首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adipokine adiponectin is well known to affect the function of immune cells and upregulation of CCL2 by adiponectin in monocytes/macrophages has already been reported. In the current study the effect of adiponectin on CCL2, -3, -4, and -5 and their corresponding receptors CCR1, CCR2, and CCR5 has been analyzed. Adiponectin elevates mRNA and protein of the CC chemokines in primary human monocytes. Simultaneously the surface abundance of CCR2 and CCR5 is reduced while CCR1 is not affected. Downregulation of CCR2 by adiponectin is blocked by a CCR2 antagonist although expression of the CCL2 regulated genes CCR2 and TGF-beta 1 is not altered in the adiponectin-incubated monocytes. CCL2, -3, and -5 concentrations measured in supernatants of monocytes of normal-weight (NW), overweight (OW), and type 2 diabetic (T2D) patients positively correlate with BMI and are increased in obesity and T2D. In contrast CCL4 is similarly abundant in the supernatants of all of these monocytes. The degree of adiponectin-mediated induction of the chemokines CCL3, -4, and -5 negatively correlates with their basal levels and upregulation of CCL3 and CCL5 is significantly impaired in OW and T2D cells. Serum concentrations of these chemokines are almost equal in the three groups and do not correlate with the levels in monocyte supernatants. In conclusion these data demonstrate that adiponectin stimulates release of CCL2 to CCL5 in primary human monocytes, and induction in cells of overweight probands is partly impaired. Adiponectin also lowers surface abundance of CCR2 and CCR5 and downregulation of CCR2 seems to depend on autocrine/paracrine effects of CCL2.  相似文献   

2.
We have investigated the chemokine receptor expression and migratory behavior of a new subset of nickel-specific skin-homing regulatory CD4(+) T cells (Th(IL-10)) releasing high levels of IL-10, low IFN-gamma, and undetectable IL-4. These cells inhibit in a IL-10-dependent manner the capacity of dendritic cells to activate nickel-specific Tc1 and Th1 lymphocytes. RNase protection assay and FACS analysis revealed the expression of a vast repertoire of chemokine receptors on resting Th(IL-10), including the Th1-associated CXCR3 and CCR5, and the Th2-associated CCR3, CCR4, and CCR8, the latter at higher levels compared with Th2 cells. The most active chemokines for resting Th(IL-10), in terms of calcium mobilization and in vitro migration, were in order of potency: CCL2 (monocyte chemoattractant protein-1, CCR2 ligand), CCL4 (macrophage-inflammatory protein-1beta, CCR5 ligand), CCL3 (macrophage-inflammatory protein-1alpha, CCR1/5 ligand), CCL17 (thymus and activation-regulated chemokine, CCR4 ligand), CCL1 (I-309, CCR8 ligand), CXCL12 (stromal-derived factor-1, CXCR4), and CCL11 (eotaxin, CCR3 ligand). Consistent with receptor expression down-regulation, activated Th(IL-10) exhibited a reduced or absent response to most chemokines, but retained a significant migratory capacity to I-309, monocyte chemoattractant protein-1, and thymus and activation-regulated chemokine. I-309, which was ineffective on Th1 lymphocytes, attracted more efficiently Th(IL-10) than Th2 cells. I-309 and CCR8 mRNAs were not detected in unaffected skin and were up-regulated at the skin site of nickel-allergic reaction, with an earlier expression kinetics compared with IL-10 and IL-4. Results indicate that skin-homing regulatory Th(IL-10) lymphocytes coexpress functional Th1- and Th2-associated chemokine receptors, and that CCR8/I-309-driven recruitment of both resting and activated Th(IL-10) cells may be critically involved in the regulation of Th1-mediated skin allergic disorders.  相似文献   

