首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: A large number of studies have been carried out to obtain amino acid propensities for alpha- helices and beta-sheets. The obtained propensities for alpha-helices are consistent with each other, and the pair-wise correlation coefficient is frequently high. On the other hand, the beta-sheet propensities obtained by several studies differed significantly, indicating that the context significantly affects beta-sheet propensity. RESULTS: We calculated amino acid propensities for alpha-helices and beta-sheets for 39 and 24 protein folds, respectively, and addressed whether they correlate with the fold. The propensities were also calculated for exposed and buried sites, respectively. Results showed that alpha-helix propensities do not differ significantly by fold, but beta-sheet propensities are diverse and depend on the fold. The propensities calculated for exposed sites and buried sites are similar for alpha-helix, but such is not the case for the beta-sheet propensities. We also found some fold dependence on amino acid frequency in beta-strands. Folds with a high Ser, Thr and Asn content at exposed sites in beta-strands tend to have a low Leu, Ile, Glu, Lys and Arg content (correlation coefficient = 0.90) and to have flat beta-sheets. At buried sites in beta-strands, the content of Tyr, Trp, Gln and Ser correlates negatively with the content of Val, Ile and Leu (correlation coefficient = 0.93). "All-beta" proteins tend to have a higher content of Tyr, Trp, Gln and Ser, whereas alpha/beta proteins tend to have a higher content of Val, Ile and Leu. CONCLUSIONS: The alpha-helix propensities are similar for all folds and for exposed and buried residues. However, beta-sheet propensities calculated for exposed residues differ from those for buried residues, indicating that the exposed-residue fraction is one of the major factors governing amino acid composition in beta-strands. Furthermore, the correlations we detected suggest that amino acid composition is related to folding properties such as the twist of a beta-strand or association between two beta sheets.  相似文献   

2.
Reasons for the formation of extended-strands (E-strands) in proteins are often associated with the formation of beta-sheets. However E-strands, not part of beta-sheets, commonly occur in proteins. This raises questions about the structural role and stability of such isolated E-strands. Using a dataset of 250 largely non-homologous and high-resolution (<2 A) crystal structures of proteins, we have identified 518 isolated E-strands from 187 proteins. The two most distinguishing features of isolated E-strands from beta-strands in beta-sheets are the high preponderance of prolyl residues occuring in isolated E-strands and their high exposure to the surroundings. Removal of regions with polyproline conformation from the dataset did not significantly reduce the propensity of prolyl residues to occur in isolated E-strands. Isolated E-strands are often characterized by their main-chain amide and carbonyl groups involved in hydrogen bonding with polar side chains or water. They are often flanked by irregular loop structures and are less well conserved, than beta-sheet forming beta-strands, among homologous protein structures. It is suggested that isolated beta-strands have many characteristics of loop segments but with repetitive (phi,psi) values falling within the beta-region of the Ramachandran map.  相似文献   

3.
4.
We report herein the NMR structure of Tm0979, a structural proteomics target from Thermotoga maritima. The Tm0979 fold consists of four beta/alpha units, which form a central parallel beta-sheet with strand order 1234. The first three helices pack toward one face of the sheet and the fourth helix packs against the other face. The protein forms a dimer by adjacent parallel packing of the fourth helices sandwiched between the two beta-sheets. This fold is very interesting from several points of view. First, it represents the first structure determination for the DsrH family of conserved hypothetical proteins, which are involved in oxidation of intracellular sulfur but have no defined molecular function. Based on structure and sequence analysis, possible functions are discussed. Second, the fold of Tm0979 most closely resembles YchN-like folds; however the proteins that adopt these folds differ in secondary structural elements and quaternary structure. Comparison of these proteins provides insight into possible mechanisms of evolution of quaternary structure through a simple mechanism of hydrophobicity-changing mutations of one or two residues. Third, the Tm0979 fold is found to be similar to flavodoxin-like folds and beta/alpha barrel proteins, and may provide a link between these very abundant folds and putative ancestral half-barrel proteins.  相似文献   

5.
A common assumption about protein sequences in beta-strands is that they have alternating patterns of polar and non-polar residues. It is thought that such patterns reflect the interior/exterior geometry of amino acid residue side-chains on a beta-sheet. Here we study the prevalence of simple hydrophobicity patterns in parallel and antiparallel beta-sheets in proteins of known structure and in the sequences of amyloidogenic proteins. The occurrence of 32 possible pentapeptide binary patterns (polar (P)/non-polar (N)) is computed in 1911 non-homologous protein structures. Despite their tendency to aggregate in experimentally designed proteins, the purely alternating hydrophobic/polar patterns (PNPNP and NPNPN) are most frequent in beta-sheets, typically occurring in antiparallel strands. The overall distribution of the pentapeptide binary patterns is significantly different in strands within parallel and antiparallel sheets. In both types of sheets, complementary patterns (where the hydrophobic and polar residues pair with one another) associate preferentially. We do not find alternating patterns to be common in amyloidogenic proteins or in short fragments involved directly in amyloid formation. However, we do note some similarities between patterns present in amyloidogenic sequences and those in parallel strands.  相似文献   

