首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Prostaglandin E(2) (PGE(2)) is the most common prostanoid and has a variety of bioactivities including a crucial role in urogenital function. Multiple enzymes are involved in its biosynthesis. Among 3 PGE(2) terminal synthetic enzymes, membrane-associated PGE(2) synthase-2 (mPGES-2) is the most recently identified, and its role remains uncharacterized. In previous studies, membrane-associated PGE(2) synthase-1 (mPGES-1) and cytosolic PGE(2) synthase (cPGES) were reported to be expressed along the urogenital tracts. Here we report the genomic structure and tissue distribution of mPGES-2 in the urogenital system. Analysis of several bioinformatic databases demonstrated that mouse mPGES-2 spans 7 kb and consists of 7 exons. The mPGES-2 promoter contains multiple Sp1 sites and a GC box without a TATA box motif. Real-time quantitative PCR revealed that constitutive mPGES-2 mRNA was most abundant in the heart, brain, kidney and small intestine. In the urogenital system, mPGES-2 was highly expressed in the renal cortex, followed by the renal medulla and ovary, with lower levels in the ureter, bladder and uterus. Immunohistochemistry studies indicated that mPGES-2 was ubiquitously expressed along the nephron, with much lower levels in the glomeruli. In the ureter and bladder, mPGES-2 was mainly localized to the urothelium. In the reproductive system, mPGES-2 was restricted to the epithelial cells of the testis, epididymis, vas deferens and seminal vesicle in males, and oocytes, stroma cells and corpus luteum of the ovary and epithelial cells of the oviduct and uterus in females. This expression pattern is consistent with an important role for mPGES-2-mediated PGE(2) in urogenital function.  相似文献   

2.
Immunochemical distribution of 20β-hydroxysteroid dehydrogenase (HSD) in neonatal pig tissues was investigated by Western blot analysis of the proteins reacting with anti-20β-HSD antibody. 20β-HSD was present in all organs investigated: brain, lung, thymus, submandibular gland, heart, liver, kidney, spleen, adrenal gland, testis, epididymis, prostate, vas deferens and seminal vesicle. In particular, high concentrations of 20β-HSD were detected in the testis, followed by the kidney and liver, by the [125I]-protein A binding method. Immunohistochemical localization of the enzyme was achieved in paraffin sections of the testis, kidney, liver, epididymis, and vas deferens by the streptoavidin-biotin complex method. In the testis, very strong immunostaining was found only in interstitial Leydig cells, whereas the cells in seminiferous tubules, such as Sertoli cells and spermatogenic cells, were entirely negative. In the kidney, strong immunostaining was detected in epithelial cells of Henle's loop. The immunoreactive proteins were also localized in the hepatic lobules of the liver, tall columnar cells of the ductus epididymidis of the epididymis, and mucosal epithelium cells and muscularis of the vas deferens. These observations indicate that tissue distribution of 20β-HSD is similar to that of carbonyl reductase in the human and rat. However, the specific and abundant expression of 20β-HSD in testicular Leydig cells of the neonatal pig, which are concerned with the synthesis of androgens, suggests that 20β-HSD has a very important physiological role in testicular function during the neonatal stage.  相似文献   

3.
The presence of the epidermal growth factor receptor (EGFR) in testis, epididymis and vas deferens of monkeys was demonstrated using a polyclonal antibody (RK2) raised against a peptide-specific sequence of the intracellular domain of the human EGFR. Immunoblotting of membrane preparations revealed a specific band at approximately 170 kDa corresponding to those of controls, A431 and monkey liver cells. Cryostat sections were stained by biotin-streptavidin peroxidase immunocytochemistry. The liver showed positive staining along the basolateral membranes of the hepatocytes lining the sinusoids. The testis showed positive staining indicating the presence of EGFR in Leydig cells, Sertoli cells and peritubular cells. In the epididymis, immunostaining of the EGFR was observed on both the basolateral and the luminal borders of the epididymal epithelium. Immunofluorescence studies revealed a similar pattern of EGFR distribution in the epididymis and indicated that the luminal immunostaining was vesicular. In the vas deferens, positive immunostaining was detected in a pattern very similar to that observed in the epididymis. There was no positive staining in the interstitium of the epididymis or in the smooth muscle cell layers of the vas deferens. The sections of all tissues treated with pre-immune serum were negative. These results suggest that EGF in the primate testis may act at the level of somatic cells. In addition, the basolateral and luminal EGFR staining in the epididymis and vas deferens suggest that these cells respond to an EGF, or EGF-like, source both at the basal, luminal or at both sides of the cells, or that these tissues serve as sites of EGF transcytosis across the epithelium.  相似文献   