3.
Human embryo implantation is a complex process involving blastocyst attachment to the endometrial epithelium and subsequent trophoblast invasion of the decidua. Chemokines, critical regulators of leukocyte migration, are abundant in endometrial epithelial and decidual cells at this time. We hypothesized that endometrial chemokines stimulate trophoblast invasion. Chemokine receptors CX3CR1 and CCR1 were immunolocalized in human first-trimester implantation sites, specifically to endovascular extravillous trophoblasts, but not to the invading interstitial EVTs (iEVTs), with weak staining also on syncytium. CCR3 was localized to invading iEVTs and to microvilli on the syncytial surface. Expression of CX3CL1 (fractalkine), CCL7 (MCP-3), and their receptors (CX3CR1, CCR1, CCR2, CCR3, and CCR5) mRNA was examined in cellular components of the maternal-embryonic interface by RT-PCR. Both chemokines were abundant in entire endometrium and placenta, endometrial cells (primary cultures and HES, a human endometrial epithelial cell line) and trophoblast cell lines (JEG-3, ACIM-88, and ACIM-32). Chemokine receptor mRNA was expressed by placenta and trophoblast cell lines: CCR1 by all trophoblast cell types, whereas CCR2, CCR3, and CX3CR1 were more variable. CX3CR1, CCR1, CCR2, and CCR5 were also expressed by endometrial cells. Migration assays used the trophoblast cell line most closely resembling extravillous cytotrophoblast (AC1M-88). Trophoblast migration occurred in response to CX3CL1, CCL14, and CCL4, but not CCL7. Endometrial cell-conditioned media also stimulated trophoblast migration; this was attenuated by neutralizing antibodies to CX3CL1 and CCL4. Thus, chemokines are expressed by maternal and embryonic cells during implantation, whereas corresponding receptors are on trophoblast cells. Promotion of trophoblast migration by chemokines and endometrial cell conditioned medium indicates an important involvement of chemokines in maternal-fetal communication.  相似文献   

4.
The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL‐6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP‐1 secretion was reduced by CCL15/CCR3. In conclusion, this in‐vitro study identifies chemokine receptor‐ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL‐6 and HGF and reducing the secretion of TIMP‐1.  相似文献   

5.
American cutaneous leishmaniasis (ACL) presents distinct active clinical forms with different grades of severity, known as localised (LCL), intermediate (ICL) and diffuse (DCL) cutaneous leishmaniasis. LCL and DCL are associated with a polarised T-helper (Th)1 and Th2 immune response, respectively, whereas ICL, or chronic cutaneous leishmaniasis, is associated with an exacerbated immune response and a mixed cytokine expression profile. Chemokines and chemokine receptors are involved in cellular migration and are critical in the inflammatory response. Therefore, we evaluated the expression of the chemokines CXCL10, CCL4, CCL8, CCL11 and CXCL8 and the chemokine receptors CCR3, CXCR3, CCR5 and CCR7 in the lesions of patients with different clinical forms of ACL using immunohistochemistry. LCL patients exhibited a high density of CXCL10+, CCL4+ and CCL8+ cells, indicating an important role for these chemokines in the local Th1 immune response and the migration of CXCR3+ cells. LCL patients showed a higher density of CCR7+ cells than ICL or DCL patients, suggesting major dendritic cell (DC) migration to lymph nodes. Furthermore, DCL was associated with low expression levels of Th1-associated chemokines and CCL11+ epidermal DCs, which contribute to the recruitment of CCR3+ cells. Our findings also suggest an important role for epidermal cells in the induction of skin immune responses through the production of chemokines, such as CXCL10, by keratinocytes.  相似文献   

6.

Background

Animal and clinical studies have revealed that focal peripheral nerve axon demyelination is accompanied by nociceptive pain behavior. C-C and C-X-C chemokines and their receptors have been strongly implicated in demyelinating polyneuropathies and persistent pain syndromes. Herein, we studied the degree to which chronic nociceptive pain behavior is correlated with the neuronal expression of chemokines and their receptors following unilateral lysophosphatidylcholine (LPC)-induced focal demyelination of the sciatic nerve in rats.

Results

Focal nerve demyelination increased behavioral reflex responsiveness to mechanical stimuli between postoperative day (POD) 3 and POD28 in both the hindpaw ipsilateral and contralateral to the nerve injury. This behavior was accompanied by a bilateral increase in the numbers of primary sensory neurons expressing the chemokine receptors CCR2, CCR5, and CXCR4 by POD14, with no change in the pattern of CXCR3 expression. Significant increases in the numbers of neurons expressing the chemokines monocyte chemoattractant protein-1 (MCP-1/CCL2), Regulated on Activation, Normal T Expressed and Secreted (RANTES/CCL5) and interferon γ-inducing protein-10 (IP-10/CXCL10) were also evident following nerve injury, although neuronal expression pattern of stromal cell derived factor-1α (SDF1/CXCL12) did not change. Functional studies demonstrated that acutely dissociated sensory neurons derived from LPC-injured animals responded with increased [Ca2+]i following exposure to MCP-1, IP-10, SDF1 and RANTES on POD 14 and 28, but these responses were largely absent by POD35. On days 14 and 28, rats received either saline or a CCR2 receptor antagonist isomer (CCR2 RA-[R]) or its inactive enantiomer (CCR2 RA-[S]) by intraperitoneal (i.p.) injection. CCR2 RA-[R] treatment of nerve-injured rats produced stereospecific bilateral reversal of tactile hyperalgesia.