6.
The structures of the beta-sheets and the beta-ribbons have been analysed using high-resolution protein structure data. Systematic asymmetries measured in both parallel and antiparallel beta-structures include the sheet twist and the strand shear. In order to determine the origin of these asymmetries, numerous interactions and correlations were examined. The strongest correlations are observed for residues in antiparallel beta-sheets and beta-ribbons that form non-H-bonded pairs. For these residues, the sheet twist is correlated to the backbone phi angle but not to the psi angle. Our analysis supports the existence of an inter-strand C(alpha)H(alpha)...O weak H-bond, which, together with the CO...HN H-bond, constitutes a bifurcated H-bond that links neighbouring beta-strands. Residues of beta-sheets and beta-ribbons in high-resolution protein structures form a distinct region of the Ramachandran plot, which is determined by the formation of the bifurcated H-bond, the formation of an intra-strand O...H(alpha) non-bonded polar interaction, and an intra-strand O...C(beta) steric clash. Using beta-strands parameterised by phi-psi values from the allowed beta-sheet region of the Ramachandran plot, the shear and the right-hand twist can be reproduced in a simple model of the antiparallel and parallel beta-ribbon that models the bifurcated H-bonds specifically. The conformations of interior residues of beta-sheets are shown to be subsets of the conformations of residues of beta-ribbons.  相似文献   

7.
Any two beta-strands belonging to two different beta-sheets in a protein structure are considered to pack interactively if each beta-strand has at least one residue that undergoes a loss of one tenth or more of its solvent contact surface area upon packing. A data set of protein 3-D structures (determined at 2.5 A resolution or better), corresponding to 428 protein chains, contains 1986 non-identical pairs of beta-strands involved in interactive packing. The inter-axial distance between these is significantly correlated to the weighted sum of the volumes of the interacting residues at the packing interface. This correlation can be used to predict the changes in the inter-sheet distances in equivalent beta-sheets in homologous proteins and, therefore, is of value in comparative modelling of proteins.  相似文献   

8.
We analyzed the total, hydrophobic, and hydrophilic accessible surfaces (ASAs) of residues from a nonredundant bank of 587 3D structure proteins. In an extended fold, residues are classified into three families with respect to their hydrophobicity balance. As expected, residues lose part of their solvent-accessible surface with folding but the three groups remain. The decrease of accessibility is more pronounced for hydrophobic than hydrophilic residues. Amazingly, Lysine is the residue with the largest hydrophobic accessible surface in folded structures. Our analysis points out a clear difference between the mean (other studies) and median (this study) ASA values of hydrophobic residues, which should be taken into consideration for future investigations on a protein-accessible surface, in order to improve predictions requiring ASA values. The different secondary structures correspond to different accessibility of residues. Random coils, turns, and beta-structures (outside beta-sheets) are the most accessible folds, with an average of 30% accessibility. The helical residues are about 20% accessible, and the difference between the hydrophobic and the hydrophilic residues illustrates the amphipathy of many helices. Residues from beta-sheets are the most inaccessible to solvent (10% accessible). Hence, beta-sheets are the most appropriate structures to shield the hydrophobic parts of residues from water. We also show that there is an equal balance between the hydrophobic and the hydrophilic accessible surfaces of the 3D protein surfaces irrespective of the protein size. This results in a patchwork surface of hydrophobic and hydrophilic areas, which could be important for protein interactions and/or activity.  相似文献   

9.
Three ATP-dependent enzymes with different folds, cAMP-dependent protein kinase, D-Ala:D-Ala ligase and the alpha-subunit of the alpha2beta2 ribonucleotide reductase, have a similar organization of their ATP-binding sites. The most meaningful similarity was found over 23 structurally equivalent residues in each protein and includes three strands each from their beta-sheets, in addition to a connecting loop. The equivalent secondary structure elements in each of these enzymes donate four amino acids forming key hydrogen bonds responsible for the common orientation of the "AMP" moieties of their ATP-ligands. One lysine residue conserved throughout the three families binds the alpha-phosphate in each protein. The common fragments of structure also position some, but not all, of the equivalent residues involved in hydrophobic contacts with the adenine ring. These examples of convergent evolution reinforce the view that different proteins can fold in different ways to produce similar structures locally, and nature can take advantage of these features when structure and function demand it, as shown here for the common mode of ATP-binding by three unrelated proteins.  相似文献   

