首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reproductive incompatibilities called cytoplasmic incompatibilities are known to affect a large number of arthropod species and are mediated by Wolbachia, a maternally transmitted microorganism. The crossing relationships between strains of potential hosts define their incompatibility types and it is generally assumed that differences between strains of Wolbachia induce different crossing types. Among all the described host species, the mosquito, Culex pipiens, displays the greatest variability of cytoplasmic incompatibility crossing types. We analysed mitochondrial and bacterial DNA variability in Culex pipiens in order to investigate some possible causes of incompatibility crossing type variability. We sequenced fragments of the ftsZ gene, and the A + T-rich control region of the mtDNA. We also sequenced the second subunit of the mitochondrial cytochrome oxidase (COII) gene, in Culex pipiens and a closely related species, C. torrentium, in order to verify the usefulness of the A + T-rich region for the present purposes. No variability was found in the Wolbachia ftsZ gene fragment, and very limited variation of the mitochondrial marker whatever the compatibility type or the origin of the host. A low variability was found in the A + T-rich region and comparison of divergence of the A + T-rich region and COII gene between C. pipiens and C. torrentium did not reveal any special constraints affecting this region. In contrast to observations in other host species, variability of incompatibility crossing types is not due to multiple infections by distantly related Wolbachia strains.  相似文献   

2.
The Dobzhansky–Muller model of speciation posits that defects in hybrids between species are the result of negative epistatic interactions between alleles that arose in independent genetic backgrounds. Tests of one important prediction from this model, that incompatibilities “snowball,” have relied on comparisons of the number of incompatibilities between closely related pairs of species separated by different divergence times. How incompatibilities accumulate along phylogenies, however, remains poorly understood. We extend the Dobzhansky–Muller model to multispecies clades to describe the mathematical relationship between tree topology and the number of shared incompatibilities among related pairs of species. We use these results to develop a statistical test that distinguishes between the snowball and alternative incompatibility accumulation models, including nonepistatic and multilocus incompatibility models, in a phylogenetic context. We further demonstrate that patterns of incompatibility sharing across species pairs can be used to estimate the relative frequencies of different types of incompatibilities, including derived–derived versus derived–ancestral incompatibilities. Our results and statistical methods should motivate comparative genetic mapping of hybrid incompatibilities to evaluate competing models of speciation.  相似文献   

3.
Wolbachia pipientis is an obligate bacterial endosymbiont, which has successfully invaded approximately 20% of all insect species by manipulating their normal developmental patterns. Wolbachia-induced phenotypes include parthenogenesis, male killing, and, most notably, cytoplasmic incompatibility. In the future these phenotypes might be useful in controlling or modifying insect populations but this will depend on our understanding of the basic molecular processes underlying insect fertilization and development. Wolbachia-infected Drosophila simulans express high levels of cytoplasmic incompatibility in which the sperm nucleus is modified and does not form a normal male pronucleus when fertilizing eggs from uninfected females. The sperm modification is somehow rescued in eggs infected with the same strain of Wolbachia. Thus, D. simulans has become an excellent model organism for investigating the manner in which endosymbionts can alter reproductive programs in insect hosts. This paper reviews the current knowledge of Drosophila early development and particularly sperm function. Developmental mutations in Drosophila that are known to affect sperm function will also be discussed.incompatibility.  相似文献   