Conclusion

These results suggest that the presence of chemokine signaling by both injured and adjacent, uninjured sensory neurons is correlated with the maintenance phase of a persistent pain state, suggesting that chemokine receptor antagonists may be an important therapeutic intervention for chronic pain.  相似文献   

7.
Dendritic cells (DCs) generated by a single-step exposure of human monocytes to type I IFN and GM-CSF (IFN-DCs) are endowed with potent immunostimulatory activities and a distinctive migratory response to specific chemokines. In this study, we evaluated the effects of 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the biologically active metabolite of vitamin D(3), on the DC differentiation/activation induced by type I IFN. We found that 1,25(OH)(2)D(3) prevented the generation of IFN-DCs when added to freshly isolated monocytes, and was capable of redirecting already differentiated IFN-DCs toward a more immature stage, as revealed by their immunophenotype, reduced allostimulatory activity, and impaired LPS-induced production of Th1-polarizing cytokines. Control and 1,25(OH)(2)D(3)-treated IFN-DCs exhibited a similar expression of vitamin D receptor, as well as comparable cell death rates. Furthermore, the chemotactic response of IFN-DCs to CCL4 and CCL19 was markedly reduced or completely abrogated by 1,25(OH)(2)D(3). Despite these changes in the IFN-DC migratory behavior, the expression of CCR5 and CCR7 and the calcium fluxes triggered by CCL4 and CCL19 were not affected. These findings indicate that, in this innovative single-step DC generation model from monocytes, the suppressive effect of 1,25(OH)(2)D(3) is associated with a potent impairment of DC migration in response to inflammatory and lymph node-homing chemokines, thus unraveling a novel mechanism involved in 1,25(OH)(2)D(3)-mediated immunomodulation.  相似文献   

8.
Many members of the chemokine receptor family of G protein-coupled receptors utilize multiple endogenous ligands. However, differences between the signaling properties of multiple chemokines through a single receptor have yet to be well characterized. In this study we investigated the early signaling events of CCR7 initiated by its two endogenous ligands, CCL19 and CCL21. Both CCL19 and CCL21 induce G protein activation and calcium mobilization with equal potency. However, only activation by CCL19, not CCL21, promotes robust desensitization of endogenous CCR7 in the human T cell lymphoma cell line H9. Desensitization occurs through the induction of receptor phosphorylation and beta-arrestin recruitment (shown in HEK293 cells expressing CCR7-FLAG). The sites of CCL19-induced phosphorylation were mapped by mutating to alanines the serines and threonines found within kinase phosphorylation consensus sequences in the carboxyl terminus of CCR7. A cluster of sites, including Thr-373-376 and Ser-378 is important for CCL19-mediated phosphorylation of the receptor, whereas residues serine 356, 357, 364, and 365 are important for basal receptor phosphorylation by protein kinase C. Activation of CCR7 by both ligands leads to signaling to the ERK1/2 mitogen-activated protein kinase pathway. However, CCL19 promotes 4-fold more ERK1/2 phosphorylation than does CCL21. The mechanism by which CCL19 activates ERK1/2 was determined to be beta-arrestin-dependent, because it is reduced both by depletion of beta-arrestin-2 with small interfering RNA and by elimination of the phosphorylation sites in the tail of the receptor. Taken together, these findings demonstrate that CCL19 and CCL21 place CCR7 in functionally distinct conformations that are independent of their G protein-coupling potency: one that allows the efficient desensitization of the receptor and activation of ERK1/2, and another that is impaired in these functions.  相似文献   

