiltrate vascularized allografts before clinical rejection and have thus hypothesized that monocytes, rather than costimulation-poor ECs, initiate an alloimmune response. However, the nature of the interactions between ECs, monocytes, and T cells has been incompletely defined. Specifically, it is not clear whether these cells interact in a hierarchical manner, nor is it apparent what constitutes an interaction. We therefore studied human ECs, monocytes, and T cells in various isolated in vitro combinations to define the salient features of their contact and to determine whether their interactions were sequential in nature. We find that T cells proliferate poorly to allogeneic ECs and autologous monocytes but well to autologous monocytes following allogeneic EC contact. We show that monocytes gain their stimulatory capacity by phagocytizing allogeneic but not autologous EC membranes in a process governed by scavenger receptors. This process facilitates the subsequent presentation of intact donor HLA molecules to T cells (semidirect presentation). Moreover, monocytes are receptive to T cell help only after exposure to ECs and require CD4+ T cells to optimally express costimulatory molecules and foster Ag presentation. Our results indicate that monocytes engage allogeneic ECs through scavenger receptors and are then primed to facilitate T cell activation in a codependent manner. This reciprocal codependence allows for monocytes to serve as a regulated bridge between the allograft and T cells.  相似文献   

10.
Long-chain fatty acids can transfer passively across mammalian cell membranes. However, under physiological conditions of low fatty acid to albumin ratios in the circulation, the major fraction of uptake appears to be mediated by a saturable, protein-facilitated component. A simple diffusion process becomes significant at high molar ratios of fatty acid to albumin as the concentration of free fatty acid in solution is increased. Identification of the mammalian membrane fatty acid transporter(s) has been the focus of active investigation by several research groups. In this review we discuss three candidate proteins: FABPm, FAT/CD36 and FATP which have been cloned and are currently being characterized. Recent evidence arguing for an important role of the fatty acid transport step in general metabolism and linking these proteins to physiologic or metabolic abnormalities is described.  相似文献   

11.
Werder M  Han CH  Wehrli E  Bimmler D  Schulthess G  Hauser H 《Biochemistry》2001,40(38):11643-11650
The serum lipoprotein high-density lipoprotein (HDL), which is a ligand of scavenger receptors such as scavenger receptor class B type I (SR-BI) and cluster determinant 36 (CD36), can act as a donor particle for intestinal lipid uptake into the brush border membrane (BBM). Both cholesterol and phospholipids are taken up by the plasma membrane of BBM vesicles (BBMV) and Caco-2 cells in a facilitated (protein-mediated) process. The protein-mediated transfer of cholesterol from reconstituted HDL to BBMV depends on the lipid composition of the HDL. In the presence of sphingomyelin, the transfer of cholesterol is slowed by a factor of about 3 probably due to complex formation between cholesterol and the sphingolipid. It is shown that the mechanism of lipid transfer from reconstituted HDL to either BBMV or Caco-2 cells as the acceptor is consistent with selective lipid uptake: the lipid donor docks at the membrane-resident scavenger receptors which mediate the transfer of lipids between donor and acceptor. Selective lipid uptake implies that lipid, but no apoprotein is transferred from the donor to the BBM, thus excluding endocytotic processes. The two BBM models used here clearly indicate that fusion of donor particles with the BBM can be ruled out as a major mechanism contributing to intestinal lipid uptake. Here we demonstrate that CD36, another member of the family of scavenger receptors, is present in rabbit and human BBM vesicles. This receptor mediates the uptake of free cholesterol, but not of esterified cholesterol, the uptake of which is mediated exclusively by SR-BI. More than one scavenger receptor appears to be involved in the uptake of free cholesterol with SR-BI contributing about 25% and CD36 about 35%. There is another yet unidentified protein accounting for the remaining 30 to 40%.  相似文献   