4.
Effects of Wolbachia on mtDNA variation in two fire ant species   总被引:1,自引:0,他引:1  
Wolbachia are endosymbiotic bacteria that infect arthropods. As they are maternally transmitted, the spread of Wolbachia variants within host populations may affect host mtDNA evolution. We sequenced a portion of the mitochondrial cytochrome oxidase I gene from numerous individuals of two Wolbachia-infected fire ant species, Solenopsis invicta and S. richteri, to determine how these bacteria influence patterns of mtDNA variation. As predicted, there was a strong association between Wolbachia strain and host mtDNA lineage within and between these fire ant species. However, there was no consistent association between the presence of Wolbachia and a reduction in mtDNA diversity. Moreover, patterns of mtDNA variation within Wolbachia-infected populations did not differ consistently from neutral expectations, despite our prediction that strong positive selection acting on Wolbachia influences the evolutionary dynamics of other cytoplasmic genomes. Specifically, while values of Tajima's D consistently were less than zero for all six samples of fire ants harbouring Wolbachia, MacDonald-Kreitman tests suggested that the patterns of variation were different from those expected under neutrality in only two of the samples. We conclude that these neutrality tests do not unambiguously reveal a clear effect of Wolbachia infection on patterns of mtDNA variation and substitution in fire ants. Finally, consistent with an earlier study, our data revealed the presence of two divergent mtDNA haplotype lineages and Wolbachia strains within S. invicta. Recognition of these two lineages has important consequences for interpreting patterns of mtDNA evolution and genetic differentiation between conspecific social forms of this species.  相似文献   

5.
Marshall JL 《PloS one》2007,2(8):e720
The three species in the Allonemobius socius complex of crickets have recently diverged and radiated across North America. Interestingly, the only barriers to gene flow between these species in zones of secondary contact appear to be associated with fertilization traits - e.g., conspecific sperm precedence and the ability of males to induce females to lay eggs. Other traits, such as the length of female's reproductive tract, may also influence fertilization success and be associated with species boundaries. However, the underlying variation in this duct has not been assessed across populations and species. Moreover, the effects of reproductive parasites like Wolbachia on these morphological features have yet to be addressed, even though its infections are concentrated in reproductive tissues. I evaluated both the natural variation in and the effects of Wolbachia infection on spermathecal duct length among several populations of two species in the Allonemobius socius complex. My results suggest the following: (1) spermathecal duct length varies between species and is associated with species boundaries, (2) there is considerable variation among populations within species, (3) there is a Wolbachia infection-by-population interaction effect on the length of the spermathecal duct, and (4) experimental curing of Wolbachia recovers the uninfected morphology. These findings suggest the following hypotheses: (1) spermathecal duct length, like other fertilization traits in Allonemobius, is evolving rapidly and influences reproductive isolation and (2) Wolbachia-induced modifications of this duct could influence the dynamics of male-female coevolution. Further experiments are needed, however, to explicitly test these latter two hypotheses.  相似文献   

6.
Maroja LS  Clark ME  Harrison RG 《Heredity》2008,101(5):435-444
Wolbachia are cytoplasmically inherited alpha-proteobacteria that can cause cytoplasmic incompatibility (CI) in insects. This incompatibility between sperm and egg is evident when uninfected females mate with infected males. Wolbachia-driven reproductive incompatibilities are of special interest because they may play a role in speciation. However, the presence of Wolbachia does not always imply incompatibility. The field crickets Gryllus firmus and G. pennsylvanicus exhibit a very clear unidirectional incompatibility and have been cited as a possible example of Wolbachia-induced CI. Here, we conduct curing experiments, intra- and interspecific crosses, cytological examination of Wolbachia in testes and Wolbachia quantifications through real-time PCR. All of our data strongly suggest that Wolbachia are not involved in the reproductive incompatibility between G. firmus and G. pennsylvanicus.  相似文献   

7.
Rickettsia-like maternally inherited bacteria have been shown to be involved in a variety of alterations of arthropod sexuality, such as female-biased sex ratios, parthenogenesis, and sterility of crosses either between infected males and uninfected females or between infected individuals (cytoplasmic incompatibility). We have characterized several of these microorganisms through partial sequences of the small (16S) and large (23S) subunit ribosomal DNA. All the symbionts identified, which include several cytoplasmic incompatibility microorganisms, several endosymbionts of terrestrial isopods, and symbionts of two thelytokous Trichogramma wasp species, belong to a monophyletic group of related symbionts, some of which have previously been detected in several insects exhibiting cytoplasmic incompatibility. Three molecular lineages can be identified on the basis of 16S as well as 23S sequences. Although they are only known as endocellular symbionts, Wolbachia spread by horizontal transfer across host lineages as evidenced by their diversification which occurred long after that of their hosts, and by the non-congruence of the phylogenetic relationships of symbionts and their hosts. Indeed, symbionts of two different lineages have been found in the same host species, whereas closely related endosymbionts are found in distinct insect orders. Isopod endosymbionts form a separate lineage, and they can determine feminization as well as cytoplasmic incompatibility. The ability to determine cytoplasmic incompatibility, found in all lineages, is probably ancestral to this group.  相似文献   