9.
The chemokines CCL3 and CCL5, as well as their shared receptor CCR1, are believed to play a role in the pathogenesis of several inflammatory diseases including rheumatoid arthritis, multiple sclerosis, and transplant rejection. In this study we describe the pharmacological properties of a novel small molecular weight CCR1 antagonist, CP-481,715 (quinoxaline-2-carboxylic acid [4(R)-carbamoyl-1(S)-(3-fluorobenzyl)-2(S),7-dihydroxy-7-methyloctyl]amide). Radiolabeled binding studies indicate that CP-481,715 binds to human CCR1 with a Kd of 9.2 nm and displaces 125I-labeled CCL3 from CCR1-transfected cells with an IC50 of 74 nm. CP-481,715 lacks intrinsic agonist activity but fully blocks the ability of CCL3 and CCL5 to stimulate receptor signaling (guanosine 5'-O-(thiotriphosphate) incorporation; IC50 = 210 nm), calcium mobilization (IC50 = 71 nm), monocyte chemotaxis (IC50 = 55 nm), and matrix metalloproteinase 9 release (IC50 = 54 nm). CP-481,715 retains activity in human whole blood, inhibiting CCL3-induced CD11b up-regulation and actin polymerization (IC50 = 165 and 57 nm, respectively) on monocytes. Furthermore, it behaves as a competitive and reversible antagonist. CP-481,715 is >100-fold selective for CCR1 as compared with a panel of G-protein-coupled receptors including related chemokine receptors. Evidence for its potential use in human disease is suggested by its ability to inhibit 90% of the monocyte chemotactic activity present in 11/15 rheumatoid arthritis synovial fluid samples. These data illustrate that CP-481,715 is a potent and selective antagonist for CCR1 with therapeutic potential for rheumatoid arthritis and other inflammatory diseases.  相似文献   

10.
The chemokine receptors CCR1, CCR2, CCR3, CCR5, and CXCR2 have been found to be expressed on microglia in many neurodegenerative diseases, such as multiple sclerosis and Alzheimer’s disease. There is emerging evidence that chemokines, besides chemoattraction, might directly modulate reactive profiles of microglia. To address this hypothesis we have investigated the effects of CCL2, CCL3, CCL5, and CXCL1 on cytokine and growth factor production, NO synthesis, and phagocytosis in non-stimulated and lipopolysaccharide-stimulated primary rat microglia. The respective receptors CCR1, CCR5, and CXCR2 were shown to be functionally expressed on microglia. All tested chemokines stimulated chemotaxis whereas only CCL5 increased NO secretion and attenuated IL-10 as well as IGF-1 production in activated microglia. Based on these findings we propose that besides its chemoattractant function CCL5 has a modulatory effect on activated microglia.  相似文献   

11.
Recent studies demonstrated that the chemokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 and its receptor, CCR2, play important roles in various brain diseases. In this study, using quantitative autoradiography, we studied the pharmacological properties of [125l]MCP-1/CCL2 binding in rat brain and we clearly showed the distribution of CCR2 receptors in cerebral cortex, nucleus accumbens, striatum, amygdala, thalamus, hypothalamus, hippocampus, substantia nigra, mammillary bodies and raphe nuclei. Moreover, using double fluorescent immunohistochemistry, we showed that CCR2 receptors were constitutively expressed on neurons and astrocytes. Using RT-PCR methods, we demonstrated that CCR2 mRNA is present in various brain areas described above. Four hours after an acute intraperitoneal lipopolysaccharide injection, we showed that MCP-1/CCL2 binding was up-regulated in several brain structures; this effect took place on both CCR2B labelled neurons and astrocytes and to a lesser extent on activated microglia. To explore neurobiological function of CCR2, actimetric study was carried out. After intracerebroventricular injections of MCP-1/CCL2, we showed that motor activity was markedly decreased. Our results provide the first evidence for constitutive CCR2 receptor expression with precise neuroanatomical and cellular localizations in the brain, and its regulation during an inflammatory process, suggesting that MCP-1/CCL2 and CCR2 play important physiological and pathophysiological role(s) in the CNS.  相似文献   

12.
The promiscuous D6 receptor binds several inflammatory CC chemokines and has been recently proposed to act as a chemokine-scavenging decoy receptor. The present study was designed to better characterize the spectrum of CC chemokines scavenged by D6, focusing in particular on CCR4 ligands and analyzing the influence of NH(2)-terminal processing on recognition by this promiscuous receptor. Using D6 transfectants, it was found that D6 efficiently bound and scavenged most inflammatory CC chemokines (CCR1 through CCR5 agonists). Homeostatic CC chemokines (CCR6 and CCR7 agonists) were not recognized by D6. The CCR4 agonists CC chemokine ligand 17 (CCL17) and CCL22 bound to D6 with high affinity. CCL17 and CCL22 have no agonistic activity for D6 (chemotaxis and calcium fluxes), but were rapidly scavenged, resulting in reduced chemotactic activity on CCR4 transfectants. CD26 mediates NH(2) terminus processing of CCL22, leading to the production of CCL22 (3-69) and CCL22 (5-69) that do not interact with CCR4. These NH(2)-terminal truncated forms of CCL22 were not recognized by D6. The results presented in this study show that D6 recognizes and scavenges a wide spectrum of inflammatory CC chemokines, including the CCR4 agonists CCL22 and CCL17. However, this promiscuous receptor is not engaged by CD26-processed, inactive, CCL22 variants. By recognizing intact CCL22, but not its truncated variants, D6 expressed on lymphatic endothelial cells may regulate the traffic of CCR4-expressing cells, such as dendritic cells.  相似文献   