4.
The morphology of the mouse vas deferens still undergoes major changes from birth to 40 days of age, such as differentiation of the mesenchymal cells into fibroblasts and muscle cells, differentiation of the epithelium into basal and columnar epithelial cells, development of stereocilia, and the appearance of smooth endoplasmic reticulum organised in fingerprint-like structures or parallel, flattened saccules. In mutant homozygous DeltaF508 (DeltaF/DeltaF) and knock-out (cf/cf) CFTR mice, strain 129/FvB and 129/C57BL-6, respectively, a similar development occurred until the age of 20 days. At 40 days, however, the lumen was filled with eosinophilic secretions, and sperm cells were absent in the majority of the animals examined, although sperm production in testis and epididymis appeared to be normal. CFTR was localised in the apical membrane and cytoplasm of the vas deferens epithelium from 40 days on but could not be detected in the vas deferens before 20 days or in mutant adult CFTR mice as expected. Western blots of membrane preparations showed that the mature form of CFTR was present in vas deferens and testis but absent in seminal vesicles. Our results suggest that the function of CFTR is probably essential after 20 days in the vas deferens and that its absence or dysfunction may result in a vas deferens with a differentiated epithelium but a collapsed lumen, which could at least temporarily delay the transport of spermatozoa. These observations contrast with those made in the overall majority of CF patients. Mol. Reprod. Dev. 55:125-135, 2000.  相似文献   

5.
6.
Expression of estrogen receptors (ERs) in the reproductive tracts of adult male dogs and cats has not been reported. In the present study, ERalpha and ERbeta were localized by immunohistochemistry using ER-specific antibodies. ERalpha was found in interstitial cells and peritubular myoid cells in the dog testis, but only in interstitial cells of the cat. In rete testis of the dog, epithelial cells were positive for ERalpha staining, but in the cat, rete testis epithelium was only weakly positive. In efferent ductules of the dog, both ciliated and nonciliated cells stained intensely positive. In the cat, ciliated epithelial cells were less stained than nonciliated epithelial cells. Epithelial cells in dog epididymis and vas deferens were negative for ERalpha. In the cat, except for the initial region of caput epididymis, ERalpha staining was positive in the epithelial cells of epididymis and vas deferens. Multiple cell types of dog and cat testes stained positive for ERbeta. In rete testis and efferent ductules, epithelial cells were weakly positive for ERbeta. Most epithelial cells of the epididymis and vas deferens exhibited a strong positive staining in both species. In addition, double staining was used to demonstrate colocalization of both ERalpha and ERbeta in efferent ductules of both species. The specificity of antibodies was demonstrated by Western blot analysis. This study reveals a differential localization of ERalpha and ERbeta in male dog and cat reproductive tracts, demonstrating more intensive expression of ERbeta than ERalpha. However, as in other species, the efferent ductules remained the region of highest concentration of ERalpha.  相似文献   

7.
Luminal acidification in parts of the male reproductive tract generates an appropriate pH environment in which spermatozoa mature and are stored. The cellular mechanisms of proton (H+) secretion in the epididymis and the proximal vas deferens involve the activity of an apical vacuolar H+ ATPase in specialized cell types, as well as an apical Na+/H+ exchanger in some tubule segments. In this study we used Western blotting and immunocytochemistry to localize the H+ ATPase in various segments of the male reproductive tract in rat and man as a first step toward a more complete understanding of luminal acidification processes in this complex system of tissues. Immunoblotting of isolated total cell membranes indicated a variable amount of H+ ATPase in various segments of the rat reproductive tract. In addition to its known expression in distinct cell types in the epididymis and vas deferens, the H+ ATPase was also localized at the apical pole and in the cytoplasm of epithelial cells in the efferent duct (nonciliated cells), the ampulla of the vas deferens and the ventral prostate (scattered individual cells), the dorsal and lateral prostate, the ampullary gland, the coagulating gland, and all epithelial cells of the prostatic and penile urethra. Both apical and basolateral localization of the protein were found in epithelial cells of the prostatic ducts in the lateral prostate and in periurethral tissue. Only cytoplasmic, mostly perinuclear localization of the H+ ATPase was found in all epithelial cells of the seminal vesicles and in most cells of the ventral prostate and coagulating gland. No staining was detected in the seminiferous tubules, rete testis, and bulbourethral gland. In human tissue, H+ ATPase-rich cells were detected in the epididymis, prostate, and prostatic urethra. We conclude that the vacuolar H+ ATPase is highly expressed in epithelial cells of most segments of the male reproductive tract in rat and man, where it may be involved in H+ secretion and/or intracellular processing of the material endocytosed from the luminal fluid or destined to be secreted by exocytosis.  相似文献   

