首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
An assessment of Cd, Cu, Pb, and Zn in 25 soil samples collected near busy roads in Irbid city, Jordan indicated contamination of these soil samples with different concentrations of 624, 1.243, 242, and 847 μg/g for Pb, Cd, Cu, and Zn, respectively. The survival percentage of Drosophila melanogaster third-instar larvae on synthetic medium containing these concentrations for the first generation shows a significant reduction in their growth and development or metamorphosis for most soil extracts. Moreover, there was a significant reduction in survival growth and development in the second generation. The survival percentages of the second generation at pupa stage was higher than the first generation, whereas at the adult stage, there was a lower survival percentage indicating some effects on metamorphosis caused by concentration of heavy metals on Drosophila melanogaster.  相似文献   

2.
A pot culture experiment and a field experiment were carried out separately to study heavy metal (HM) uptake from soil contaminated with Cu, Zn, Pb and Cd by Elsholtzia splendens Nakai ex F. Maekawa inoculated with arbuscular mycorrhizal (AM) fungi and the potential for phytoremediation. The HM-contaminated soil in the pot experiment was collected from the field experiment site. Two AM fungal inocula, MI containing only one AM fungal strain, Glomus caledonium 90036, and M II consisting of Gigaspora margarita ZJ37, Gigaspora decipens ZJ38, Scutellospora gilmori ZJ39, Acaulospora spp. andGlomus spp., were applied to the soil under unsterilized conditions. In the pot experiment, the plants were harvested after 24 weeks of growth. Mycorrhizal colonization rate, plant dry weight (DW) and P, Cu, Zn, Pb, Cd concentrations were determined. MI-treated plants had higher mycorrhizal colonization rates than MII-treated plants. Both MI and MII increased shoot and root DW, and MII was more effective than MI. In shoots, the highest P, Cu, Zn and Pb concentrations were all observed in the plants treated with MII, while MI decreased Zn and Pb concentrations and increased P but did not alter Cu, and Cd concentrations were not affected by either of two inocula. In roots, MII increased P, Zn, Pb concentrations but did not alter Cu and Cd, and MI did not affect P, Cu, Zn, Pb, Cd concentrations. Cu, Zn, Pb, Cd uptake into shoots and roots all increased in MII-treated plants, while in MI-treated plants, Cu and Zn uptake into shoots and Cu, Zn, Pb, Cd into roots increased but Pb and Cd uptake into shoots decreased. In general, MII was more effective than MI in promoting plant growth and HM uptake. The field experiment following the pot experiment was carried out to investigate the effects of MII under field conditions. The 45-day-old nonmycorrhizal and MII-colonized seedlings of E. splendens were transplanted to HM-contaminated plots and harvested after 5 months. MII-inoculation increased shoot DW and shoot P, Cu, Zn, Pb concentrations significantly but did not alter shoot Cd concentrations, which led to higher uptake of Cu, Zn, Pb, Cd by E. splendens shoots. These results indicate that the AM fungal consortium represented by MII can benefit phytoextraction of HMs and therefore play a role in phytoremediation of HM-contaminated soils.  相似文献   

3.
Concentrations of Fe, Pb, Cu, Zn and Cd were determined during one season in the red alga Gracilaria verrucosa, sediment and seawater from the Thermaikos Gulf, Greece. This region has been subject to change due to increases in industrial and domestic activities. The relative abundance of metals in G. verrucosa and seawater decreased in the order: Fe>Zn>Pb>Cu>Cd and in the sediment: Pb>Fe>Zn>Cu>Cd. Cadmium concentration in the alga correlated positively with that in seawater. There was positive correlation between Fe concentrations in the alga and those of the Zn and Cu. The concentrations of metals in the alga showed no significant differences between the stations. Lead, Zn and Cu concentrations in the alga were slightly higher at Biamyl, whereas Cd was higher at Perea and Fe at Nea Krini. Seasonal variation of metal concentrations in the alga was significant for Cd and Fe. Copper and Fe increased from winter to summer, whereas Cd was the opposite. Zinc concentrations were minimum and Pb concentrations were maximum during spring. These variations are discussed in relation to tissue age, life cycle, ambient concentrations of metals and other environmental conditions. Cd and Pb concentrations inG. verrucosa in the Thermaikos Gulf were higher and those of Cu and Zn were lower than in other species of the genus. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Summary The tissue distribution of Cu, Cd, Pb, Zn, and Ca in the earthworm Lumbricus rubellus living in non-polluted and heavy-metal polluted soils was investigated. Cd, Pb and Zn were primarily accumulated within the posterior alimentary canal. As the whole-worm Pb burden increased, the proportion of the metal accumulated within this tissue fraction increased. A similar pattern was found for Zn. By contrast, 70%–76% of the Cd burden was found in the posterior alimentary canal, irrespective of the whole-worm Cd content. The accumulation of Cd, Pb and Zn primarily in the posterior alimentary canal prevents dissemination of large concentrations of these metals into other earthworm tissues, and may thus represent a dextoxification strategy based on accumulative immobilisation. Cu was distributed fairly evenly in the tissue fractions investigated. There was no evidence of sequestration of this metal. The apparent lack of a detoxification strategy may contribute to the well-known susceptibility of earthworms to low environmental Cu concentrations. Indeed, earthworms from the site of highest soil Cu (Ecton) were markedly smaller than those from the other sites sampled. The highest Ca concentrations were found in the anterior alimentary canal, and were related to calciferous gland activity. A large proportion of Ca was also stored as a physiologically available pool in the posterior alimentary canal. Despite huge variations in soil Ca concentrations, the body wall Ca levels were fairly similar in L. rubellus from all the study sites. Thus, L. rubellus may become physiologically adapted to soils of exceptionally low Ca concentration. The observations are discussed in the context of the merits of analysing specific tissues, rather than whole organisms, for the purpose of monitoring metal bioaccumulation.  相似文献   