13.
Mast cells (MCs) accumulate at sites of allergic mucosal inflammation where they act as central effector and regulatory cells. Because chemokines are of vital importance in directing inflammatory leukocytes to the sites of inflammations, we have investigated the expression and function of CC-chemokine receptor (CCR) on human MCs. Two previously unrecognized MC-chemokine receptors, CCR1 and CCR4, could be identified on cord blood-derived MCs (CBMCs). CCR1 and CCR4 expressed on CBMCs exhibited a unique response profile. Of seven CCR1 and CCR4 agonists tested, only CCL5/RANTES act as an agonist inducing chemotaxis. The migration could be partially blocked by specific antibodies against CCR1 or CCR4, while a complete inhibition was achieved when both CCR1 and CCR4 were blocked. These results demonstrate that both CCR1 and CCR4 are functional receptors on human mast cells with capacity to mediate migration towards CCL5.  相似文献   

14.
CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade.  相似文献   

15.
CCL3 (MIP-1alpha), a prototype of CC chemokines, is a potent chemoattractant toward human neutrophils pre-treated with GM-CSF for 15 min. GM-CSF-treated neutrophils migrate also to the selective CCR5 agonist CCL4 (MIP-1beta). CCL3- and CCL4-triggered migration of GM-CSF-primed neutrophils was inhibited by the CCR5 antagonist TAK-779. Accordingly, freshly isolated neutrophils express CCR5. Extracellular signal-regulated kinases (ERK)-1/2 and p38 mitogen-activated protein kinase (MAPK) inhibitors blocked CCL3-induced migration of GM-CSF-primed neutrophils. When the activation of ERK-1/2 and p38 MAPK by CCL3 and the classical neutrophilic chemokine CXCL8 (IL-8) were compared, both the chemokines were capable of activating p38 MAPK. On the contrary, whereas both ERK-1 and ERK-2 were activated by CXCL8, no ERK-1 band was detectable after CCL3 triggering. Finally, neutrophil pre-treatment with GM-CSF activated both ERK-1 and ERK-2. This suggests that by activating ERK-1, GM-CSF renders neutrophils rapidly responsive to CCL3 stimulation throughout CCR5 which is constitutively expressed on the cell surface.  相似文献   

16.
Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES(+) cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44(HIGH) and CD127(LOW) markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by chemokines during dengue fever will be discussed.  相似文献   

17.
CCL18 has been reported to be present constitutively at high levels in the circulation, and is further elevated during inflammatory diseases. Since it is a rather poor chemoattractant, we wondered if it may have a regulatory role. CCL18 has been reported to inhibit cellular recruitment mediated by CCR3, and we have shown that whilst it is a competitive functional antagonist as assessed by Schild plot analysis, it only binds to a subset of CCR3 receptor populations. We have extended this inhibitory activity to other receptors and have shown that CCL18 is able to inhibit CCR1, CCR2, CCR4 and CCR5 mediated chemotaxis, but has no effect on CCR7 and CCR9, nor the CXC receptors that we have tested. Whilst CCL18 is able to bind to CCR3, it does not bind to the other receptors that it inhibits. We therefore tested the hypothesis that it may displace glycosaminoglycan (GAG) chemokines bound either in cis- on the leukocyte, or in trans-presentation on the endothelial surface, thereby inhibiting the recruitment of leukocytes into the site of inflammation. We show that CCL18 selectivity displaces heparin bound chemokines, and that chemokines from all four chemokine sub-classes displace cell bound CCL18. We propose that CCL18 has regulatory properties inhibiting chemokine function when GAG-mediated presentation plays a role in receptor activation.  相似文献   

18.

Background

The aim of this study was to provide more insight into the question as to why blockade of CCR1, CCR2, and CCR5 may have failed in clinical trials in rheumatoid arthritis (RA) patients, using an in vitro monocyte migration system model.