10.
The crystal structures of thermophilic xylanases from Chaetomium thermophilum and Nonomuraea flexuosa were determined at 1.75 and 2.1 A resolution, respectively. Both enzymes have the overall fold typical to family 11 xylanases with two highly twisted beta-sheets forming a large cleft. The comparison of 12 crystal structures of family 11 xylanases from both mesophilic and thermophilic organisms showed that the structures of different xylanases are very similar. The sequence identity differences correlated well with the structural differences. Several minor modifications appeared to be responsible for the increased thermal stability of family 11 xylanases: (a) higher Thr : Ser ratio (b) increased number of charged residues, especially Arg, resulting in enhanced polar interactions, and (c) improved stabilization of secondary structures involved the higher number of residues in the beta-strands and stabilization of the alpha-helix region. Some members of family 11 xylanases have a unique strategy to improve their stability, such as a higher number of ion pairs or aromatic residues on protein surface, a more compact structure, a tighter packing, and insertions at some regions resulting in enhanced interactions.  相似文献   

11.
Several polypeptides have been found to adopt an unusual domain structure known as the parallel beta-helix. These domains are characterized by parallel beta-strands, three of which form a single parallel beta-helix coil, and lead to long, extended beta-sheets. We have used ATR-FTIR (attenuated total reflectance-fourier transform infrared spectroscopy) to analyze the secondary structure of representative examples of this class of protein. Because the three-dimensional structures of parallel beta-helix proteins are unique, we initiated this study to determine if there was a corresponding unique FTIR signal associated with the parallel beta-helix conformation. Analysis of the amide I region, emanating from the carbonyl stretch vibration, reveals a strong absorbance band at 1638 cm(-1) in each of the parallel beta-helix proteins. This band is assigned to the parallel beta-sheet structure. However, components at this frequency are also commonly observed for beta-sheets in many classes of globular proteins. Thus we conclude that there is no unique infrared signature for parallel beta-helix structure. Additional contributions in the 1638 cm(-1) region, and at lower frequencies, were ascribed to hydrogen bonding between the coils in the loop/turn regions and amide side-chain interactions, respectively. A 13-residue peptide that forms fibrils and has been proposed to form beta-helical structure was also examined, and its FTIR spectrum was compared to that of the parallel beta-helix proteins.  相似文献   

12.
The crystal structure of amicyanin, a cupredoxin isolated from Paracoccus denitrificans, has been determined by molecular replacement. The structure has been refined at 2.0 A resolution using energy-restrained least-squares procedures to a crystallographic residual of 15.7%. The copper-free protein, apoamicyanin, has also been refined to 1.8 A resolution with residual 15.5%. The protein is found to have a beta-sandwich topology with nine beta-strands forming two mixed beta-sheets. The secondary structure is very similar to that observed in the other classes of cupredoxins, such as plastocyanin and azurin. Amicyanin has approximately 20 residues at the N-terminus that have no equivalents in the other proteins; a portion of these residues forms the first beta-strand of the structure. The copper atom is located in a pocket between the beta-sheets and is found to have four coordinating ligands: two histidine nitrogens, one cysteine sulfur, and, at a longer distance, one methionine sulfur. The geometry of the copper coordination is very similar to that in the plant plastocyanins. Three of the four copper ligands are located in the loop between beta-strands eight and nine. This loop is shorter than that in the other cupredoxins, having only two residues each between the cysteine and histidine and the histidine and methionine ligands. The amicyanin and apoamicyanin structures are very similar; in particular, there is little difference in the positions of the coordinating ligands with or without copper. One of the copper ligands, a histidine, lies close to the protein surface and is surrounded on that surface by seven hydrophobic residues. This hydrophobic patch is thought to be important as an electron transfer site.  相似文献   

