首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N F Phillips  N H Goss  H G Wood 《Biochemistry》1983,22(10):2518-2523
Pyruvate, phosphate dikinase from Bacteroides symbiosus is strongly inhibited by low concentrations of pyridoxal 5'-phosphate. The inactivation follows pseudo-first-order kinetics over an inhibitor concentration range of 0.1-2 mM. The inactivation is highly specific since pyridoxine and pyridoxamine 5'-phosphate, analogues of pyridoxal 5'-phosphate, which lack an aldehyde group, caused little or no inhibition even at high concentrations. The unreduced dikinase-pyridoxal 5'-phosphate complex displays an absorption maxima near 420 nm, typical for Schiff base formation. Following reduction of the Schiff base with sodium borohydride, N6-pyridoxyllysine was identified in the acid hydrolysate. When the enzyme was incubated in the presence of pyridoxal 5'-phosphate and reducing agent, the ATP/AMP, Pi/PPi, and pyruvate/phosphoenolpyruvate isotopic exchange reactions were inhibited to approximately the same extent, suggesting that the modification of the lysyl moiety causes changes in the enzyme that affect the reactivity of the pivotal histidyl residue. Phosphorylation of the histidyl group appears to prevent the inhibitor from attacking the lysine residue. On the other hand, addition of pyridoxal 5'-phosphate to the pyrophosphorylated enzyme promotes release of the pyrophosphate and yields the free enzyme which is subject to inhibition.  相似文献   

2.
1. The Ca2+-ATPase activity in microsomes of rat submandibular gland was inhibited by pyridoxal 5'-phosphate in vitro. 2. The dissociation constant of the enzyme-pyridoxal 5'-phosphate complex was estimated to be 6.5 mM. 3. The inhibition of pyridoxal 5'-phosphate for both ATP and Ca2+ was competitive. 4. The order of inhibitory effectiveness of pyridoxal 5'-phosphate analogs was pyridoxal 5'-phosphate greater than pyridoxal HCl greater than pyridoxamine 5'-phosphate greater than pyridoxamine HCl. 5. The enzyme-pyridoxal 5'-phosphate complex was nonreducible with sodium borohydride.  相似文献   

3.
The substrate activity of pyridoxamine (PM) for brain pyridoxal (PL) kinase was examined in view of a recent report which indicated that PM was a poor substrate for this enzyme. Bovine brain PL kinase was shown by liquid chromatography to catalyze the phosphorylation of PM (Km = 65 microM). The identity of the reaction product, pyridoxamine 5'-phosphate, was confirmed by is ability to act as a substrate for liver pyridoxine (pyridoxamine) 5'-phosphate oxidase. The results, which indicate that PM is a good substrate for brain PL kinase, are consistent with the proposed role of intracellular phosphorylation in the uptake of vitamin B-6 brain tissue.  相似文献   

4.
Pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the synthesis of pyridoxal 5'-phosphate. The cDNA for the human enzyme has been cloned and expressed in Escherichia coli. The purified human enzyme is a homodimer that exhibits a low catalytic rate constant of approximately 0.2 sec(-1) and K(m) values in the low micromolar range for both pyridoxine 5'phosphate and pyridoxamine 5'-phosphate. Pyridoxal 5'-phosphate is an effective product inhibitor. The three-dimensional fold of the human enzyme is very similar to those of the E. coli and yeast enzymes. The human and E. coli enzymes share 39% sequence identity, but the binding sites for the tightly bound FMN and substrate are highly conserved. As observed with the E. coli enzyme, the human enzyme binds one molecule of pyridoxal 5'-phosphate tightly on each subunit.  相似文献   

5.
Abstract— The turnover of the different forms of B6 vitamers in the brains of normal and hyperphenylalaninemic preweanling rats was compared after administration of a load of [14C]pyridoxol. Metabolic transformations occurred in the following sequence: oxidation of pyridoxol to pyridoxal, which was in turn phosphorylated to the 5'-phosphate ester. No significant amount of pyridoxamine was formed during the 8-h experimental period. Pyridoxamine 5'-phosphate was derived from pyridoxal 5'-phosphate. The specific radioactivity of pyridoxal phosphate in the hyperphenylalaninemic brain was significantly lower and increased at a slower rate than in control brains. This difference could not be accounted for by either a deficient supply or inhibited activity of the enzyme, pyridoxal kinase. The synthesis of pyridoxamine 5'-phosphate in the experimental animals also lagged behind the controls. Decreased activity of enzymes dependent on pyridoxal phosphate as cofactor would explain the slower turnover of this B6-coenzyme.  相似文献   