5.
Bioassays tested insecticidal activity of Erythritol from the nutritive sweetener, Truvia, and an insect growth regulator, Lufenuron, against life stages (eggs, larvae, pupae, adults) of Drosophila melanogaster (Meigen) and Drosophila suzukii (Matsumura), the spotted wing Drosophila (SWD). These compounds were chosen for their demonstrated acute toxicity to adult and larval Drosophila and potential use on organic fruit farms. D. melanogaster fed on standard Drosophila diet media moistened with water containing known concentrations of Erythritol. Likewise, SWD consumed standard diet media as well as thawed host fruit (blackberries and blueberries) treated with solutions of Erythritol, Lufenuron or both. During the first bioassay, Erythritol at lower concentrations between 0 and 500 mm (~61 000 ppm) in water and mixed with instant diet media increased adult survival from ~80% to 97% for D. melanogaster and SWD. However, from aqueous concentrations ranging from 1750 (~414 000 ppm) to 2000 mm (~244 000 ppm), Erythritol killed 100% of adult Drosophila in culture vials. One hundred per cent mortality for SWD and D. melanogaster occurred at ≥0.5 m (~61 000 ppm) Erythritol added to diet media or topically applied to host fruit. In a second bioassay, 0.013–1.000 ppm of aqueous Lufenuron, a chitin synthase inhibitor, when added to dry diet media prevented 90–99% of SWD from reaching the pupal stage. In another assay, ~67% of SWD eggs or neonates (early first instars) died inside blackberries pre‐treated with (dipped in) a soapy solution of 10 ppm Lufenuron. Pre‐treating blackberry fruit with an Erythritol–Lufenuron mixture reduced SWD brood survival by 99%. Likewise, during our last fruit‐based bioassay, 98% of eggs and neonates died inside blueberries similarly pre‐treated. During the last experiment, Lufenuron in diet media also rendered adult females sterile. Sterility, however, dissipated over 7 days once females began feeding on a Lufenuron‐free diet media.  相似文献   

6.
The effects of the total soft tissue dry weight and shell thickness and on the accumulation of Cd, Cu, Pb, and Zn were determined in the green-lipped mussel Perna viridis. In agreement with Boyden's formula (1977), our results showed that the plotting of metal concentrations against the total soft tissue dry weight and shell thickness of the mussel on a double logarithmic basis gave negative coefficients especially for Cd, Pb, and Zn. Therefore, the smaller mussels (lower total soft tissue dry weight) had higher concentrations of Cd, Pb, and Zn than the larger ones. Since shell thickness could be considered to estimate of the age of the mussel, it was also found that the younger mussels accumulated more Cd, Pb, and Zn than the older ones. This indicated that P. viridis has a different metabolic strategy for each of the metals studied which may be related to age. However, the accumulation of Cu was hardly affected by the sizes and ages of the mussel. This indicated that the accumulation pathways of Cu and the processes affecting the bioavailability of Cu to the mussel are different from those for Cd, Pb, and Zn.  相似文献   