Methodology/Principal Findings

Monocytes from healthy donors (HD; n = 8) or from RA patients (for CCR2 and CCR5 antibody n = 8; for CCR1 blockade n = 13) were isolated from peripheral blood and pre-incubated with different concentrations of either anti-CCR1, anti-CCR2, or anti-CCR5 blocking antibodies (or medium or isotype controls). In addition, a small molecule CCR1 antagonist (BX471) was tested. Chemotaxis was induced by CCL2/MCP-1 (CCR2 ligand), CCL5/RANTES (CCR1 and CCR5 ligand), or by a mix of 5 RA synovial fluids (SFs), and cellular responses compared to chemotaxis in the presence of medium alone. Anti-CCR2 antibody treatment blocked CCL2/MCP-1-induced chemotaxis of both HD and RA monocytes compared to isotype control. Similarly, anti-CCR5 antibody treatment blocked CCL5/RANTES-induced chemotaxis of RA monocytes. While neither CCR2 nor CCR5 blocking antibodies were able to inhibit SF-induced monocyte chemotaxis, even when both receptors were blocked simultaneously, both anti-CCR1 antibodies and the CCR1 antagonist were able to inhibit SF-induced monocyte chemotaxis.

Conclusions/Significance

The RA synovial compartment contains several ligands for CCR1, CCR2, and CCR5 as well as other chemokines and receptors involved in monocyte recruitment to the site of inflammation. The results suggest that CCR2 and CCR5 are not critical for the migration of monocytes towards the synovial compartment in RA. In contrast, blockade of CCR1 may be effective. Conceivably, CCR1 blockade failed in clinical trials, not because CCR1 is not a good target, but because very high levels of receptor occupancy at all times may be needed to inhibit monocyte migration in vivo.  相似文献   

19.
Kim IS  Jang SW  Sung HJ  Lee JS  Ko J 《FEBS letters》2005,579(27):6044-6048
Human CC chemokine-4 (HCC-4)/CCL16 is a chemoattractant for monocytes and lymphocytes. Although HCC-4 binds to multiple CC chemokine receptors, the receptor-mediated signal transduction pathway induced by HCC-4 has not been characterized. Human osteogenic sarcoma cells stably expressing CCR1 were used to investigate HCC-4-mediated chemotaxis signaling events via CCR1. The chemotactic activity of HCC-4 as well as those of other CCR1-dependent chemokines including MIP-1alpha/CCL3, RANTES/CCL5, and Lkn-1/CCL15 was inhibited by the treatment of pertussis toxin, an inhibitor of Gi/Go protein, U73122, an inhibitor of phospholipase C (PLC), and rottlerin, a specific inhibitor of protein kinase Cdelta (PKCdelta). These results indicate that HCC-4-induced chemotaxis signaling is mediated through Gi/Go protein, PLC, and PKCdelta. SB202190, an inhibitor of p38 mitogen activated protein kinase, only blocked the chemotactic activity of HCC-4, but not those of other CCR1-dependent chemokines. SB202190 inhibited HCC-4-induced chemotaxis in a dose-dependent manner (P < 0.01). HCC-4 induces p38 activation in both a time and dose-dependent manner. However, such p38 activation was not induced by other CCR1-dependent chemokines. To further investigate the differential effect of HCC-4, the Ca2+ mobilization was examined. HCC-4 induced no intracellular Ca2+ flux in contrast to other CCR1-dependent chemokines. These results indicate that HCC-4 transduces signals differently from other CCR1-dependent chemokines and may play different roles in the immune response.  相似文献   

20.
CCL20/MIP-3alpha is a beta-chemokine expressed in the thymus, skin, and intestinal epithelial cells that exclusively binds and activates the CCR6 receptor in both mice and humans. The strict receptor binding specificity of CCL20 is exceptional; other chemokines and their receptors bind promiscuously with multiple partners. Toward determining the structural basis for the selective receptor specificity of CCL20, we have determined its three-dimensional structure by 1H NMR spectroscopy. CCL20 exhibits the same monomeric structure previously described for other chemokines: a three-stranded beta-sheet and an overlying alpha-helix. The CCL20 receptor selectivity could arise from the rigid conformation of the N-terminal DCCL motif as well as the groove between the N-loop and the beta2-beta3 hairpin, which is significantly narrower in CCL20 than in other chemokines. Similar structural features are seen in human beta-defensin 2, a small nonchemokine polypeptide reported to selectively bind and activate CCR6, which stresses their importance for the specific binding of both CCL20 and beta-defensin 2 to CCR6. CCL20's structure will be useful to design tools aimed to modulate its important biological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号