6.
A new enzymatic method for the synthesis of [14C]pyridoxal 5'-phosphate is presented. [14C]Pyridoxal 5'-phosphate was synthesized from [14C]pyridoxine through the successive actions of pyridoxal kinase and pyridoxamine 5'-phosphate oxidase in a reaction mixture containing ATP, [14C]pyridoxine, and both enzymes. [14C]Pyridoxal 5'-phosphate was isolated by omega-aminohexyl-Sepharose 6B column chromatography. The overall yield of the product was more than 60%, starting from 550 nmol of [14C]pyridoxine. The radiochemical purity of the products, as determined by thin-layer and ion-exchange chromatography, was greater than 98%.  相似文献   

7.
Pyridoxal kinase is an ATP dependent enzyme that phosphorylates pyridoxal, pyridoxine, and pyridoxamine forming their respective 5'-phosphorylated esters. The kinase is a part of the salvage pathway for re-utilizing pyridoxal 5'-phosphate, which serves as a coenzyme for dozens of enzymes involved in amino acid and sugar metabolism. Clones of two pyridoxal kinases from Escherichia coli and one from human were inserted into a pET 22b plasmid and expressed in E. coli. All three enzymes were purified to near homogeneity and kinetic constants were determined for the three vitamin substrates. Previous studies had suggested that ZnATP was the preferred trinucleotide substrate, but our studies show that under physiological conditions MgATP is the preferred substrate. One of the two E. coli kinases has very low activity for pyridoxal, pyridoxine, and pyridoxamine. We conclude that in vivo this kinase may have an alternate substrate involved in another metabolic pathway and that pyridoxal has only a poor secondary activity for this kinase.  相似文献   

8.
Abstract We show that thrB -encoded homoserine kinase is required for growth of Escherichia coli K-12 pdxB mutants on minimal glucose medium supplemented with 4-hydroxy-l-threonine (synonym, 3-hydroxyhomoserine) or d-glycolaldehyde. This result is consistent with a model in which 4-phospho-hydroxy-l-threonine (synonym, 3-hydroxyhomoserine phosphate), rather than 4-hydroxy-l-threonine, is an obligatory intermediate in pyridoxal 5'-phosphate biosynthesis. Ring closure using 4-phospho-hydroxy-l-threonine as a substrate would lead to the formation of pyridoxine 5'-phosphate, and not pyridioxine, as the first B6-vitamer synthesized de novo. These considerations suggest that E. coli pyridoxal/pyridoxamine/pyridoxine kinase is not required for the main de novo pathway of pyridoxal 5'-phosphate biosynthesis, and instead plays a role only in the B6-vitamer salvage pathway.  相似文献   

9.
Pyridoxal 5'-phosphate rapidly abolished the DNA-hydrolyzing activities as well as DNA-dependent ATP-ase activity of the recBC enzyme of Escherichia coli. Pyridoxal also had an inhibitory effect on the enzyme but less effective than that of pyridoxal 5'-phosphate. Pyridoxamine 5'-phosphate, pyridoxamine, or pyridoxine had no effect on the activities of the enzyme. The inhibition was rapidly reversed by dilution but could be made irreversible by reduction with sodium borohydride prior to dilution. This suggests the formation of Schiff base between pyridoxal 5'-phosphate and an epsilon-amino group of a lysine residue which is essential for the enzyme activity. Pyridoxal 5'-phosphate is a competitive inhibitor of DNA substrate but not of ATP. Furthermore, the presence of DNA substrate protected the enzyme from inactivation by the reduction but the presence of ATP showed no effect. Thus, the recBC enzyme appears to have an essential lysine residue at or near the DNA binding site of the enzyme, and the enzyme possesses two independent catalytic sites, such as a DNA binding site and an ATP binding site.  相似文献   

10.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase (EC 1.4.3.5) purified from rabbit liver is competitively inhibited by the reaction product, pyridoxal 5′-phosphate. The Ki, 3 μM, is considerably lower than the Km for either natural substrate (18 and 24 μM for pyridoxamine 5′-phosphate and 25 and 16 μM for pyridoxine 5′-phosphate in 0.2 M potassium phosphate at pH 8 and 7, respectively). The Ki determined using a 10% rabbit liver homogenate is the same as that for the pure enzyme; hence, product inhibition invivo is probably not diminished significantly by other cellular components. Similar determinations for a 10% rat liver homogenate also show strong inhibition by pyridoxal 5′-phosphate. Since the reported liver content of free or loosely bound pyridoxal 5′-phosphate is greater than Ki, the oxidase in liver is probably associated with pyridoxal 5′-phosphate. These results also suggest that product inhibition of pyridoxamine-P oxidase may regulate the invivo rate of pyridoxal 5′-phosphate formation.  相似文献   