8.
Wolbachia are widespread cytoplasmically inherited bacteria that induce various reproductive alterations in host arthropods, including cytoplasmic incompatibility (CI), an incompatibility between sperm and egg that typically results in embryonic death. CI has been invoked as a possible mechanism for reproductive isolation and speciation in arthropods, by restricting gene flow and promoting maintenance (and evolution) of genetic divergence between populations. Here we investigate patterns of Wolbachia infection and nuclear and mitochondrial differentiation in geographical populations of the birdnest blowfly Protocalliphora sialia. Blowflies in western North America are infected with two A-group Wolbachia, with some individuals singly and others doubly infected. Individuals in eastern North America mostly show single infections with a B-group Wolbachia. Populations in the Midwest are polymorphic for infections and show A- or B-group infection. There is a low level of mitochondrial divergence and perfect concordance of mitochondrial haplotype with infection type, suggesting that two Wolbachia-associated selective sweeps of the mitochondrion have occurred in this species. Amplified fragment length polymorphism analysis of nuclear genetic variation shows genetic differentiation between the eastern-Midwestern and western populations. Both Midwestern and eastern flies infected with A-Wolbachia show eastern nuclear genetic profiles. Current results therefore suggest that Wolbachia has not acted as a major barrier to gene flow between western and eastern-Midwestern populations, although some genetic differentiation between A-Wolbachia infected and B-Wolbachia infected individuals in eastern-Midwestern populations cannot be ruled out.  相似文献   

9.
Wolbachia are obligatory endosymbiotic α-proteobacteria found in many insect species. They are maternally transmitted and often exhibit reproductive phenotypes like cytoplasmic incompatibility. Pityogenes chalcographus is a bark beetle causing severe damage in spruce stands. Its European populations are divided into several mitochondrial clades separated by partial crossing barriers. In this study, we tested a large sample set covering the natural range of the beetle in Europe for the presence of Wolbachia and associations between infection pattern and mitotypes using a highly sensitive nested PCR technique. 35.5% of the individuals were infected with the endosymbiont and two distinct strains were identified. Both strains occur in low titre not accessible by conventional detection methods. The infections are present all over Europe, unlikely to cause the partial crossing barriers in this host and uncoupled from mitochondrial clades. This pattern is indicative for populations evolving towards endosymbiont loss and for repeated intraspecific horizontal transfer of Wolbachia . Alternatively, the low-titre infections found in P. chalcographus are yet another example for Wolbachia that can persist in host species at low densities and frequencies.  相似文献   