12.
Cross-presentation allows the processing of Ags from donor cells into the MHC class I presentation pathway of dendritic cells (DCs). This is important for the generation of cytotoxic T cell immunity and for induction of self tolerance. Apoptotic cells are reported to be efficient targets for cross-presentation, and in vitro studies using human DCs have implicated CD36 in their capture. In support of a role for CD36 in cross-presentation, we show that this molecule is differentially expressed by CD8(+) splenic DCs, which previously have been identified as responsible for cross-presentation in the mouse. Three different cross-presentation models were examined for their dependence on CD36. These included cross-priming to OVA-coated spleen cells and cross-tolerance to OVA transgenically expressed in the pancreatic islet beta cells under constitutive conditions or during beta cell destruction. In these models, CD36 knockout DCs were equivalent to wild-type DCs in their capacity to cross-present either foreign or self Ags, indicating that CD36 is not essential for cross-presentation of cellular Ags in vivo.  相似文献   

13.
Previous studies have shown that oxidation of low-density lipoprotein (oxLDL) results in its recognition by scavenger receptors on macrophages. Whereas blockage of lysyl residues on apoB-100 of oxLDL by lipid peroxidation products appears to be critical for recognition by the scavenger receptor class A (SR-A), modification of the lipid moiety has been suggested to be responsible for recognition by the scavenger class B receptor, CD36. We studied the recognition by scavenger receptors of oxidized LDL in which lysyl residues are blocked prior to oxidation through methylation [ox(m)LDL]. This permits us to minimize any contribution of modified apoB-100 to the recognition of oxLDL, but does not disrupt the native configuration of lipids in the particle. We found that ox(m)LDL was recognized by receptors on mouse peritoneal macrophages (MPM) almost as well as oxLDL. Ox(m)LDL was recognized by CD36-transfected cells but not by SR-A-transfected cells. Oxidized phospholipids (oxPC) transferred from oxLDL or directly from oxPC to LDL, conveyed recognition by CD36-transfected cells, confirming that CD36 recognized unbound oxidized phospholipids in ox(m)LDL. Collectively, these results suggest that oxPC not adducted to apoB within the intact oxLDL particle are recognized by the macrophage scavenger receptor CD36, that these lipids are not recognized by SR-A, and that they can transfer from oxidized to unoxidized LDL and induce CD36 recognition.  相似文献   

14.
We recently reported that methionine-loaded human umbilical vein endothelial cells (HUVECs) exported homocysteine (Hcy) and were associated with hydroxyl radical generation and oxidation of lipids in LDL. Herein we have analysed the Hcy-induced posttranslational modifications (PTMs) of LDL protein. PTMs have been characterised using electrophoretic mobility shift, protein carbonyl ELISA, HPLC with electrochemical detection and Western blotting of 3-nitrotyrosine, and LDL uptake by scavenger receptors on monocyte/macrophages. We have also analysed PTMs in LDL isolated from rheumatoid (RA) and osteo-(OA) arthritis patients with cardiovascular disease (CVD). While reagent Hcy (< 50 microM) promoted copper-catalysed LDL protein oxidation, Hcy released from methionine-loaded HUVECs promoted LDL protein nitration. In addition, LDL nitration was associated with enhanced monocyte/macrophage uptake when compared with LDL oxidation. LDL protein nitration and uptake by monocytes, but not carbonyl formation, was elevated in both RA and OA patients with CVD compared with disease-matched patients that had no evidence of CVD. Moreover, a direct correlation between plasma total Hcy (tHcy) and LDL uptake was observed. The present studies suggest that elevated plasma tHcy may promote LDL nitration and increased scavenger receptor uptake, providing a molecular mechanism that may contribute to the clinical link between CVD and elevated plasma tHcy.  相似文献   

