首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biorn AC  Graves DJ 《Biochemistry》2001,40(17):5181-5189
Glycogen phosphorylase is a muscle enzyme which metabolizes glycogen, producing glucose-1-phosphate, which can be used for the production of ATP. Phosphorylase activity is regulated by phosphorylation/dephosphorylation, and by the allosteric binding of numerous effectors. In this work, we have studied 10 site-directed mutants of glycogen phosphorylase (GP) in its amino-terminal regulatory region to characterize any changes that the mutations may have made on its structure or function. All of the GP mutants had normal levels of activity in the presence of the allosteric activator AMP. Some of the mutants were observed to have altered AMP-binding characteristics, however. R16A and R16E were activated at very low AMP concentration and crystallized at low temperature, like the phosphorylated form of GP, phosphorylase a, and unlike the dephospho-form, phosphorylase b. This indicates that even without phosphorylation, the structures of these mutants are more like phosphorylase a than phosphorylase b. These mutants were also very poorly phosphorylated in the presence of the inhibitor glucose, while phosphorylase b was phosphorylated normally with this inhibitor present. In contrast to R16A and R16E, four other mutants behaved like phosphorylase b after phosphorylation. R69E was only partially activated by phosphorylation, and I13G, R43E, and R43E/R69E were completely inactive after phosphorylation. We propose a model for the many functions of the amino terminus to explain the many varied effects of these mutations.  相似文献   

2.
1. Post-mortem changes in the concentrations of the following compounds in ox sternomandibularis muscles stored in nitrogen at 1 degrees , 5 degrees and 15 degrees are reported: P(i) creatine phosphate, hexose monophosphates, fructose diphosphate, triose phosphates, alpha-glycerophosphate, phosphoglycerates, lactate, ATP, ADP, AMP, NAD(+) and total nucleotides. Some results obtained with muscles stored at 37 degrees are included. 2. At the time the muscles were placed at controlled temperatures (about 1.5hr. post mortem) the phosphorus in the compounds measured accounted for 91+/-6% (s.d.) of the total acid-soluble phosphate. 3. The results indicated that at all temperatures the activities of the phosphorylase and phosphofructokinase steps limited the rate and the extent of post-mortem glycolysis. 4. The large variations in hexose monophosphate concentrations during storage indicated that the ratio of phosphorylase to phosphofructokinase activity varied considerably with time and temperature. 5. Between 3.5 and 7hr. post mortem the rates of glycolysis and of ATP turnover were not slower at 5 degrees that at 15 degrees , and were probably faster at 1 degrees . The significance of this finding is discussed.  相似文献   

3.
31P-nuclear magnetic resonance was applied to living muscles of bullfrogs, and the time courses of metabolic changes of ATP, creatine phosphate, inorganic phosphate, and sugar phosphates were studied under anaerobic and aerobic conditions. A decrease in creatine phosphate was observed in the resting muscle under anaerobic conditions with a concomitant decrease in the intracellular pH, while the ATP level remained constant. With the use of 2,4-dinitro-1-fluorobenzene and iodoacetic acid, ATP disappeared quickly. When the resting muscle was perfused with oxygen-saturated glucose-Ringer's solution, the amount of creatine phosphate increased gradually. These findings indicate that anaerobic glycolysis is insufficient for even the resting energy consumption whereas oxidative phosphorylation is sufficient. The effects of tetanic stimulation on living muscles were also studied. When glycolysis and oxidative phosphorylation were suppressed, the intracellular energy store was depleted by the tetanic contraction. Anaerobic glycolysis produced rapid recovery of the energy store level, although it was insufficient to reach the initial level. Aerobic oxidative phosphorylation produced sufficient energy to reach the initial level, and this level was never exceeded. This finding suggests the existence of a regulatory mechanism for the energy store level.  相似文献   