7.
Pinus banksiana andPicea glauca inoculated or not with the ectomycorrhizal fungusSuillus luteus were grown in a sandy loam soil containing a range of Cd, Cu, Ni, Pb and Zn concentrations. Ectomycorrhizal colonization rates were significantly reduced on Pinus and Picea seedlings by the heavy metals, particularly Cd and Ni. Needle tissue metal concentrations were lower in ectomycorrhizal seedlings at low soil metal concentrations. However, at higher soil concentrations, heavy metal concentrations of needle tissue were similar in ectomycorrhizal and nonmycorrhizal plants. The growth of nonmycorrhizal seedlings exposed to heavy metals was reduced compared to those inoculated withSuillus luteus. Apparently ectomycorrhizal colonization can protect Pinus and Picea seedlings from heavy metal toxicity at low or intermediate soil concentrations of Cd, Cu, Ni, Pb and Zn.  相似文献   

8.
The concentrations of Cd, Pb, Cu and Zn inChironomus gr.thummi were determined for 4th instar larvae from the polluted Dyle River, tributary of the Scheldt River (Belgium). Comparison was made between larvae with deformed and normal menta. Deformed larvae showed higher overall metal concentrations than normal larvae. Especially Pb and Cu had higher concentrations in deformed larvae (16.22 mg kg–1 dry weight and 39.66 respectively) than in normal larvae (12.80 mg kg–1 dry weight and 35.70 respectively). No significant differences were found in the concentrations of Cd and Zn (mean [Cd] = 0.81 mg kg–1 dry weight and mean [Zn] = 313.12 mg kg–1 dry weight). There was no difference between the two larval groups as far as total length, dry weight and developmental stage of the imaginal discs are concerned.  相似文献   

9.
Carl L. Strojan 《Oecologia》1978,32(2):203-212
Summary Concentrations of about 26,000 ppm Zn, 10,000 ppm Fe, 2,300 ppm Pb, 900 ppm Cd, 340 ppm Cu, and 0.40% S were measured in the O2 litter horizon about 1 km from a zinc smelter at Palmerton, Pennsylvania. Samples taken about 6 km east of the smelter had concentrations of about 15,000 ppm Zn, 6,500 ppm Fe, 970 ppm Pb, 250 ppm Cd, 170 ppm Cu, and 0.26% S. Samples from a control area about 40 km east of the smelter had concentrations of 2,800 ppm Fe, 650 ppm Zn, 260 ppm Pb, 50 ppm Cu, 9 ppm Cd, and 0.13% S.Litter bags were used to estimate first-year weight loss in sassafras leaves and a mixture of chestnut oak/red oak leaves in the three sites. At the end of one year, average weight loss for sassafras was 39.3% in the control site, 21.8% at 6 km, and 17.5% at the 1 km site. For the chestnut oak/red oak mixture, average weight loss was 36.8% (40 km), 25.7% (6 km), and 19.1% (1 km). Numbers and diversity of soil microarthropods inhabiting the litter bags showed a corresponding decline at sites near the smelter. Concentrations of Ca, Cd, Cr, Cu, Fe, Mg, Mn, N, Na, Ni, P, Pb, S and Zn in the decomposing litter were also measured.The average amount of organic matter on the forest floor was estimated to be 3.8 kg/m2 in the control site, about 3.8 kg/m2 at 6 km, and about 8.1 kg/m2 1 km from the smelter. Average thickness of the litter horizons in these three sites was 6.0 cm (40 km), 7.0 cm (6 km), and 12.4 cm (1 km), suggesting a long-term depression of decomposition and mineral cycling near the smelter.  相似文献   

10.
The concentrations of metals (Mn, Pb, Fe, Zn, Cu, Cd,Co, Ni, Cr, Na, K, Ca, Mg) were determined in thegreen alga Ulva rigida, in the sediment andseawater of Thermaikos Gulf (Greece) during monthlysamplings in 1994–1995. This Gulf is the recipientof domestic and industrial effluents. Pb, Fe, Cu, Coand Cr concentrations in U. rigida at the studyarea were higher than those 13 years earlier andapparently came from different sources than those forZn, Cd and Ni. The relative abundance of metals inthe alga decreased in the order: Mg > Na > K >Ca > Pb > Fe > Mn > Zn > Cr, Cu > Ni >Co > Cd. Only Cu concentrations in the alga fromKalochori and Cd ones from Viamyl showed significantseasonal changes. Cu and Cd concentrations ingeneral followed the same pattern of variation, withminimum values in winter-spring. This pattern isdiscussed in relation to growth dynamics and tissueage. Only Pb concentrations in the alga showed asignificant positive correlation with concentrationsin the seawater. There were both positive andnegative correlations among some metals in the alga. It is concluded that U. rigida can be used as anindicator species, especially for Pb.  相似文献   

