首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiration in Blue-Green Algae   总被引:13,自引:3,他引:10       下载免费PDF全文
The low rate of endogenous respiration exhibited by the blue-green algae Anacystis nidulans and Phormidium luridum was not increased by the addition of respiratory substrates. However, endogenous respiration was inhibited by low concentrations of cyanide and by high carbon monoxide tensions. In addition, the uncouplers dinitrophenol and carbonyl cyanide p-trifluoromethoxyphenylhydrazone both stimulated the respiratory rate. The transition of cells from the aerobic steady state to anaerobiosis was accompanied by a decrease in the concentration of cellular nicotinamide adenine dinucleotide phosphate (NADP(+)) and adenosine triphosphate (ATP), whereas the concentration of nicotinamide adenine dinucleotide (NAD(+)) was unchanged. Concomitant with the metabolite decreases were stoichiometric increases io reduced NADP(+) (NADPH), adenosine diphosphate, and adenosine monophosphate. A decrease in ATP was also observed after the addition of uncouplers. These data are interpreted as evidence for the association of oxidative phosphorylation with the oxidation of NADP(+)-linked substrates in these algae. Membrane fragments isolated from the algal cells oxidized succinate, malate, ferrocytochrome c, ascorbate-tetramethyl-p-phenylenediamine, and reduced 2,6-dichlorophenol indophenol but did not oxidize NADPH or reduced NAD(+) in a cyanide-sensitive system. Oxidative phosphorylation has not yet been demonstrated in these fragments, but a dark ATP-P(i) exchange, distinct from the lighttriggered exchange associated with photosynthesis, is readily observed. This exchange was inhibited by phloridzin, Atabrine, and uncouplers in concentrations which suggest that the mechanism of oxidative phosphorylation in blue-green algae is different from that found in other bacteria and in mitochondria. These results led to the conclusion that the biochemical basis for obligate autotrophy in these organisms does not lie in the metabolic events associated with terminal electron transport and energy conservation.  相似文献   

2.
A method is described for preparation of membrane vesicles (diameter 80nm) capable of respiration-linked ATP synthesis. Vesicles prepared from succinate-grown bacteria oxidized NADH, succinate and ascorbate plus NNN'N'-tetramethylphenylenediamine; vesicles prepared from methanol-grown bacteria also oxidized methanol and formaldehyde, but they were otherwise identical. The uncoupling agent carbonyl cyanide chlorophenylhydrazone and the adenosine triphosphatase inhibitor dicyclohexylcarbodi-imide both inhibited ATP synthesis, whereas they had no effect on the rate of respiration. Rotenone inhibited ATP synthesis and respiration with NADH as substrate; antimycin A inhibited with succinate as substrate, and cyanide inhibited with all substrates. P/O ratios were usually 0.7-1.3 with NADH, 0.6-1.0 with succinate and 0.2-0.6 with reduced NNN'N'-tetramethylphenylenediamine or methanol as respiratory substrate. When 2,6-dichlorophenol-indophenol was used as an alternative electron acceptor to O(2) (NADH as donor) the P/2e ratio was 1.65. Although these P/O ratios are minimum values, because they do not take into account unknown amounts of uncoupled O(2) consumption, they are consistent with previous proposals [O'Keeffe & Anthony (1978) Biochem, J.170, 561-567] based on measurements of proton translocation in whole cells. The results also confirm that methanol dehydrogenase and cytochromes c and a/a(3) are arranged so that the first step in methanol oxidation is coupled to synthesis of ATP.  相似文献   