4.
The brain depends on both glycolysis and mitochondrial oxidative phosphorylation for maintenance of ATP pools. Astrocytes play an integral role in brain functions providing trophic supports and energy substrates for neurons. In this paper, we report that human astrocytoma cells (ADF) undergoing ischemic conditions may use both purine and pyrimidine nucleosides as energy source to slow down cellular damage. The cells are subjected to metabolic stress conditions by exclusion of glucose and incubation with oligomycin (an inhibitor of oxidative phosphorylation). This treatment brings about a depletion of the ATP pool, with a concomitant increase in the AMP levels, which results in a significant decrease of the adenylate energy charge. The presence of purine nucleosides in the culture medium preserves the adenylate energy charge, and improves cell viability. Besides purine nucleosides, also pyrimidine nucleosides, such as uridine and, to a lesser extent, cytidine, are able to preserve the ATP pool. The determination of lactate in the incubation medium indicates that nucleosides can preserve the ATP pool through anaerobic glycolysis, thus pointing to a relevant role of the phosphorolytic cleavage of the N-glycosidic bond of nucleosides which generates, without energy expense, the phosphorylated pentose, which through the pentose phosphate pathway and glycolysis can be converted to energetic intermediates also in the absence of oxygen. In fact, ADF cells possess both purine nucleoside phosphorylase and uridine phosphorylase activities.  相似文献   

5.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weights between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [gamma-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [gamma-32P]ATP and cyclic AMP-dependent protein kinase from calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

6.
7.
A sensitive method for measuring phosphorylase kinase activity by the incorporation of 32P from [γ-32]ATP into phosphorylase in the presence of other phosphorylation reactions is described. The kinase reaction is carried out in a crude homogenate. After stopping the reaction, a portion of the reaction mixture is withdrawn for assay of phosphorylase conversion and the rest is applied on a 5′-AMP Sepharose column. Phosphorylase in both forms is retained on the column while other phosphorylated proteins and [γ-32P]ATP are washed out. The phosphorylase is then eluted by 10 mm AMP and the radioactivity incorporated is counted.  相似文献   

8.
We have investigated the effects of insulin on the phosphorylation of glycogen phosphorylase in skeletal muscle. Rat epitrochlearis muscles were incubated in vitro with 32Pi to label cellular phosphoproteins, before being treated with hormones. Phosphorylase, phosphorylase kinase, and glycogen synthase were immunoprecipitated under conditions that prevented changes in their phosphorylation states. Based on measurements of the activity ratio (-AMP/+AMP) and the 32P content of phosphorylase, 4-8% of the phosphorylase in untreated muscles appeared to be phosphorylated. Epinephrine promoted increases of approximately 4-fold in the 32P content and activity ratio. Neither these effects nor the epinephrine-stimulated increases in phosphorylation of glycogen synthase and phosphorylase kinase were attenuated by insulin. However, insulin at physiological concentrations rapidly decreased the 32P content of phosphorylase in muscles incubated without epinephrine. Results from peptide mapping experiments indicate that phosphorylase was phosphorylated at a single site in both control and insulin on phosphorylase represented a decrease in 32P of approximately 50%. By comparison, the 32P content of glycogen synthase and the beta subunit of phosphorylase kinase were decreased by only 20 and 16%, respectively; the 32P content of the kinase alpha subunit was not affected by insulin. The results provide direct evidence that insulin decreases the amount of phosphate in phosphorylase and phosphorylase kinase. These findings have important implications with respect to both the regulation of glycogen metabolism in skeletal muscle and the mechanism of insulin action.  相似文献   

9.
The iodoacetate-nitrogen-poisoned muscle offers the possibility of studying the stoichiometry of the single muscle twitch since metabolic resynthesis by glycolysis and oxidative phosphorylation are blocked, and there remains as an energy source only the creatine phosphoryltransfer system, creatine phosphate reacting with adenosinediphosphate to give the triphosphate and creatine. It is shown, preparatory to a determination of the amount of phosphocreatine split in a single twitch, that iodoacetate does not inhibit creatine phosphoryltransferase at concentrations which block glycolysis. An analysis is developed which assumes that the transferase maintains the creatine phosphoryl transfer reaction in equilibrium following contraction, and further that the creatine phosporyltransfer reaction and the myokinase reaction are isolated in muscle. On the basis of this analysis and the data obtained, an estimate of the equilibrium constant of the creatine phosphoryl reaction in muscle is obtained which agrees with values determined in vitro. Using the estimated equilibrium constant, and the concentrations of creatine, creatine phosphate, and adenosinetriphosphate found, a value for the concentration of free adenosinediphosphate is obtained which is considerably less than that found by direct chemical analysis.  相似文献   