11.
Effects of pyridoxal 5'-phosphate on the activity of crude and purified acetylcholinesterase from cerebral hemispheres of adult rat brain were examined. Acetylcholinesterase was completely inactivated by incubation with 0.5 mM pyridoxal 5'-phosphate. The enzyme activity remained unaltered in the presence of analogs of pyridoxal 5'-phosphate, pyridoxal, pyridoxamine and pyridoxamine 5'-phosphate. The inhibition of acetylcholinesterase activity by pyridoxal 5'-phosphate appeared to be of a noncompetitive nature, as determined by Lineweaver-Burk analysis. The inhibitory effect of pyridoxal 5'-phosphate on acetylcholinesterase appeared to be a general one, as the activity of the enzyme from the brains of immature chick and egg-laying hen, and from different tissues of the adult male rats, exhibited a similar pattern in the presence of the inhibitor. The inhibitory effects of pyridoxal 5'-phosphate could be reversed upon exhaustive dialysis of the pyridoxal 5'-phosphate-treated acetylcholinesterase preparations. We propose that the effects of pyridoxal 5'-phosphate are due to its interaction with acetylcholinesterase, and that it can be employed as a useful tool for studying biochemical aspects of this important brain enzyme.  相似文献   

12.
The inducible kynureninase from Neurospora crassa is inactivated by incubation with L-alanine or L-ornithine. The inactivated enzyme is resolved to the apoenzyme by dialysis. Reactivation of the apoenzyme is achieved by incubation with pyridoxamine 5'-phosphate plus pyruvate, as well as with pyridoxal 5'-phosphate. The kynurenine hydrolysis proceeds linearly in the presence of added pyridoxal 5'-phosphate, or pyridoxamine 5'-phosphate plus pyruvate. These findings indicate that the fungal inducible kynureninase can act as an amino-transferase to control the enzyme activity, and that the control mechanism is similar to that reported for the bacterial kynureninase (Moriguchi, M. & Soda, K. (1973) Biochemistry 12, 2974-2980). The ratio of kynureninase activity to aminotransferase activity was determined with bacterial and fungal enzymes. All the inducible kynureninases from various fungal species examined are also controlled by the transamination. In contrast, the pig liver kynureninase and the fungal constitutive enzymes are little or not at all affected by preincubation with amino acids. Thus, the present regulatory mechanism does not operate in these constitutive-type enzymes. The rate of hydrolysis of L-3-hydroxykynurenine by the pig liver enzyme decreases with increase in the incubation time; the enzyme is inhibited by 3-hydroxyanthranilate produced from L-3-hydroxykynurenine. The inhibition is found in all the constitutive-type enzymes, suggesting that 3-hydroxyanthranilate plays a regulatory role in NAD biosynthesis from tryptophan.  相似文献   

13.
Vitamin B6 (pyridoxal phosphate) is an essential cofactor in enzymatic reactions involved in numerous cellular processes and also plays a role in oxidative stress responses. In plants, the pathway for de novo synthesis of pyridoxal phosphate has been well characterized, however only two enzymes, pyridoxal (pyridoxine, pyridoxamine) kinase (SOS4) and pyridoxamine (pyridoxine) 5' phosphate oxidase (PDX3), have been identified in the salvage pathway that interconverts between the six vitamin B6 vitamers. A putative pyridoxal reductase (PLR1) was identified in Arabidopsis based on sequence homology with the protein in yeast. Cloning and expression of the AtPLR1 coding region in a yeast mutant deficient for pyridoxal reductase confirmed that the enzyme catalyzes the NADPH-mediated reduction of pyridoxal to pyridoxine. Two Arabidopsis T-DNA insertion mutant lines with insertions in the promoter sequences of AtPLR1 were established and characterized. Quantitative RT-PCR analysis of the plr1 mutants showed little change in expression of the vitamin B6 de novo pathway genes, but significant increases in expression of the known salvage pathway genes, PDX3 and SOS4. In addition, AtPLR1 was also upregulated in pdx3 and sos4 mutants. Analysis of vitamer levels by HPLC showed that both plr1 mutants had lower levels of total vitamin B6, with significantly decreased levels of pyridoxal, pyridoxal 5'-phosphate, pyridoxamine, and pyridoxamine 5'-phosphate. By contrast, there was no consistent significant change in pyridoxine and pyridoxine 5'-phosphate levels. The plr1 mutants had normal root growth, but were significantly smaller than wild type plants. When assayed for abiotic stress resistance, plr1 mutants did not differ from wild type in their response to chilling and high light, but showed greater inhibition when grown on NaCl or mannitol, suggesting a role in osmotic stress resistance. This is the first report of a pyridoxal reductase in the vitamin B6 salvage pathway in plants.  相似文献   