3.
Mechanism of Action of the Antifungal Antibiotic Pyrrolnitrin   总被引:6,自引:2,他引:4       下载免费PDF全文
Pyrrolnitrin at 10 mug/ml inhibited the growth of Saccharomyces cerevisiae, Penicillium atrovenetum, and P. oxalicum. The primary site of action of pyrrolnitrin on S. cerevisiae was the terminal electron transport system between succinate or reduced nicotinamide adenine dinucleotide (NADH) and coenzyme Q. At growth inhibitory concentrations, pyrrolnitrin inhibited endogenous and exogenous respiration immediately after its addition to the system. In mitochondrial preparations, the antibiotic inhibited succinate oxidase, NADH oxidase, succinate-cytochrome c reductase, NADH-cytochrome c reductase, and succinate-coenzyme Q(6) reductase. In addition, pyrrolnitrin inhibited the antimycin-insensitive reduction of dichlorophenolindophenol and of the tetrazolium dye 2,2'-di-p-nitrophenyl-(3,3'-dimethoxy-4,4'-bi-phenylene)5,5'-diphenylditetrazolium. The reduction of another tetrazolium dye, 2-p-iodophenyl-3-p-nitrophenyl-5-phenyltetrazolium chloride, that was antimycin-sensitive, was also inhibited by pyrrolnitrin. The antibiotic had no effect on the activity of cytochrome oxidase, and it did not appear to bind with flavine adenine dinucleotide, the coenzyme of succinic dehydrogenase. In whole cells of S. cerevisiae, pyrrolnitrin inhibited the incorporation of (14)C-glucose into nucleic acids and proteins. It also inhibited the incorporation of (14)C-uracil, (3)H-thymidine, and (14)C-amino acids into ribonucleic acid, deoxyribonucleic acid, and protein, respectively. The in vitro protein synthesis in Rhizoctonia solani and Escherichia coli was not affected by pyrrolnitrin. Pyrrolnitrin also inhibited the uptake of radioactive tracers, but there was no general damage to the cell membranes that would result in an increased leakage of cell metabolites. Apparently, pyrrolnitrin inhibits fungal growth by inhibiting the respiratory electron transport system.  相似文献   

4.
Antibiotic U-24,544, a new antibacterial agent, was found to be an effective uncoupler of phosphorylation associated with the oxidation of glutamate and succinate in rat liver mitochondria. Respiration was inhibited during glutamate oxidation but not during succinate oxidation. In a medium deficient in inorganic phosphate, the agent showed slight stimulation of mitochondrial glutamate oxidation. Mitochondrial swelling induced by inorganic phosphate was suppressed. The antibiotic inhibited protein, nucleic acid, and cell wall synthesis in Mycobacterium avium cells nearly equally without a predominant inhibition of any one of these macromolecular biosynthetic processes. Nucleic acid and polypeptide synthesis remained unaffected, but respiration was inhibited in cell-free bacterial systems. It was thus concluded that the antibiotic interfered primarily with the cellular energy-generating processes.  相似文献   

5.
The effect of a polyanion (a copolymer of methacrylate, malaete and styrene in a 1:2:3 proportion with an average molecular weight of 10 000) on respiration, ATPase activity and ADP/ATP exchange activity of rat liver mitochondria and submitochondrial particles has been studied.The polyanion (at 17–150 μg/ml concentration, 100 μg polyanion corresponding to 0.83 μequiv. of carboxylic groups) inhibits the oxidation of succinate and NAD-linked substrates in state 3 in a concentration-dependent manner. The extent of this inhibition can be decreased by elevating the concentration of ADP. State 4 respiration is not affected by the polyanion. It has also a slight inhibitory effect on the oxidation of the above mentioned substrates in the uncoupled state (a maximum inhibition of 37% at 166 μg/ml polyanion concentration), which is unaffected by ADP. The strong inhibition of state 3 respiration can be relieved by 2,4-dinitrophenol to the low level observed in the uncoupled state. Ascorbate+TMPD oxidation is slightly inhibited in state 3, while it is not inhibited at all in the uncoupled state.The polyanion, depending on its concentration, strongly inhibits also the DNP-activated ATPase activity of mitochondria (50% inhibition at 40 μg/ml polyanion concentration).The ATPase activity of sonic submitochondrial particles is also inhibited. However, this inhibition is incomplete (reaching a maximum of 65%) and higher concentrations of the polyanion are required than to inhibit the ATPase activity of intact mitochondria.The polyanion inhibits the ADP/ATP translocator activity of mitochondria, measured by the “back exchange” of [2-3H]ADP. After a short preincubation of the mitochondria with the polyanion, the concentration dependence of the inhibition by the polyanion corresponds to that of the DNP-activated ATPase activity of intact mitochondria.It is concluded that, in intact mitochondria, the polyanion has at least a dual effect, i.e. it partially inhibits the respiratory chain between cytochrome b and cytochrome c, and strongly oxidative phosphorylation by blocking the ADP/ATP translocator.  相似文献   

6.
Low concentrations of HPE and MLA inhibited state 3 respiration of rat liver mitochondria in the presence of different NAD+-dependent substrates. MLA appeared to be more active than HPE. High aldehyde concentrations inhibited the state 3 respiration with succinate. The restraint of succinate oxidation by HPE and MLA and of glutamate plus malate oxidation by MLA correlated with the inhibition of succinate and glutamate dehydrogenase activites, respectively. HPE inhibited glutamate dehydrogenase at concentrations higher than those affecting glutamate oxidation. Malate dehydrogenase activity was slightly sensitive to HPE and MLA. Both aldehydes inhibited NADH oxidation by freeze-thawed mitochondria. These results suggest the existence of a site particularly sensitive to aldehydes in the electron transport chain between the specific NAD+-linked dehydrogenases and ubiquinone.  相似文献   