10.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weight between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [γ-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [γ-32P]ATP and cyclic AMP-dependent protein kinase form calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

11.
A short-term training program involving 2 h of daily exercise at 59% of peak O2 uptake (VO2max) repeated for 10-12 consecutive days was employed to determine the significance of adaptations in energy metabolic potential on alterations in energy metabolism and substrate utilization in working muscle. The initial VO2max determined before training on the eight male subjects was 53.0 +/- 2.0 (SE) ml.kg-1.min-1. Analysis of samples obtained by needle biopsy from the vastus lateralis muscle before exercise (0 min) and at 15, 60, and 99 min of exercise indicated that on the average training resulted (P less than 0.05) in a 6.5% higher concentration of creatine phosphate, a 9.9% lower concentration of creatine, and a 39% lower concentration of lactate. Training had no effect on ATP concentration. These adaptations were also accompanied by a reduction in the utilization in glycogen such that by the end of exercise glycogen concentration was 47.1% higher in the trained muscle. Analysis of the maximal activities of representative enzymes of different metabolic pathways and segments indicated no change in potential in the citric acid cycle (succinate dehydrogenase, citrate synthase), beta-oxidation (3-hydroxyacyl CoA dehydrogenase), glucose phosphorylation (hexokinase), or potential for glycogenolysis (phosphorylase) and glycolysis (pyruvate kinase, phosphofructokinase, alpha-glycerophosphate dehydrogenase, lactate dehydrogenase). With the exception of increases in the capillary-to-fiber area ratio in type IIa fibers, no change was found in any fiber type (types I, IIa, and IIb) for area, number of capillaries, capillary-to-fiber area ratio, or oxidative potential with training.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The lowest contents of ATP and the lowest ATP/AMP concentration ratios are observed in the molluscan muscles that have very low rates of energy expenditure during contraction. The highest contents of ATP are observed in the extremely aerobic insect flight muscle and the extremely anaerobic pectoral muscle of the pheasant and domestic fowl. In general, the lowest ATP/AMP concentration ratios are observed for muscle in which the variation in the rate of energy utilization is small (e.g. some molluscan muscles, heart muscle); the highest ratios are observed in muscles in which this variation is large (lobster abdominal muscle, pheasant pectoral muscle, some insect flight muscles). This finding is consistent with the proposed role of AMP and the adenylate kinase reaction in the regulation of glycolysis. However, in the flight muscle of the honey-bee the ATP/AMP ratio is very low, so that glycolysis may be regulated by factors other than the variation in AMP concentration. The variation in the contents of arginine phosphate in muscle from the invertebrates is much larger than the variation in creatine phosphate in muscle from the vertebrates. The contents of hexose monophosphates and pyruvate are, in general, higher in the muscles of vertebrates than in those of the invertebrates. The contents of phosphoenolpyruvate are similar in all the muscles investigated, except for the honey-bee in which it is about 4-10-fold higher. The mass-action ratios for the reactions catalysed by phosphoglucoisomerase and adenylate kinase are very similar to the equilibrium constants for these reactions. Further, the variation in the mass-action ratios between muscles is small. It is concluded that these enzymes catalyse reactions close to equilibrium. However, the mass-action ratios for the reactions catalysed by phosphofructokinase and pyruvate kinase are much smaller than the equilibrium constants. The variation in the ratios between different muscles is large. It is concluded that these enzymes catalyse nonequilibrium reactions. Since the variation in the mass-action ratios for the reactions catalysed by the phosphagen kinases (i.e. creatine and arginine phosphokinases) is small, it is suggested that these reactions are close to equilibrium.  相似文献   

13.
1. Measurements of ATP, ADP and AMP concentrations in livers of rats that had been delivered by Caesarian section indicate a rapid shift from a low to a high [ATP]/[AMP] ratio. This change is consistent with the cessation of glycolysis and the initiation of gluconeogenesis at birth. 2. When newborn animals are exposed to a 100% nitrogen atmosphere the hepatic ATP concentration falls and AMP increases. 3. Calculations of the [ATP][AMP]/[ADP](2) ratio give values that are close to the equilibrium constant of adenylate kinase except when the ATP concentration is high. 4. This difference cannot be accounted for by the preferential binding of available Mg(2+) to ATP(4-) rather than ADP(3-). It is concluded that the relative proportions of adenine nucleotides at any level of phosphorylation are only partly regulated by adenylate kinase.  相似文献   