10.
Wolbachia is a widespread group of intracellular bacteria commonly found in arthropods. In many insect species, Wolbachia induce a cytoplasmic mating incompatibility (CI). If different Wolbachia infections occur in the same host species, bidirectional CI is often induced. Bidirectional CI acts as a postzygotic isolation mechanism if parapatric host populations are infected with different Wolbachia strains. Therefore, it has been suggested that Wolbachia could promote speciation in their hosts. In this article we investigate theoretically whether Wolbachia-induced bidirectional CI selects for premating isolation and therefore reinforces genetic divergence between parapatric host populations. To achieve this we combined models for Wolbachia dynamics with a well-studied reinforcement model. This new model allows us to compare the effect of bidirectional CI on the evolution of female mating preferences with a situation in which postzygotic isolation is caused by nuclear genetic incompatibilities (NI). We distinguish between nuclear incompatibilities caused by two loci with epistatic interactions, and a single locus with incompatibility among heterozygotes in the diploid phase. Our main findings are: (1) bidirectional CI and single locus NI select for premating isolation with a higher speed and for a wider parameter range than epistatic NI; (2) under certain parameter values, runaway sexual selection leads to the increase of an introduced female preference allele and fixation of its preferred male trait allele in both populations, whereas under others it leads to divergence in the two populations in preference and trait alleles; and (3) bidirectional CI and single locus NI can stably persist up to migration rates that are two times higher than seen for epistatic NI. The latter finding is important because the speed with which mutants at the preference locus spread increases exponentially with the migration rate. In summary, our results show that bidirectional CI selects for rapid premating isolation and so generally support the view that Wolbachia can promote speciation in their hosts.  相似文献   

11.
John Jaenike 《Oikos》2009,118(3):353-362
Many insect species are infected with maternally transmitted endosymbionts, the most widely documented being Wolbachia . The rate of spread and equilibrium of prevalence of these infections depend on two parameters – maternal transmission fidelity and relative fitness of infected cytoplasmic lineages. Both transmission fidelity and the phenotypic effect of endosymbionts often increase with endosymbiont density within hosts. Thus, the dynamics of infection prevalence in host populations depends on processes affecting within-host density of endosymbionts. In theory, the equilibrium prevalence of infection by male-killing endosymbionts is much more sensitive to changes in transmission fidelity and relative fitness than is that of endosymbionts that cause cytoplasmic incompatibility. In natural populations, male-killers exhibit much greater temporal and spatial variation in the prevalence of infection than do endosymbionts that cause cytoplasmic incompatibility. Thus, the population dynamics of endosymbiont infections, especially those that cause male-killing, is likely to be governed by environmental and genetic variables that affect within-host density of these infections.  相似文献   

12.
Variation in mitochondrial DNA was surveyed at four gene loci in and around the zone of contact between two naturally hybridizing conifers, black spruce (Picea mariana) and red spruce (P. rubens) in northeastern North America. Most of the mtDNA diversity of these species was found in populations next to or into the zone of contact, where some individuals bore rare mitotypes intermediate between the common mitotypes observed in the allopatric areas of each species. Sequence analysis and tests for mtDNA recombination point to this phenomenon, rather than to recurrent mutation, as the most tenable hypothesis for the origin of these rare mitotypes. From the 10 mitotypes observed, at least 4 would be the product of recombination between 4 of the 5 putative ancestral mitotypes. Tests for cytonuclear disequilibrium and geographical structure of the putative recombinant mitotypes suggest that mtDNA recombination is not frequent and relatively recent on the geological time scale. mtDNA recombination would have been promoted by transient heteroplasmy due to leakage of paternal mtDNA since the Holocene secondary contact between the two species.  相似文献   

13.
Variation in mitochondrial DNA is often used to trace the evolutionary history of populations and species. We here discuss the effect of infection with cytoplasmically inherited male-lethal symbionts on mitochondrial genome evolution. Male-lethal symbionts spread when killing male hosts increases the lifetime reproductive success of sibling female hosts. This increase in the survivorship of daughters from individuals bearing a male-killer will produce a concomitant increase in the frequency of mitotypes associated with the male-killer. If horizontal transmission of the microoorganism is rare and population sizes not very small, then linkage disequilibrium between microorganism and particular mitotypes will result in a reproduction of within-population mitochondrial variability both because of a selective sweep during the spread of such a micro-organism, and also at equilibrium. Male-killing symbionts may thus confound the use of mtDNA variability in estimation of population parameters. We discuss the differences between the effects of male-killers and the cytoplasmic incompatibility-inducing symbiont Wolbachia , and the possibility that estimation of gene flow between populations may also be confounded by symbiont presence.  相似文献   