7.
The infectivity of intact poliovirus was not affected by exposure to the antibiotic phleomycin at concentrations as high as 200 mug/ml, whereas that of the singlestranded poliovirus ribonucleic acid (RNA) was inactivated to 99% by pretreatment of the RNA with phleomycin at a concentration of 2 mug/ml. The infectivity of double and multistranded RNA was 10 times less sensitive than that of singlestranded RNA to the action of this antibiotic. Preincubation of HeLa cells for 30 min with 10 to 50 mug of phleomycin reduced the sensitivity of the cells to infection by viral RNA and intact virus, indicating that phleomycin interferes with cellular functions necessary for virus replication. When phleomycin was added to cells at different times after infection with single- or double-stranded RNA, the highest inactivation of infective centers was observed immediately after infection. With time of incubation at 37 C, the infective centers became more resistant to the action of phleomycin.  相似文献   

8.
The effect of heliomycin and known uncouplers of oxidative phosphorylation on respiration and oxidative phosphorylation was studied comparatively. Heliomycin, as well as 2,4-dinitrophenol, valinomycin and gramicidin S inhibited the mitochondrial synthesis of ATP. This process was inhibited completely by heliomycin at a concentration of 1.5 x 10(-5) M. The synthesis of inorganic pyrophosphate, the other macroergic compound, was also inhibited by heliomycin, ATPase and pyrophosphatase of uncoupled mitochondria being not inhibited by the antibiotic. Like 2,4-dinitrophenol, heliomycin stimulated the synthesis of ATPase and respiration in intact mitochondria. Probably, heliomycin inhibited the synthesis of ATP and pyrophosphate by uncoupling the processes of respiration and oxidative phosphorylation. It was shown earlier that heliomycin, a specific inhibitor of bacterial RNA synthesis, also affected energy metabolism of bacterial cells by inhibiting the synthesis of ATP and active transport.  相似文献   

9.
Transport of succinate into Saccharomyces cerevisiae cells was determined using the endogenous coupled mitochondrial succinate oxidase system. The dependence of succinate oxidation rate on the substrate concentration was a curve with saturation. At neutral pH the K(m) value of the mitochondrial "succinate oxidase" was fivefold less than that of the cellular "succinate oxidase". O-Palmitoyl-L-malate, not penetrating across the plasma membrane, completely inhibited cell respiration in the presence of succinate but not glucose or pyruvate. The linear inhibition in Dixon plots indicates that the rate of succinate oxidation is limited by its transport across the plasmalemma. O-Palmitoyl-L-malate and L-malate were competitive inhibitors (the K(i) values were 6.6 +/- 1.3 microM and 17.5 +/- 1.1 mM, respectively). The rate of succinate transport was also competitively inhibited by the malonate derivative 2-undecyl malonate (K(i) = 7.8 +/- 1.2 microM) but not phosphate. Succinate transport across the plasma membrane of S. cerevisiae is not coupled with proton transport, but sodium ions are necessary. The plasma membrane of S. cerevisiae is established to have a carrier catalyzing the transport of dicarboxylates (succinate and possibly L-malate and malonate).  相似文献   

10.
The fungicide zinc dimethyldithiocarbamate (ziram) is a sulfhydryl reagent which inhibits specifically the growth of the yeast Saccharomyces cerevisiae on nonfermentable substrates. In isolated mitochondria, the uncoupled as well as the state 3 oxidations of succinate, α-ketoglutarate, ethanol, and malate plus pyruvate are sensitive to ziram concentrations of 10 to 30 μm. The oxidations of isocitrate, of external NADH, of α-glycerophosphate, and of ascorbate plus tetramethylphenylenediamine exhibit a lower sensitivity to ziram. Succinate, α-ketoglutarate, and pyruvate dehydrogenases activities are 50% inhibited by concentration of ziram lower than 10 μm. At the same concentrations, neither the mitochondrial transports of succinate, ADP, or phosphate nor oxidative phosphorylation and adenosine triphosphatase activities are modified. The kinetic study of the inhibition by ziram of succinate dehydrogenase activity shows that ziram is noncompetitive with succinate and produces sigmoidal inhibitions of state 3 and of uncoupled oxidation of succinate by intact mitochondria. Inhibition of succinate:phenazine methosulfate oxidoreductase activity yields exponential kinetics. However sigmoidal-type inhibition is observed when succinate dehydrogenase activity is stimulated by ATP.  相似文献   