14.
Flavopiridol has been shown to induce cell cycle arrest and apoptosis in various tumor cells in vitro and in vivo. Using immobilized flavopiridol, we identified glycogen phosphorylases (GP) from liver and brain as flavopiridol binding proteins from HeLa cell extract. Purified rabbit muscle GP also bound to the flavopiridol affinity column. GP is the rate-limiting enzyme in intracellular glycogen breakdown. Flavopiridol significantly inhibited the AMP-activated GP-b form of the purified rabbit muscle isoenzyme (IC50 of 1 microM at 0.8 mM AMP), but was less inhibitory to the active phosphorylated form of GP, GP-a (IC50 of 2.5 microM). The AMP-bound GP-a form was poorly inhibited by flavopiridol (40% at 10 microM). Increasing concentrations of the allosteric effector AMP resulted in a linear decrease in the GP-inhibitory activity of flavopiridol suggesting interference between flavopiridol and AMP. In contrast the GP inhibitor caffeine had no effect on the relative GP inhibition by flavopiridol, suggesting an additive effect of caffeine. Flavopiridol also inhibited the phosphorylase kinase-catalyzed phosphorylation of GP-b by inhibiting the kinase in vitro. Flavopiridol thus is able to interfere with both activating modifications of GP-b, AMP activation and phosphorylation. In A549 NSCLC cells flavopiridol treatment caused glycogen accumulation despite of an increase in GP activity, suggesting direct GP inhibition in vivo rather than inhibition of GP activation by phosphorylase kinase. These results suggest that the cyclin-dependent kinase inhibitor flavopiridol interferes with glycogen degradation, which may be responsible for flavopiridol's cytotoxicity and explain its resistance in some cell lines.  相似文献   

15.
Cardiac sarcoplasmic reticulum-glycogenolytic complex, isolated as a single peak on sucrose density gradient, may function as a "compartmented" effector site for cyclic AMP resulting in modulation of both glycogenolysis and calcium transport. The conversion of phosphorylase b to a is stimulated by ATP and inhibited by protein kinase inhibitor. Cyclic AMP alone stimulated neither phosphorylase b to a conversion nor calcium uptake. An inhibitor of adenylate cyclase depressed both calcium uptake and phosphorylase activation and both functions were subsequently stimulated by micromolar concentrations of cyclic AMP. Endogenous phosphorylation of sarcoplasmic reticulum was also inhibited by adenylate cyclase inhibitor and the inhibition was reversed by cyclic AMP. These results suggest that the sarcoplasmic reticulum of cardiac muscle is an internal effector site for cyclic AMP which may regulate both calcium and metabolism. It appears that cyclic AMP formation in vitro is not the rate-controlling step in the activation sequence.  相似文献   

16.
When a plasma membrane preparation isolated from rat liver was incubated with [gamma-32P]ATP and Mg2+, protein-bound 32P increased rapidly, followed by a gradual decrease. The time course suggested the existence of membrane-bound kinase(s) and phosphatase(s) phosphorylating and dephosphorylating endogenous proteins. The extent of phosphorylation was not affected by inclusion of cyclic AMP in the reaction mixture. The extent of the maximum phosphorylation was dependent on membrane concentration, owing to rapid hydrolysis of ATP by the membrane-bound ATPase activity. Thus, phosphorylation proceeded further on repeated addition of ATP. Both phosphorylation and dephosphorylation were stimulated by Mg2+, an effective rate of phosphorylation being obtained at 15 mM. Pi up to 20 mM stimulated phosphorylation with little effect on the rate of dephosphorylation. At higher phosphate concentrations, the maximum 32P-incorporation decreased again, and at 100 mM, dephosphorylation was prevented significantly. Autoradiography after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and urea revealed six main phosphorylated bands, two of which (Band 3 and 5) were partly extractable with 1 M NaCl. In the presence of 100 mM Pi, very strong phosphorylation of Band 5 (about 23,000 daltons) was noted, and a new strongly labeled band (Band P, about 20,000 daltons) was observed. It was concluded that the phosphoproteins in the membrane may be turned over at different rates and high concentrations of Pi may affect the turnover rate of some phosphoproteins, probably through interference with the phosphatase.  相似文献   