14.
X Xia 《Current Genomics》2012,13(1):16-27
Different patterns of strand asymmetry have been documented in a variety of prokaryotic genomes as well as mitochondrial genomes. Because different replication mechanisms often lead to different patterns of strand asymmetry, much can be learned of replication mechanisms by examining strand asymmetry. Here I summarize the diverse patterns of strand asymmetry among different taxonomic groups to suggest that (1) the single-origin replication may not be universal among bacterial species as the endosymbionts Wigglesworthia glossinidia, Wolbachia species, cyanobacterium Synechocystis 6803 and Mycoplasma pulmonis genomes all exhibit strand asymmetry patterns consistent with the multiple origins of replication, (2) different replication origins in some archaeal genomes leave quite different patterns of strand asymmetry, suggesting that different replication origins in the same genome may be differentially used, (3) mitochondrial genomes from representative vertebrate species share one strand asymmetry pattern consistent with the strand-displacement replication documented in mammalian mtDNA, suggesting that the mtDNA replication mechanism in mammals may be shared among all vertebrate species, and (4) mitochondrial genomes from primitive forms of metazoans such as the sponge and hydra (representing Porifera and Cnidaria, respectively), as well as those from plants, have strand asymmetry patterns similar to single-origin or multi-origin replications observed in prokaryotes and are drastically different from mitochondrial genomes from other metazoans. This may explain why sponge and hydra mitochondrial genomes, as well as plant mitochondrial genomes, evolves much slower than those from other metazoans.  相似文献   

15.
The process of speciation is key to the origins of biodiversity, and yet the Caenorhabditis nematode model system has contributed little to this topic. Genetic studies of speciation in the genus are now feasible, owing to crosses between the recently discovered Caenorhabditis sp. 9 and the well-known C. briggsae producing fertile F(1) hybrid females. We dissected patterns of postzygotic reproductive isolation between these species by crossing eight isogenic strains of C. briggsae reciprocally with six strains of C. sp. 9. We determined that overall patterns of reproductive isolation are robust across these genetic backgrounds. However, we also quantified significant heritable variation within each species for interspecific hybrid incompatibilities for total adult progeny, egg-to-adult viability, and the percentage of male progeny. This demonstrates that intraspecific variation for interspecific hybrid incompatibility occurs despite extensive, albeit incomplete, reproductive isolation. Therefore, this emerging general phenomenon of variable reproductive isolation is not restricted to highly interfertile, early-stage incipient species, but also applies to species in the latest stages of the speciation process. Furthermore, we confirm Haldane's rule and demonstrate strongly asymmetric parent-of-origin effects (Darwin's corollary) that consistently manifest more extremely when hermaphroditic C. briggsae serves as maternal parent. These findings highlight Caenorhabditis as an emerging system for understanding the genetics of general patterns of reproductive isolation.  相似文献   

16.
Sequence variation of the complete second internal transcribed spacer (ITS2, 445 bp) of nuclear ribosomal DNA and part of the mitochondrial cytochrome oxidase I gene (COI, 350 bp) was examined in Amphitetranychus viennensis (Zacher) mites (Acari:Tetranychidae) from four French and four Japanese locations. Sequence analysis consistently revealed the separation of the samples in two major groups: French mites differed from Japanese by 3.8–4.1% of the nucleotide divergence in COI sequences. These two groups also displayed distinct ITS2 consensus sequences (2.1% nucleotide divergence). A few variations, not affecting the diagnostic sites around the consensus sequence, were revealed among cloned copies of the same individual. Reciprocal crosses and backcrosses between one French and two Japanese populations disclosed strong reproductive incompatibility. However, fertile hybrid females were obtained, indicating the conspecificity of the tested mites. Despite the presence of Wolbachia in the French strain, but not in the Japanese ones, our crosses did not display the unidirectional incompatibility typically produced by this microorganism, but rather a bidirectional – although asymmetrical – incompatibility pattern. The post-zygotic incompatibilities in A. viennensis cannot be explained by the presence of Wolbachia but to some extent by mite genome divergence resulting from limited gene exchange between allopatric populations. Experiments of Wolbachia elimination by antibiotic treatment and subsequent crosses with cured strains are still needed to fully understand the reproductive incompatibility patterns in this mite species.  相似文献   