11.
Trypanosoma brucei procyclic trypomastigotes were made permeable by using digitonin (0-70 micrograms/mg of protein). This procedure allowed exposure of coupled mitochondria to different substrates. Only succinate and glycerol phosphate (but not NADH-dependent substrates) were capable of stimulating oxygen consumption. Fluorescence studies on intact cells indicated that addition of succinate stimulates NAD(P)H oxidation, contrary to what happens in mammalian mitochondria. Addition of malonate, an inhibitor of succinate dehydrogenase, stimulated NAD(P)H reduction. Malonate also inhibited intact-cell respiration and motility, both of which were restored by further addition of succinate. Experiments carried out with isolated mitochondrial membranes showed that, although the electron transfer from succinate to cytochrome c was inhibitable by antimycin, NADH-cytochrome c reductase was antimycin-insensitive. We postulate that the NADH-ubiquinone segment of the respiratory chain is replaced by NADH-fumarate reductase, which reoxidizes the mitochondrial NADH and in turn generates succinate for the respiratory chain. This hypothesis is further supported by the inhibitory effect on cell growth and respiration of 3-methoxyphenylacetic acid, an inhibitor of the NADH-fumarate reductase of T. brucei.  相似文献   

12.
The effects of phthalate esters on the oxidation of succinate, glutamate, beta-hydroxybutyrate and NADH by rat liver mitochondria were examined and it was found that di-n-butyl phthalate (DBP) strongly inhibited the succinate oxidation by intact and sonicated rat mitochondria, but did not inhibit the State 4 respiration with NAD-linked substrates such as glutamate and beta-hydroxybutyrate. However, oxygen uptake accelerated by the presence of ADP and substrate (State 3) was inhibited and the rate of oxygen uptake decreased to that without ADP (State 4). It was concluded that phthalate esters were electron and energy transport inhibitors but not uncouplers. Phthalate esters also inhibited NADH oxidation by sonicated mitochondria. The degree of inhibition depended on the carbon number of alkyl groups of phthalate esters, and DBP was the most potent inhibitor of respiration. The activity of purified beef liver glutamate dehydrogenase [EC 1.4.1.3] was slightly inhibited by phthalate esters.  相似文献   

13.
Triethyltin (TET) stimulated the basal respiration of Escherichia coli K-12 membrane vesicles in chloride (Cl-) medium but it had little effect on respiration in sulphate (SO4(2-)) medium. Since this uncoupling activity was Cl- dependent it was attributed to the Cl-/hydroxide (OH-) exchange reaction known to be mediated by TET [1,2]. TET inhibited the oxidation of succinate by intact E. coli in both Cl- and SO4(2-) medium, but at the same concentration of TET, inhibition was always more extensive in Cl- than SO4(2-) medium. In Cl- medium uncoupling in membrane vesicles and inhibition of succinate oxidation in intact bacteria occurred over the same concentration range and it appeared that the same mechanism, i.e. Cl-/OH- exchange, was responsible for both effects. Inhibition of succinate oxidation in SO4(2-) medium was not substantial until the concentration of TET was greater than 10(-5) M. Although the nature of this inhibition could not be determined by experiments with membrane vesicles indirect evidence from growth experiments indicated that it was due to impairment of oxidative phosphorylation. The relationship between these biochemical findings and the bacteriocidal action of TET was examined by using various concentrations of anion and substrate in the growth medium. Growth was inhibited in media containing either Cl- or SO4(2-) as the main anion but at a particular concentration of TET, inhibition was greater in Cl- medium. Growth was also inhibited to a greater extent in succinate than glucose medium. Furthermore in either Cl- or SO4(2-) glucose medium, lactic acid production increased as the concentration of TET was increased. These findings imply that the bacteriocidal action of TET is related to its effect(s) on oxidative phosphorylation.  相似文献   