15.
Adhesion of phagocytes to endothelial cells constitutes a crucial step in atherogenesis. Oxidized low density lipoproteins (LDL) are supposed to facilitate the adhesion process. We investigated the molecular mechanisms by which mildly and extensively hypochlorite-oxidized LDL force adhesion of murine macrophages and human neutrophils to human umbilical venous endothelial cells. After 1h of co-incubation of macrophages, endothelial cells, and lipoproteins adhesion significantly increased to 160+/-13% (S.E.M., n=5) in the presence of mildly oxidized lipoprotein, and 210+/-11% (S.E.M., n=5) in the presence of extensively oxidized lipoprotein. Similar results were obtained with neutrophils. CD36 antibody (FA6-152) significantly reduced adhesion to 102+/-7% (S.E.M., n=5) using mildly oxidized low density lipoprotein and to 179+/-16% (S.E.M., n=5) using extensively oxidized low density lipoprotein. Native high density lipoprotein and to a lesser extent methionine-oxidized high density lipoprotein significantly counteracted the effects of low density lipoprotein. Prior incubation of endothelial cells with modified lipoproteins followed by their removal and subsequent incubation with macrophages or neutrophils resulted in only minor changes of adhesion. This suggests that the direct contact of low density lipoprotein with phagocytes followed by activation of a respiratory burst with release of reactive oxygen species facilitates the adhesion process. Accordingly, the addition of antioxidants (superoxide dismutase and catalase) to the co-incubation medium was followed by a significant decrease in phagocyte adhesion. It is concluded that oxidized low density lipoprotein-induced respiratory burst activation of phagocytes with subsequent release of oxidants constitutes a crucial step in promoting the adhesion of phagocytes to endothelial cells.  相似文献   

16.
Recently, we showed that S100A8/A9 were secreted from phorbol ester-stimulated neutrophil-like HL-60 cells, thereby carrying arachidonic acid [Kerkhoff et al. (1999) J. Biol. Chem. 274, 32672-32679]. The present study was undertaken to evaluate whether the secreted S100A8/A9-AA complex might be involved in transcellular eicosanoid metabolism. In the presence of S100A8/A9, arachidonic acid was rapidly taken up by human umbilical vein endothelial cells in a saturable and energy-dependent fashion. Protein-facilitated arachidonate uptake was confirmed by its sensitivity toward the protein modifiers bromobimane and phloretin. Both potassium and sodium depletion did not affect the arachidonate transport, indicating that arachidonate influx was independent of endocytosis. The uptake of exogenous arachidonic acid by HUVEC was predominantly mediated by FAT/CD36. This conclusion was drawn by the findings that (i) arachidonate uptake was drastically inhibited by sulfo-N-succinimidyl oleate, a specific inhibitor of FAT/CD36; (ii) the maximal inhibition of arachidonate uptake induced by SSO was similar to that effected by ATP depletion; and (iii) the arachidonate transport was 2-fold higher in COS-7 cells transfected with the pEF.BOS-CD36 expression vector than in the empty vector-transfected COS-7 cells. Kinetic studies of arachidonate uptake were indicative for an interaction between fatty acid transporter and S100A8/A9-AA complex that was confirmed by an in vitro protein-protein interaction assay. FAT/CD36 has been suggested to be involved in inflammatory responses, and S100A8/A9 are released from activated leukocytes at inflammatory loci. Therefore, it can be envisioned that their interaction might propagate host response by perpetuating recruitment and activation of cellular effectors.  相似文献   

17.
Low density lipoproteins (LDL) were conjugated to colloidal gold for investigation of the ultrastructural aspects of binding and receptor-mediated internalization of LDL by cultured endothelial cells from the human umbilical artery and vein. The number of LDL receptors was increased by preincubation in lipoprotein-depleted serum. When the cells were incubated with LDL-gold particles for 2 h at 4 degrees C, the complexes were found in coated pits as well as in clusters attached to the plasma membrane. Small vesicles containing a few LDL-gold complexes appeared in the cytoplasm close to the plasma membrane when the cells were incubated with the conjugate for 5 min at 37 degrees C. After 15 min at 37 degrees C, larger vesicles with a pale matrix and membrane-orientated LDL-gold complexes were seen. After incubation for 30 min at 37 degrees C, colloidal gold particles were present in dense bodies. Quantification of the binding of LDL-gold complexes to the plasma membrane at 4 degrees C showed no differences between arterial and venous endothelial cells.  相似文献   