13.
Amyloid fibrils are assemblies of misfolded proteins and are associated with pathological conditions such as Alzheimer's disease and the spongiform encephalopathies. In the amyloid diseases, a diverse group of normally soluble proteins self-assemble to form insoluble fibrils. X-ray fibre diffraction studies have shown that the protofilament cores of fibrils formed from the various proteins all contain a cross-beta-scaffold, with beta-strands perpendicular and beta-sheets parallel to the fibre axis. We have determined the threedimensional structure of an amyloid fibril, formed by the SH3 domain of phosphatidylinositol-3'-kinase, using cryo-electron microscopy and image processing at 25 A resolution. The structure is a double helix of two protofilament pairs wound around a hollow core, with a helical crossover repeat of approximately 600 A and an axial subunit repeat of approximately 27 A. The native SH3 domain is too compact to fit into the fibril density, and must unfold to adopt a longer, thinner shape in the amyloid form. The 20x40-A protofilaments can only accommodate one pair of flat beta-sheets stacked against each other, with very little inter-strand twist. We propose a model for the polypeptide packing as a basis for understanding the structure of amyloid fibrils in general.  相似文献   

14.
The NMR structure of the conserved hypothetical protein TM0487 from Thermotoga maritima represents an alpha/beta-topology formed by the regular secondary structures alpha1-beta1-beta2-alpha2-beta3-beta4-alpha3- beta5-3(10)-alpha4, with a small anti-parallel beta-sheet of beta-strands 1 and 2, and a mixed parallel/anti-parallel beta-sheet of beta-strands 3-5. Similar folds have previously been observed in other proteins, with amino acid sequence identity as low as 3% and a variety of different functions. There are also 216 sequence homologs of TM0487, which all have the signature sequence of domains of unknown function 59 (DUF59), for which no three-dimensional structures have as yet been reported. The TM0487 structure thus presents a platform for homology modeling of this large group of DUF59 proteins. Conserved among most of the DUF59s are 13 hydrophobic residues, which are clustered in the core of TM0487. A putative active site of TM0487 consisting of residues D20, E22, L23, T51, T52, and C55 is conserved in 98 of the 216 DUF59 sequences. Asp20 is buried within the proposed active site without any compensating positive charge, which suggests that its pK(a) value may be perturbed. Furthermore, the DUF59 family includes ORFs that are part of a conserved chromosomal group of proteins predicted to be involved in Fe-S cluster metabolism.  相似文献   

15.
A comprehensive deletion, mutational, and structural analysis of the native recombinant keratinocyte growth factor (KGF) polypeptide has resulted in the identification of the amino acids responsible for its biological activity. One of these KGF mutants (delta23KGF-R144Q) has biological activity comparable to the native protein, and its crystal structure was determined by the multiple isomorphous replacement plus anomalous scattering method (MIRAS). The structure of KGF reveals that it folds into a beta-trefoil motif similar to other members of fibroblast growth factor (FGF) family whose structures have been resolved. This fold consists of 12 anti-parallel beta-strands in which three pairs of the strands form a six-stranded beta-barrel structure and the other three pairs of beta-strands cap the barrel with hairpin triplets forming a triangular array. KGF has 10 well-defined beta strands, which form five double-stranded anti-parallel beta-sheets. A sixth poorly defined beta-strand pair is in the loop between residues 133 and 144, and is defined by only a single hydrogen bond between the two strands. The KGF mutant has 10 additional ordered amino terminus residues (24-33) compared to the other FGF structures, which are important for biological activity. Based on mutagenesis, thermal stability, and structural data we postulate that residues TRP125, THR126, and His127 predominantly confer receptor binding specificity to KGF. Additionally, residues GLN152, GLN138, and THR42 are implicated in heparin binding. The increased thermal stability of delta23KGF-R144Q can structurally be explained by the additional formation of hydrogen bonds between the GLN side chain and a main-chain carbonyl on an adjoining loop. The correlation of the structure and biochemistry of KGF provides a framework for a rational design of this potentially important human therapeutic.  相似文献   

16.
Beta-breakers: an aperiodic secondary structure   总被引:1,自引:0,他引:1  
We have studied the architecture of parallel beta-sheets in proteins and focused on the residues that initiate and terminate the beta-strands. These beta-breaker residues are at the origin of the kink between the beta-strand and the turn that precedes or follows it. beta-Breakers can be located automatically using a consensus approach based on algorithmic secondary structure assignment, solvent accessibility and backbone dihedral angles. These beta-breakers are conformationally homogeneous with respect to side-chain solvent accessibility and backbone dihedral angle profile. A sequence-structure correlation is noted: a restricted subset of amino acids is observed at these positions. Analysis of homologous protein sequences shows that these residues are more highly conserved than other residues in the loop. We conclude that beta-breakers are the structural analogs of the N and C-terminal caps of alpha-helices. The identification of this aperiodic substructure suggests a strategy for improving secondary structure prediction and may guide site-directed mutagenesis experiments.  相似文献   