14.
The artificial electron-donor system, phenazine methosulfate (PMS) ascorbate, inhibited active transport of glucose by Pseudomonas aeruginosa irrespective of whether the incubation systems were in air, flushed with oxygen, or gassed with nitrogen under anaerobic denitrifying conditions. Active transport of glucose by P. aeruginosa was also inhibited by reduced 5-N-methyl-phenazonium-3-sulfonate, a membrane-impermeable electron donor. PMS-ascorbate caused rapid depletion of intracellular adenosine triphosphate (ATP) when added to respiring cell suspensions of P. aeruginosa either in the presence or absence of glucose or succinate as oxidizable energy sources. In contrast, under identical conditions, Escherichia coli formed ATP with PMS-ascorbate as the sole oxidizable energy source and ATP formation continued when glucose or succinate was present in addition to PMS-ascorbate in the incubation system.  相似文献   

15.
36.4 +/Various cellular parameters were measured with regard to their usefulness as criteria of viability of isolated cells. Stainability by trypan blue and release of lactate dehydrogenase indicate only severe irreversible damage of cells. Neither endogenous respiration nor even the ATP/ADP ratio is a sensitive criterion of viability. On aging of cells, the ATP/ADP ratio remains high, even though the membrane potential, the intracellular K concentration and the content of adenine nucleotides decrease considerably. A sensitive, easily performed test is the stimulation of cellular respiration by 1mM succinate. Only a damaged plasma membrane allows succinate permeation of a rate sufficient to stimulate respiration. The membrane potential and the intracellular Na and K concentrations are the most sensitive criteria of viability, since they indicate the earliest changes on aging. (For freshly isolated cells, we found a membrane potential of 36.4 "/- 3.4 mv [n = 5], an intracellular K concentration of 109.0 +/- 9.1 mM, and an intracellular Na concentration of 47.0 +/- 13.4mM.) The incorporation of [14C]uridine also sensitively reflects cellular damage.  相似文献   

16.
Cytochalasin A at 10-20 mug/ml inhibits growth and sugar uptake by Saccharomyces strain 1016. The effects of cytochalasin A in intact cells were completely prevented when 1 mM cysteine or dithiothreitol was added along with cytochalasin A, but were not eliminated by thiols added after inhibition had occurred. Purified yeast hexokinase, glucose-6-P dehydrogenase, phosphofructokinase and aldolase were not sensitive to cytochalasin A (20 mug/ml). Glyceraldehyde-3-P dehydrogenase was strongly inhibited by cytochalasin A (5 mug/ml); activity was promptly restored by thiols. Anaerobic glycolysis was inhibited by cytochalasin A or by iodoacetate; unlike iodoacetate, cytochalasin A did not cause accumulation of sugar phosphates. In contrast, cytochalasin A, but not iodoacetate, inhibited isolated membrane-bound ATPases. Cytochalasin A is a sulfhydryl-reactive agent and has membrane-related effects (adenosine triphosphatase) which may well be the basis of its interference with energy-dependent uptake of solutes.  相似文献   

17.
Thiabendazole, 2-(4'-thiazolyl) benzimidazole (TBZ) inhibited the growth of Penicillium atrovenetum at 8 to 10 mug/ml. Oxygen consumption with exogenous glucose was inhibited at 20 mug/ml, but endogenous respiration required more than 100 mug/ml. TBZ inhibited completely the following systems of isolated heart or fungus mitochondria: reduced nicotinamide adenine dinucleotide oxidase, succinic oxidase, reduced nicotinamide adenine dinucleotide-cytochrome c reductase, and succinic-cytochrome c reductase at concentrations of 10, 167, 10, and 0.5 mug/ml, respectively. Cytochrome c oxidase was not inhibited. Antimycin A and sodium azide caused the usual inhibition patterns for both fungus and heart terminal electron transport systems. In the presence of antimycin, the fungicide inhibited completely succinate-dichloro-phenolindophenol reductase and succinate-2, 2-di-p-nitrophenyl-(3, 3-dimethoxy-4, 4-biphenylene-5, 5-diphenylditetrazolium)-reductase at 2 and 4 mug of TBZ per ml, respectively. Coenzyme Q reductase required 15 mug/ml. TBZ reduced the uptake by P. atrovenetum of glucose and amino acids and decreased the synthesis of various cell components. At 120 mug/ml, the incorporation of labeled carbon from amino acids-U-(14)C was decreased: lipid, 73%; nucleic acids, 80%; protein, 80%; and a residual fraction, 89%. TBZ did not inhibit peptide synthesis in a cell-free protein-synthesizing system from Rhizoctonia solani. Probably the primary site of inhibition is the terminal electron transport system and other effects are secondary.  相似文献   