11.
The purpose of this study was to assess the association among male infertility, infection of Ureaplasma urealyticum (Uu), and microelements in seminal fluid. Semen analysis and cultivation of Uu were carried out on 160 samples of seminal fluid. The concentrations of microelements, such as arsenic (As), molybdenum (Mo), magnesium (Mg), lead (Pb), copper (Cu), cadmium (Cd), and zinc (Zn) in the samples were measured by an inductively coupled plasma quantometer (ICP). The ratios Cu/Zn and Cd/Zn in the poor spermatic quality group were obviously higher than those in seminal plasma of the group with normal spermatic quality (p<0.01 and p<0.05, respectively), whereas the concentrations of As, Mg, Mo, and Pb showed no difference in the two groups. The ratios Cu/Zn and Cd/Zn and the concentrations of As and Mg in seminal plasma infected with Uu were markedly higher than those not infected with Uu (p<0.05, p<0.01, p<0.05, and p<0.05, respectively), whereas the concentrations of Mo and Pb showed no statistical difference. The ratios Cu/Zn and Cd/Zn and the concentrations of As and Mg in seminal plasma of the semen with poor spermatic quality and Uu infection were obviously higher than those not infected with Uu (p<0.05), whereas the concentrations of Mo and Pb showed no statistical difference. Abnormally high ratios Cu/Zn and Cd/Zn as well as an overdose of As were found to be predisposed to Uu infection. Uu infection resulted in an increase of the ratios Cu/Zn and Cd/Zn and the concentrations of As and Mg in seminal fluid, which therefore caused spermatic quality decline.  相似文献   

12.
The present study was conducted to assess the suitability of sewage sludge amendment (SSA) in soil for Beta vulgaris var. saccharifera (sugar beet) by evaluating the heavy metal accumulation and physiological responses of plants grown at a 10%, 25%, and 50% sewage sludge amendment rate. The sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently increasing accumulation in plant parts. Cd, Pb, Ni, and Cu concentrations in roots were significantly higher in plants grown at 25% as compared to 50% SSA; however, Cr and Zn concentration was higher at 50% than 25% SSA. The concentrations of heavy metal showed a trend of Zn > Ni > Cu > Cr > Pb > Cd in roots and Zn > Cu > Ni > Cr > Pb > Cd in leaves. The only instance in which the chlorophyll content did not increase after the sewage sludge treatments was 50%. There were approximately 1.12-fold differences between the control and 50% sewage sludge application for chlorophyll content. The sewage sludge amendment led to a significant increase in Pb, Cr, Cd, Cu, Zn, and Ni concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency (US EPA). The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake and the leaf and root concentrations of Ni, Zn, Cd, Cu, Cr, Pb, and Zn in plants as compared to those grown on unamended soil. More accumulation occurred in roots and leaves than in shoots for most of the heavy metals. The concentrations of Cd, Cr, and Pb were more than the permissible limits of national standards in the edible portion of sugar beet grown on different sewage sludge amendment ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet may not be a good option due to risk of contamination of Cr, Pb, and Cd.  相似文献   

13.
The plasmas of breast cancer patients and healthy donors were analyzed for selected trace metals by a flame atomic absorption spectrophotometric method. In the plasma of breast cancer patients, mean concentrations of macronutrients/essential metals, Na, K, Ca, Mg, Fe, and Zn were 3584, 197.0, 30.80, 6.740, 5.266, and 6.170 ppm, respectively, while the mean metal levels in the plasma of healthy donors were 3908, 151.0, 72.40, 17.70, 6.613, and 2.461 ppm, respectively. Average concentrations of Cd, Cr, Cu, Mn, Ni, Pb, Sb, Sr, and Zn were noted to be significantly higher in the plasma of breast cancer patients compared with healthy donors. Very strong mutual correlations (r > 0.70) in the plasma of breast cancer patients were observed between Cd–Pb, Cr–Li, Li–K, Li–Cd, K–Cr, Li–Pb, Cr–Co, Cu–Ni, Co–K, Cd–K, and K–Pb, whereas, Al–Cr, Ca–Zn, Cd–Sb, Cd–Zn, Ca–Mg, Fe–Zn, and Na–Mn exhibited strong relationships (r > 0.60) in the plasma of healthy donors. The cluster analysis revealed considerably different apportionment of trace metals in the two groups of donors. The average metal concentrations of different age groups of the two donor categories were also evaluated, which showed the build-up of Al, Cd, Co, Cr, Mn, Li, Pb, Sb, and Zn in the plasma of breast cancer patients. The role of some trace metals in carcinogenesis is also discussed. The study indicated appreciably different patterns of metal distribution and correlation in the plasma of breast cancer patients in comparison with the healthy population.  相似文献   