17.
Wolbachia感染导致果蝇dHira基因表达下调   总被引:1,自引:0,他引:1  
Wolbachia是广泛存在于节肢动物体内的一类共生微生物,可通过宿主卵的细胞质传递给子代.  相似文献   

18.
Wang RX  Zhao YL 《Heredity》2008,100(3):326-336
In animals, hybrid sterility and inviability between closely related species often affect only the heterogametic sex (XY). This widespread phenomenon, known as Haldane's rule, is an early speciation event found across broad taxa, but the role of heterogametic hybrid incompatibilities, as opposed to homogametic ones, as a barrier in a speciation process remains obscure. It has been hypothesized that heterogametic incompatibility may be a more efficient mechanism in driving speciation. The population dynamics after (rather than before) the occurrence of sex-biased incompatibilities may account for Haldane's rule. In this study, a recursion model of hybrid zones was developed to investigate the differences between heterogametic and homogametic incompatibilities. The selection strengths and selection patterns of sex chromosome-linked, two-locus Bateson-Dobzhansky-Muller (BDM) genetic incompatibilities were examined. It is noted that a sex-biased hybrid incompatibility in a hybrid zone confers asymmetric and uneven impedance to gene flow. The clines of different loci in such a hybrid zone displayed diverse differentiation in their width, steepness and asymmetry. Alleles involved in the incompatibility face much stronger resistance to cross a hybrid zone. Different sex-biased BDM incompatibilities also affect the flow of neutral alleles differently. Compared to a homogametic one, heterogametic incompatibility is a weaker but more asymmetric barrier. These unique patterns of gene flow may explain uneven divergence among different genomic regions during speciation between some closely related species.  相似文献   

19.
Sequences of a segment of the 16S ribosomal DNA of Wolbachia, a rickettsia-like microorganism responsible for cytoplasmic incompatibility in Drosophila simulans, have been obtained after polymerase chain reaction (PCR) amplification. Their comparison with other eubacterial sequences allows us to assign these endosymbionts to the alpha subdivision of purple bacteria. Four related sequences have been obtained for microorganisms carried by eight isofemale lines representative of the three mitochondrial types of D. simulans. Their phylogeny and level of divergence do not parallel that of the mitochondrial DNA, suggesting that several independent infections occurred. There is no direct relation between bacterial phylogeny and formerly identified incompatibility types.  相似文献   

20.
Wang J  Abbott RJ  Peng YL  Du FK  Liu JQ 《Heredity》2011,107(4):362-370
It remains unclear how speciation history might contribute to species-specific variation and affect species delimitation. We examined concordance between cytoplasmic genetic variation and morphological taxonomy in two fir species, Abies chensiensis and A. fargesii, with overlapping distributions in central China. Range-wide genetic variation was investigated using mitochondrial (mt) and plastid (pt) DNA sequences, which contrast in their rates of gene flow. Four mtDNA haplotypes were recovered and showed no obvious species' bias in terms of relative frequency. In contrast, a high level of ptDNA variation was recorded in both species with 3 common ptDNA haplotypes shared between them and 21 rare ptDNA haplotypes specific to one or other species. We argue that the lack of concordance between morphological and molecular variation between the two fir species most likely reflects extensive ancestral polymorphism sharing for both forms of cytoplasmic DNA variation. It is feasible that a relatively fast mutation rate for ptDNA contributed to the production of many species-specific ptDNA haplotypes, which remained rare due to insufficient time passing for their spread and fixation in either species, despite high levels of intraspecific ptDNA gene flow. Our phylogeographic analyses further suggest that polymorphisms in both organelle genomes most likely originated during and following glacial intervals preceding the last glacial maximum, when species distributions became fragmented into several refugia and then expanded in range across central China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号