14.
Pyridoxal kinase was purified 4760-fold from rat liver. The Km values for pyridoxine and pyridoxal were 120 and 190 microM respectively, and pyridoxine showed substrate inhibition at above 200 microM. Pyridoxamine 5-phosphate oxidase was also purified 2030-fold from rat liver, and its Km values for pyridoxine 5-phosphate and pyridoxamine 5-phosphate were 0.92 and 1.0 microM respectively. Pyridoxine 5-phosphate gave a maximum velocity that was 5.6-fold greater than with pyridoxamine 5-phosphate and showed strong substrate inhibition at above 6 microM. Among the tryptophan metabolites, picolinate, xanthurenate, quinolinate, tryptamine and 5-hydroxytryptamine inhibited pyridoxal kinase. However, pyridoxamine 5-phosphate oxidase could not be inhibited by tryptophan metabolites, and on the contrary it was activated by 3-hydroxykynurenine and 3-hydroxyanthranilate. Regarding the metabolism of vitamin B-6 in the liver, the effects of tryptophan metabolites that were accumulated in vitamin B-6-deficient rats after tryptophan injection were discussed.  相似文献   

15.
Escherichia coli pyridoxine (pyridoxamine) 5'-phosphate oxidase (PNPOx) catalyzes the oxidation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate to pyridoxal 5'-phosphate (PLP) using flavin mononucleotide (FMN) as the immediate electron acceptor and oxygen as the ultimate electron acceptor. This reaction serves as the terminal step in the de novo biosynthesis of PLP in E. coli. Removal of FMN from the holoenzyme results in a catalytically inactive apoenzyme. PLP molecules bind tightly to both apo- and holoPNPOx with a stoichiometry of one PLP per monomer. The unique spectral property of apoPNPOx-bound PLP suggests a non-Schiff base linkage. HoloPNPOx with tightly bound PLP shows normal catalytic activity, suggesting that the tightly bound PLP is at a noncatalytic site. The tightly bound PLP is readily transferred to aposerine hydroxymethyltransferase in dilute phosphate buffer. However, when the PNPOx. PLP complex was added to aposerine hydroxymethyltransferase suspended in an E. coli extract the rate of reactivation of the apoenzyme was several-fold faster than when free PLP was added. This suggests that PNPOx somehow targets PLP to aposerine hydroxymethyltransferase in vivo.  相似文献   

16.
Chemical modification studies with pyridoxal 5'-phosphate have indicated that lysine(s) appear to be at or near the active site of Escherichia coli glutamine synthetase (Colanduoni, J., and Villafranca, J. J. (1985) J. Biol. Chem. 260, 15042-15050; Whitley, E. J., Jr., and Ginsburg, A. (1978) J. Biol. Chem. 253, 7017-7025). Enzyme samples were prepared that contained approximately 1, approximately 2, and approximately 3 pyridoxamine 5'-phosphate residues/50,000-Da monomer; the activity of each sample was 100, 25, and 14% of the activity of unmodified enzyme, respectively. Cyanogen bromide cleavage of each enzyme sample was performed, the peptides were separated by high performance liquid chromatography, and the peptides containing pyridoxamine 5'-phosphate were identified by their absorbance at 320 nm. These isolated peptides were analyzed for amino acid composition and sequenced. The N terminus of the protein (a serine residue) was modified by pyridoxal 5'-phosphate at a stoichiometry of approximately 1/50,000 Da and this modified enzyme had full catalytic activity. Beyond a stoichiometry of approximately 1, lysines 383 and 352 reacted with pyridoxal 5'-phosphate and each modification results in a partial loss of activity. When various combinations of substrates and substrate analogs (ADP/Pi or L-methionine-SR-sulfoximine phosphate/ADP) were used to protect the enzyme from modification, Lys-352 was protected from modification indicating that this residue is at the active site. Under all experimental conditions employed, Lys-47, which reacts with the ATP analog 5'-p-fluorosulfonylbenzoyl-adenosine does not react with pyridoxal 5'-phosphate.  相似文献   