18.
Triethyllead and tripropyllead cations affected growth, energy metabolism and ion transport in Escherichia coli K12. The tripropyllead compound was more liposoluble than the triethyl analogue and was also more effective in inhibiting cell growth and the oxygen uptake of both intact cells and membrane particles. Triethyllead acetate (5 microM) inhibited growth on non-fermentable carbon sources, such as glycerol and succinate, more markedly than on glucose. At higher concentrations, triethyllead caused significant inhibition of respiration rates of intact cells; the concentration giving 50% inhibition was 60 microM for glycerol-grown cells and 150 microM for glucose-grown cells. Oxidation of succinate by membrane particles was less sensitive to inhibition by the tripropyl- or triethyllead compounds than were the oxidations of DL-lactate or NADH. Triethyllead acetate [1.9 mumol (mg membrane protein)-1] inhibited the reduction by NADH of cytochromes; evidence for more than one site of inhibition in the respiratory chain was obtained. Membrane-bound ATPase activity was strongly inhibited by triethyllead acetate in the absence or presence of Cl-. The concentration of inhibitor giving 50% inhibition [0.02 mumol (mg membrane protein)-1] was about two orders of magnitude lower than that required for 50% inhibition of substrate oxidation rates in membranes. Triethyllead acetate (1 microM) induced swelling of spheroplasts in iso-osmotic solutions of either NH4Cl or NH4Br, presumably as a result of the mediation by the organolead compound of Cl-/OH- and Br-/OH- antiports across the cytoplasmic membrane. Similar exchanges of OH- for F-, NO3- or SO4(2)- or the uniport of H+ could not be demonstrated. Comparisons are drawn between the effects of trialkyllead compounds and those of the more widely studied trialkyltin compounds.  相似文献   

19.
The growth of the syntrophic propionate-oxidizing bacterium strain MPOB in pure culture by fumarate disproportionation into carbon dioxide and succinate and by fumarate reduction with propionate, formate or hydrogen as electron donor was studied. The highest growth yield, 12.2 g dry cells/mol fumarate, was observed for growth by fumarate disproportionation. In the presence of hydrogen, formate or propionate, the growth yield was more than twice as low: 4.8, 4.6, and 5.2 g dry cells/mol fumarate, respectively. The location of enzymes that are involved in the electron transport chain during fumarate reduction in strain MPOB was analyzed. Fumarate reductase, succinate dehydrogenase, and ATPase were membrane-bound, while formate dehydrogenase and hydrogenase were loosely attached to the periplasmic side of the membrane. The cells contained cytochrome c, cytochrome b, menaquinone-6 and menaquinone-7 as possible electron carriers. Fumarate reduction with hydrogen in membranes of strain MPOB was inhibited by 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO). This inhibition, together with the activity of fumarate reductase with reduced 2,3-dimethyl-1,4-naphtoquinone (DMNH2) and the observation that cytochrome b of strain MPOB was oxidized by fumarate, suggested that menequinone and cytochrome b are involved in the electron transport during fumarate reduction in strain MPOB. The growth yields of fumarate reduction with hydrogen or formate as electron donor were similar to the growth yield of Wolinella succinogenes. Therefore, it can be assumed that strain MPOB gains the same amount of ATP from fumarate reduction as W. succinogenes, i.e. 0.7 mol ATP/mol fumarate. This value supports the hypothesis that syntrophic propionate-oxidizing bacteria have to invest two-thirds of an ATP via reversed electron transport in the succinate oxidation step during the oxidation of propionate. The same electron transport chain that is involved in fumarate reduction may operate in the reversed direction to drive the energetically unfavourable oxidation of succinate during syntrophic propionate oxidation since (1) cytochrome b was reduced by succinate and (2) succinate oxidation was similarly inhibited by HOQNO as fumarate reduction. Received: 18 March 1997 / Accepted: 10 November 1997  相似文献   

20.
The effect of inhibitors of carboxylic acid anion transport on the oxidation of substrates by mung bean (Phaseolus aureus) mitochondria was investigated. The oxidation of malate in the presence of either glutamate or cysteine sulfinate was inhibited by 2-butylmalonate, 2-phenylsuccinate, benzylmalonate, and p-iodobenzylmalonate in both intact and broken mitochondria. The oxidation of succinate, on the other hand, was inhibited in intact but not in broken mitochondria. The oxidation of reduced nicotinamide adenine dinucleotide was inhibited only by p-iodobenzylmalonate. This inhibition occurred only in coupled mitochondria and could be reversed by the addition of adenosine diphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号