14.
This article discusses the mineralogy and geochemical characteristics of the fresh copper-flotation waste samples. The mobility of As, Cd, Cr, Cu, Ni, Pb, Tl, Zn was investigated by leaching tests. The main mineral phases identified concerned dolomite, quartz, clay minerals, feldspars, and copper-bearing minerals. Chemically, CaO and silica were dominating, along with a significant concentration of precious (Cu), refractory (Cr, Ti, V, Zr), and toxic (As, Cd, Pb) metals. Elements were bound mainly to the residual fraction and sulphides in the following order: Pb > Cu ≈ Tl > As ≈ Zn > Ni ≈ Cr > Cd. The metal mobility patterns expressed as a percentage of total concentrations, were as follows: Cd (42%) > Cr (26%)> Ni (24%) > Zn (23%) > As (22%) > Tl (20%) > Cu (18%) > Pb (2%). Those constituents were released earlier in lower pH values, although Cu, Cr, and Pb were also released in higher alkaline pH values. However, Zn release was not dependent on pH. When L/S values decreased, elements like As, Cr, Cu, Pb, and Tl were released. That process caused decrease of Cd, Ni, and Zn release.  相似文献   

15.
The concentrations of Cd, Cu, Pb, and Zn were determined in the abiotic and biotic components at two sites in the Fox River, Illinois. Analysis of the metals was completed on solutions of wet ashed or dry ashed samples with a single beam atomic absorption spectrophotometer. Despite different inputs of the trace metals there were no significant differences in the concentration of Cu or Zn in the biota between the two sites. This was postulated to be due to physiological control of these metals. However, Cd and Pb concentrations were higher in the biota and substrate at the high input site. No accumulation of Cd or Pb occurred at higher trophic levels. Cu and Zn concentrations were similar for all biota with the exception of crayfish and snails which had higher Cu and Zn concentrations, respectively.  相似文献   

16.
Risk element (As, Cd, Cu, Pb, and Zn) contamination in soils and in two edible vegetables (Solanum melongena L. and Capsicum annum L.) was investigated in the vicinity of Guixi Smelter, South China. Soil As concentrations averaged 23.9 mg/kg. Sites near the smelter tailings recorded the highest levels of As and heavy metals in soils. The concentration order of heavy metals in soils was Cd < Pb < Zn < Cu. Cu and Cd in soils were abundant in the exchangeable and bound to carbonate fraction, while Pb and Zn were in the residual fraction, limiting their potential toxicity as pollutants. The proportions of the metals in the mobile fraction followed the order Pb < Zn < Cu < Cd. In Solanum melongena L. and Capsicum annum L., Zn concentration was the highest, followed by Cu, Cd, and Pb, different from that in soils and in the mobile fraction. Concentrations of heavy metals in the labile fractions in soils and in vegetables presented significant correlation (p < 0.05). Both of the two vegetables are not the Cu and Zn accumulators. As for Cd and As, Capsicum annum L. poses a higher risk to animal and human health than Solanum melongena L., with soil-plant transfer coefficients more than three. Root-stem is the main barrier for most of the heavy metals and As in the two vegetables, resulting in higher metal concentrations in roots relative to other plant tissues. The low stem-fruit transfer coefficients for Zn in Solanum melongena L. and for Pb in Capsicum annum L. suggested that very few of them could reach the fruits.  相似文献   