17.
M J Modak 《Biochemistry》1976,15(16):3620-3626
Pyridoxal 5'-phosphate at concentrations greater than 0.5 mM inhibits polymerization of deoxynucleoside triphosphate catalyzed by a variety of DNA polymerases. The requirement for a phosphate as well as aldehyde moiety of pyridoxal phosphate for inhibition to occur is clearly shown by the fact that neither pyridoxal nor pyridoxamine phosphate are effective inhibitors. Since the addition of nonenzyme protein or increasing the amount of template primer exerted no protective effect, there appears to be specific affinity between pyridoxal phosphate and polymerase protein. The deoxynucleoside triphosphates, however, could reverse the inhibition. The binding of pyridoxal 5'-phosphate to enzyme appears to be mediated through classical Schiff base formation between the pyridoxal phosphate and the free amino group(s) present at the active site of the polymerase protein. Kinetic studies indicate that inhibition by pyridoxal phosphate is competitive with respect to substrate deoxynucleoside triphosphate(s).  相似文献   

18.
Pyridoxal 5′-phosphate strongly and reversibly inhibited maize leaf 5-amino levulinic acid dehydratase. The inhibition was linearly competitive with respect to the substrate 5-aminolevulinic acid at pH values between 7 to 9.0. Pyridoxal was also effective as an inhibitor of the enzyme but pyridoxamine phosphate was not inhibitory. The results suggest that pyridoxal 5′-phosphate may be interacting with the enzyme either close to or at the 5-aminolevulinic acid binding site. This conclusion was further corroborated by the detection of a Schiff base between the enzyme and the substrate, 5-aminolevulinic acid and by reduction of pyridoxal phosphate and substrate complexes with sodium borohydride  相似文献   

19.
The stereochemistry for hydrogen removal from pyridoxamine 5'-phosphate with liver pyridoxine (pyridoxamine)-5'-phosphate oxidase was examined to determine whether or not there are significant steric constraints at the substrate region of the active site of the oxidase. For this, pyridoxal 5'-phosphate was reduced with tritium-labeled sodium borohydride in ammoniacal solution to yield racemically labeled [4',4'-3H]pyridoxamine 5'-phosphate which was then chemically or enzymatically oxidized to [4'-3H]pyridoxal 5'-phosphate. This latter was used as coenzyme with either L-aspartate (L-glutamate) aminotransferase and L-glutamate or L-glutamate decarboxylase and alpha-methyl-DL-glutamate to generate [4'-3H]pyridoxamine 5'-phosphate known to be labeled in the R-position. Reaction of the oxidase with the pro-R as well as the pro-R,S-labeled substrates followed by isolation of [4'-3H]pyridoxal 5'-phosphate and 3H2O revealed only half the radioactivity was abstracted from the original substrate in either case. Hence, the oxidase is not stereospecific and equally well catalyzes removal of either pro-R or pro-S hydrogen from the 4-methylene of pyridoxamine 5'-phosphate.  相似文献   

20.
Low molecular weight acid phosphatase from bovine brain was purified to homogeneity using affinity chromatography on p-aminobenzylphosphonic acid-agarose to obtain the enzyme with both high specific activity (110 mumol min-1 mg-1 measured at pH 5.5 and 37 degrees C with p-nitrophenyl phosphate as substrate) and good yields. The enzyme was characterized with respect to molecular weight, amino acid composition, pH optimum, Km and Vmax in varying substrates, and to the Ki of varying inhibitors. Furthermore, transphosphorylation to glycerol was demonstrated by measuring the released p-nitrophenol/Pi concentration ratio during the initial phase of the catalyzed reaction. The enzyme was inactivated by iodoacetate and 1,2-cycloexanedione. Inorganic phosphate, a competitive inhibitor, protected the enzyme from being inactivated by the above compounds, demonstrating the involvement of both cysteine(s) and arginine(s) at the active site of the enzyme. Furthermore, the strong inhibition exerted by pyridoxal 5'-phosphate and the low inhibitory capacity possessed by the pyridoxal 5'-phosphate analogues pyridoxamine 5'-phosphate and pyridoxal, indicate that at least one lysine residue is present at the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号