17.
Chellgren BW  Creamer TP 《Proteins》2006,62(2):411-420
Loss of conformational entropy is one of the primary factors opposing protein folding. Both the backbone and side-chain of each residue in a protein will have their freedom of motion restricted in the final folded structure. The type of secondary structure of which a residue is part will have a significant impact on how much side-chain entropy is lost. Side-chain conformational entropies have previously been determined for folded proteins, simple models of unfolded proteins, alpha-helices, and a dipeptide model for beta-strands, but not for polyproline II (PII) helices. In this work, we present side-chain conformational estimates for the three regular secondary structure types: alpha-helices, beta-strands, and PII helices. Entropies are estimated from Monte Carlo computer simulations. Beta-strands are modeled as two structures, parallel and antiparallel beta-strands. Our data indicate that restraining a residue to the PII helix or antiparallel beta-strand conformations results in side-chain entropies equal to or higher than those obtained by restraining residues to the parallel beta-strand conformation. Side-chains in the alpha-helix conformation have the lowest side-chain entropies. The observation that extended structures retain the most side-chain entropy suggests that such structures would be entropically favored in unfolded proteins under folding conditions. Our data indicate that the PII helix conformation would be somewhat favored over beta-strand conformations, with antiparallel beta-strand favored over parallel. Notably, our data imply that, under some circumstances, residues may gain side-chain entropy upon folding. Implications of our findings for protein folding and unfolded states are discussed.  相似文献   

18.
A G Murzin 《Proteins》1992,14(2):191-201
Twisted beta-sheets, packed face to face, may be arranged in circular formation like blades of a propeller or turbine. This beta-propeller fold has been found in three proteins: that in neuraminidase consists of six beta-sheets while those in methylamine dehydrogenase and galactose oxidase are composed of seven beta-sheets. A model for multisheet packing in the beta-propeller fold is proposed. This model gives both geometrical parameters of the beta-propellers composed of different numbers of sheets and patterns of residue packing at their sheet-to-sheet interfaces. All the known beta-propeller structures have been analyzed, and the observed geometries and residue packing are found to be in good agreement with those predicted by models. It is shown that unusual seven-fold symmetry is preferable to six- or eight-fold symmetry for propeller-like multi-sheet assembly. According to the model, a six-beta-sheet propeller has to have predominantly small residues in the beta-strands closed to its six-fold axis, but no strong sequence constraints are necessary for a seven-fold beta-propeller.  相似文献   

19.
The RUSSIA procedure (Rigid Unconnected Secondary Structure Iterative Assembly) produces structural models of cores of small- and medium-sized proteins. Loops are omitted from this treatment and regular secondary structures are reduced to points, the centers of their hydrophobic faces. This methodology relies on the maximum compactness of the hydrophobic residues, as described in detail in Part I. Starting data are the sequence and the predicted limits and natures of regular secondary structures (alpha or beta). Helices are treated as rigid cylinders, whereas beta-strands are collectively taken into account within beta-sheets modeled by helicoid surfaces. Strands are allowed to shift along their mean axis to allow some flexibility and the alpha-helices can be placed on either side of beta-sheets. Numerous initial conformations are produced by discrete rotations of the helices and sheets around the direction going from the center of their hydrophobic face to the global center of the protein. Selection of proposed models is based upon a criterion lying on the minimization of distances separating hydrophobic residues belonging to different regular secondary structures. The procedure is rapid and appears to be robust relative to the quality of starting data (nature and length of regular secondary structures). This dependence of the quality of the model on secondary structure prediction and in particular the beta-sheet topology, is one of the limits of the present algorithm. We present here some results for a set of 12 proteins (alpha, beta and alpha/beta classes) of lengths 40-166 amino acids. The r.m.s. deviations for core models with respect to the native proteins are in the range 1.4-3.7 A.  相似文献   

20.
Protein folds are built primarily from the packing together of two types of structures: alpha-helices and beta-sheets. Neither structure is rigid, and the flexibility of helices and sheets is often important in determining the final fold (e.g., coiled coils and beta-barrels). Recent work has quantified the flexibility of alpha-helices using a principal component analysis (PCA) of database helical structures (J. Mol. Bio. 2003, 327, pp. 229-237). Here, we extend the analysis to beta-sheet flexibility using PCA on a database of beta-sheet structures. For sheets of varying dimension and geometry, we find two dominant modes of flexibility: twist and bend. The distributions of amplitudes for these modes are found to be Gaussian and independent, suggesting that the PCA twist and bend modes can be identified as the soft elastic normal modes of sheets. We consider the scaling of mode eigenvalues with sheet size and find that parallel beta-sheets are more rigid than antiparallel sheets over the entire range studied. Finally, we discuss the application of our PCA results to modeling and design of beta-sheet proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号