17.
In two pot-culture experiments with maize in a silty loam (P2 soil) contaminated by atmospheric deposition from a metal smelter, root colonization with indigenous or introduced arbuscular mycorrhizal (AM) fungi and their influence on plant metal uptake (Cd, Zn, Cu, Pb, Mn) were investigated. Soil was -irradiated for the nonmycorrhizal control. In experiment 1, nonirradiated soil provided the mycorrhizal treatment, whereas in experiment 2 the irradiated soil was inoculated with spores of a fungal culture from P2 soil or a laboratory reference culture, Glomus mosseae. Light intensity was considerably higher in experiment 2 and resulted in a fourfold higher shoot and tenfold higher root biomass. Under the conditions of experiment 1, biomass was significantly higher and Cd, Cu, Zn and Mn concentrations significantly lower in the mycorrhizal plants than in the nonmycorrhizal plants, suggesting a protection against metal toxicity. In contrast, in experiment 2, biomass did not differ between treatments and only Cu root concentration was decreased with G. mosseae-inoculated plants, whereas Cu shoot concentration was significantly increased with the indigenous P2 fungal culture. The latter achieved a significantly higher root colonization than G. mosseae (31.7 and 19.1%, respectively) suggesting its higher metal tolerance. Zn shoot concentration was higher in both mycorrhizal treatments and Pb concentrations, particularly in the roots, also tended to increase with mycorrhizal colonization. Cd concentrations were not altered between treatments. Cu and Zn, but not Pb and Cd root-shoot translocation increased with mycorrhizal colonization. The results show that the influence of AM on plant metal uptake depends on plant growth conditions, on the fungal partner and on the metal, and cannot be generalized. It is suggested that metal-tolerant mycorrhizal inoculants might be considered for soil reclamation, since under adverse conditions AM may be more important for plant metal resistance. Under the optimized conditions of normal agricultural practice, however, AM colonization even may increase plant metal absorption from polluted soils.  相似文献   

18.
Remediation of soils is vital to mitigate the negative effects of heavy metals in ecosystems. There is little information available about the metals’ phytostabilization potential of old man saltbush plants [Atriplex nummularia]. A pot experiment in a randomized complete block design was conducted to study the accumulation of heavy metals by old man saltbush plants, as affected by the application of compost and biochar. The cultivation of A. nummularia is an effective tool in immobilizing metals in the contaminated soils. The cultivation of metal-contaminated soil with A. nummularia reduced the availability of Zn, Cu, Cd, and Pb by 20%, 4%, 21%, and 28%, respectively, in comparison to the non-cultivated soil. Zn, Cu, Cd, and Pb concentrations in the aboveground parts of old man saltbush plants were 70–100, 50–80, 4–5, and 50–90 mg/kg of dry biomass. The higher Zn, Cu, Cd, and Pb concentrations were accumulated in the roots, and the lower concentrations were transferred to the shoots of old man saltbush plants. Compost reduced the concentration of Zn, Cu, Cd, and Pb in the shoots by 10%, 19%, 20%, and 6%, respectively, compared to the control soil. Biochar reduced the concentrations of Zn, Cu, and Pb in the shoots by 30%, 38%, and 44%, respectively, compared to the control. Compost had a lower effect in reducing the metals uptake as biochar. Biochar reduced the uptake of Zn, Cu, and Pb in the shoots of the tested plant by 22%, 23%, and 41%, respectively, in comparison to compost. Based on the obtained results, old man saltbush has good characteristics to be a promising candidate for phytostabilization strategies of metal-contaminated soils. Moreover, biochar is a good tool to enhance metals’ phytostablization.  相似文献   

19.
The effect of Cd, Cu, Zn, Hg, and Pb solutions at various concentrations, on the restoration potential of the leaves ofPortulaca oleracea was tested. All the trace metals completely affected the shoot regeneration. The degree of their effect on root regeneration, however, varied. Early initiation of parental leaf decay was also observed. The order of their relative effect on the regeneration process was: Cd > Cu > Zn > Hg > Pb.  相似文献   

20.
Instead of total metal concentration measurements in seafood, bioaccessibility is a more important parameter for human health risk assessment. Therefore, bioaccessibility of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in the edible soft tissues of rapa whelk (Rapana venosa Valenciennes, 1846) collected along the southern Black Sea coast were investigated using an in vitro digestion model. Zn was detected at the highest concentration, whereas Ni was the lowest for total metal concentrations. Total Cd and Pb concentration in the tissues were found to be higher than maximum permissible limits set by European Commission. The bioaccessibility of metals in the tissues was found to be decreased in the order: Cu (77.11%) > Cd (70.13%) > Zn (64.52%) > Ni (61.27%) > Pb (50.53%) > Cr (43.41%) > Mn (22.59%). While significant positive linear regressions were observed between the total and bioaccessible concentrations for Mn, Pb, and Ni, significant negative linear regressions were found for Cd in the tissues (p < 0.05). The hazard quotients (HQ) calculated using bioaccessible heavy metal amount were detected lower than the limit value (HQ < 1), which may not pose a potential hazard to humans declared by US Environmental Protection Agency. However, the consumption of rapa whelk may cause a potential risk concerning human health for the Cd and Pb levels in case of increased serving sizes and portions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号