18.
Isolated rat liver cells take up corticosterone rapidly; the initial rates increase with increasing temperature. A plot of the initial rates against the concentration of corticosterone indicated the presence of saturable and nonsaturable uptake systems. The Eadie-Hofstee plot showed the presence of two saturable and one nonsaturable uptake components. The apparent Kt values of the saturable systems were 64 ± 40 nM (n =3) and 1085 ± 313 nM (n =12). The nonsaturable system, probably diffusion, contributed 12% to the total uptake between 15 and 72 nM corticosterone, the physiological concentration of the free corticosterone in rat serum. Metabolic inhibitors did not influence the uptake of corticosterone. N-Ethylmaleimide, 1-fluor-2,4-dinitrobenzene and sodium ethyl mercurithiosalicylate (1 mM each) decreased the uptake by 40%. Iodoacetate did not have any influence. Treatment of cells with phospholipase A inhibited the uptake 35–45%. In the presence of cortisone, cortisol, dexamethasone, aldosteron, testosterone, estradiol-17β and estrone (2 μM each) the uptake decreased 30–50%. The presence of serum proteins in the external medium inhibits the uptake of corticosterone. These results suggest that corticosterone is transported into the cell and is accumulated. Only the free hormone is available for uptake which in turn may be regulated by protein and lipid components in the plasma membrane of the liver cell.  相似文献   

19.
Factors involved in the uptake of corticosterone by rat liver cells   总被引:1,自引:0,他引:1  
Isolated rat liver cells take up corticosterone rapidly; the initial rates increase with increasing temperature. A plot of the initial rates against the concentration of corticosterone indicated the presence of saturable and nonsaturable uptake systems. The Eadie-Hofstee plot showed the presence of two saturable and one nonsaturable uptake components. The apparent Kt values of the saturable systems were 64 +/- 40 nM (n = 3) and 1085 +/- 313 nM (n = 12). The nonsaturable system, probably diffusion, contributed 12% to the total uptake between 15 and 72 nM corticosterone, the physiological concentration of the free corticosterone in rat serum. Metabolic inhibitors did not influence the uptake of corticosterone. N-Ethylmaleimide, 1-fluoro-2,4-dinitrobenzene and sodium ethyl mercurithiosalicylate (1 mM each) decreased the uptake by 40%. Iodoacetate did not have any influence. Treatment of cells with phospholipase A inhibited the uptake 35--45%. In the presence of cortisone, cortisol, dexamethasone, aldosterone, testosterone, estradiol-17beta and estrone (2 muM each) the uptake decreased 30--50%. The presence of serum proteins in the external medium inhibits the uptake of corticosterone. These results suggest that corticosterone is transported into the cell and is accumulated. Only the free hormone is available for uptake which in turn may be regulated by protein and lipid components in the plasma membrane of the liver cell.  相似文献   

20.
CD36 is an 88-kDa glycoprotein that has been identified on platelets, monocytes, and some endothelial cells. Experimental evidence suggests that CD36 mediates the binding of Plasmodium falciparum-infected RBC to a variety of cells, and therefore may play a role in the vascular complications associated with malaria. Additionally, CD36 may also bind the extracellular matrix proteins thrombospondin and collagen. Human umbilical vein endothelial cells have been used in in vitro models examining the binding of P. falciparum RBC to endothelial cells, but they do not consistently express cell surface CD36. Inasmuch as human dermal microvascular endothelial cells (HDMEC) differ in a variety of ways from large vessel endothelial cells, we have examined HDMEC for cell surface expression of CD36 in vivo and in vitro. Direct immunofluorescence of skin showed bright staining of HDMEC with antibody recognizing CD36 and flow cytometric analysis of cultured HDMEC revealed cell surface expression. In contrast, large vessel endothelial cells were not stained with antibody recognizing CD36 in vivo and cultured cells derived from umbilical vein failed to express cell surface CD36 in vitro. Western immunoblots of lysates of HDMEC but not human umbilical vein endothelial cells demonstrated an 88-kDa protein that comigrated with CD36 from platelets. Functional studies demonstrated that adherence of PRBC to HDMEC was inhibited up to 66% by mAb recognizing CD36. Furthermore, the expression of CD36 on HDMEC was increased in a dose- and time-dependent manner by IFN-gamma, and was decreased by protein kinase C agonists. These data demonstrate that HDMEC express functionally active CD36 and this expression can be positively and negatively regulated by soluble factors. This study demonstrates that HDMEC are useful in the study of CD36-mediated binding of PRBC to endothelial cells in vitro and provides further evidence of distinct phenotypic differences between HDMEC and large vessel endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号