17.
Inhibitor-1 has been shown to be phosphorylated in skeletal muscle in vivo. In normal fed animals the degree of phosphorylation was 31 +/- 7% and this value increases to 70 +/- 12% following an intravenous injection of adrenaline. The results imply that the phosphorylation of inhibitor-1 may be equally as important as the phosphorylation of phosphorylase kinase in elevating the levels of phosphorylase a. The role of inhibitor-1 in metabolism is discussed.  相似文献   

18.
Studies with the isolated perfused working rat heart were carried out to investigate factors that may enable the heart to recover after periods of anoxia. It was found that the presence of glucose in the perfusion fluid during anoxia was essential for complete post-anoxic recovery and the presence of a high concentration of K(+) increased not only the rate of recovery but also the final extent of recovery. In an attempt to clarify the roles played by glucose and K(+) in aiding the survival and recovery of the anoxic myocardium the concentrations of parameters associated with energy liberation and anaerobic glycolysis (ATP, ADP, AMP, P(i), creatine phosphate, glycogen and lactate) were measured in the presence and absence of glucose during the anoxic phase. Determinations of these parameters were carried out during the working aerobic control period, the anoxic period (K(+) arrest) and the recovery period. The results demonstrated that glucose acted as an energy source during anoxia and thus maintained myocardial concentrations of high-energy phosphates, particularly ATP. These studies have also shown a direct relationship between the ability of the heart to recover and the concentration of myocardial ATP at the time of reoxygenation.  相似文献   

19.
Energy for muscle contractions is supplied by ATP generated from 1) the net hydrolysis of phosphocreatine (PCr) through the creatine kinase reaction, 2) oxidative phosphorylation, and 3) anaerobic glycolysis. The effect of old age on these pathways is unclear. The purpose of this study was to examine whether age may affect ATP synthesis rates from these pathways during maximal voluntary isometric contractions (MVIC). Phosphorus magnetic resonance spectroscopy was used to assess high-energy phosphate metabolite concentrations in skeletal muscle of eight young (20-35 yr) and eight older (65-80 yr) men. Oxidative capacity was assessed from PCr recovery after a 16-s MVIC. We determined the contribution of each pathway to total ATP synthesis during a 60-s MVIC. Oxidative capacity was similar across age groups. Similar rates of ATP synthesis from PCr hydrolysis and oxidative phosphorylation were observed in young and older men during the 60-s MVIC. Glycolytic flux was higher in young than older men during the 60-s contraction (P < 0.001). When expressed relative to the overall ATP synthesis rate, older men relied on oxidative phosphorylation more than young men (P = 0.014) and derived a smaller proportion of ATP from anaerobic glycolysis (P < 0.001). These data demonstrate that although oxidative capacity was unaltered with age, peak glycolytic flux and overall ATP production from anaerobic glycolysis were lower in older men during a high-intensity contraction. Whether this represents an age-related limitation in glycolytic metabolism or a preferential reliance on oxidative ATP production remains to be determined.  相似文献   

20.
Cardiac sarcoplasmic reticulum-glycogenolytic complex, isolated as a single peak on sucrose density gradient, may function as a “compartmented” effector site for cyclic AMP resulting in modulation of both glycogenolysis and calcium transport. The conversion of phosphorylase b to a is stimulated by ATP and inhibited by protein kinase inhibitor. Cyclic AMP alone stimulated neither phosphorylase b to a conversion nor calcium uptake. An inhibitor of adenylate cyclase depressed both calcium uptake and phosphorylase activation and both functions were subsequently stimulated by micromolar concentrations of cyclic AMP. Endogenous phosphorylation of sarcoplasmic reticulum was also inhibited by adenylate cyclase inhibitor and the inhibition was reversed by cyclic AMP. These results suggest that the sarcoplasmic reticulum of cardiac muscle is an internal effector site for cyclic AMP which may regulate both calcium and metabolism. It appears that cyclic AMP formation in vitro is not the rate-controlling step in the activation sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号