8.
Aquaporin 9 expression along the male reproductive tract   总被引:10,自引:0,他引:10  
Fluid movement across epithelia lining portions of the male reproductive tract is important for modulating the luminal environment in which sperm mature and reside, and for increasing sperm concentration. Some regions of the male reproductive tract express aquaporin (AQP) 1 and/or AQP2, but these transmembrane water channels are not detectable in the epididymis. Therefore, we used a specific antibody to map the cellular distribution of another AQP, AQP9 (which is permeable to water and to some solutes), in the male reproductive tract. AQP9 is enriched on the apical (but not basolateral) membrane of nonciliated cells in the efferent duct and principal cells of the epididymis (rat and human) and vas deferens, where it could play a role in fluid reabsorption. Western blotting revealed a strong 30-kDa band in brush-border membrane vesicles isolated from the epididymis. AQP9 is also expressed in epithelial cells of the prostate and coagulating gland where fluid transport across the epithelium is important for secretory activity. However, it was undetectable in the seminal vesicle, suggesting that an alternative fluid transport pathway may be present in this tissue. Intracellular vesicles in epithelial cells along the reproductive tract were generally poorly stained for AQP9. Furthermore, the apical membrane distribution of AQP9 was unaffected by microtubule disruption. These data suggest that AQP9 is a constitutively inserted apical membrane protein and that its cell-surface expression is not acutely regulated by vesicular trafficking. AQP9 was detectable in the epididymis and vas deferens of 1-wk postnatal rats, but its expression was comparable with adult rats only after 3--4 wk. AQP9 could provide a route via which apical fluid and solute transport occurs in several regions of the male reproductive tract. The heterogeneous and segment-specific expression of AQP9 and other aquaporins along the male reproductive tract shown in this and in our previous studies suggests that fluid reabsorption and secretion in these tissues could be locally modulated by physiological regulation of AQP expression and/or function.  相似文献   

9.
10.
The Notch signaling pathway is involved in a variety of developmental processes. Here, we characterize the phenotypes developing in the reproductive organs of male transgenic (Tg) mice constitutively expressing the activated mouse Notch1 intracellular domain (Notch1(intra)) under the regulatory control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). Tg expression was detected in testis, vas deferens and epididymis by Northern blot analysis. In situ hybridization with a Notch1-specific probe lacked sensitivity to detect expression in normal-appearing cells, but demonstrated expression in hyperplastic epithelial cells of the vas deferens, epididymis and efferent ducts. Tg males from three independent founder lines were sterile. Histological analysis of reproductive organs of young Tg males (postnatal ages 8 and 21) showed no difference compared to those of non-Tg males. In contrast, in adult Tg mice from day 38 onwards, the efferent ducts, the vas deferens and most epididymal segments revealed bilateral epithelial cell hyperplasia with absence of fully differentiated epithelial cells. Electron microscopy confirmed the uniformly undifferentiated state of these cells. Immunohistochemistry with anti-PCNA antibody also revealed enhanced proliferation of Tg epididymis. In adult Tg testis, the different generations of germ cells of seminiferous tubules appeared normal, although some tubules were highly dilated and revealed an absence of early and/or late spermatids. The epithelial cells of the Tg tubuli recti and rete testis were not abnormal, but the rete testis was highly dilated and contained numerous spermatozoa, suggesting a downstream blockage. Consistent with a blockage of efferent ducts often seen at the rete testis/efferent duct interface, spermatozoa were absent in epididymis of all adult Tg mice and in all highly hyperplastic efferent duct tubules of these Tg mice. Such a blockage was visualized by injection of Evans blue dye into the rete testis lumen. Finally, the presence of ectopic hyperplastic efferent duct tubules was observed within the testicular parenchyma itself, outside their normal territory, suggesting that Notch1 signaling is involved in the establishment of these borders. This phenotype seems to represent a novel developmental defect in mammals. Together, these results show that constitutive Notch1 signaling significantly affects the development of male reproductive organs.  相似文献   

11.
Placental protein 5 (PP5), originally isolated from normal placenta (1), has recently been identified in the seminal plasma (2). We undertook a series of immunohistochemical experiments in order to find out the source of the seminal plasma PP5-immunoreactive material. Immunoperoxidase staining for PP5 was positive in the ampullar part of vas deferens and the seminal vesicle, while testis, epididymis, vas deferens, seminal vesicle, prostate and urethra were negative.  相似文献   

12.
Immunocytochemical localization of hexosaminidase activity in human males revealed that the enzyme activity is localized mainly in the Sertoli cells and interstitial tissue of the testis and in the columnar cells of the epididymis. In seminal vesicles, activity was observed around the glandular epithelium in the form of fine granules.  相似文献   

13.
14.
The fine structure of the seminal vesicle and reproductive accessory glands was investigated in Bittacidae of Mecoptera using light and transmission electron microscopy. The male reproductive system of Bittacidae mainly consists of a pair of testes, a pair of vasa deferentia, and an ejaculatory sac. The vas deferens is greatly expanded for its middle and medio-posterior parts to form a well-developed seminal vesicle. The seminal vesicle is composed of layers of developed muscles and a mono-layered epithelium surrounding the small central lumen. The epithelium is rich in rough endoplasmic reticulum and mitochondria, and secretes vesicles and granules into the central lumen by merocrine mechanisms. A pair of elongate mesodermal accessory glands opens into the lateral side of the seminal vesicles. The accessory glands are similar to the seminal vesicle in structure, also consisting of layers of muscle fibres and a mono-layered elongated epithelium, the cells of which contain numerous cisterns of rough endoplasmic reticulum and mitochondria, and a few Golgi complexes. The epithelial cells of accessory glands extrude secretions via apocrine and merocrine processes. The seminal vesicles mainly serve the function of secretion rather than temporarily storing spermatozoa. The sperm instead are temporarily stored in the epididymis, the greatly coiled distal portion of the vas deferens.  相似文献   

15.
This study investigated the morphology and immunoexpression of aquaporins (AQPs) 1 and 9 in the rete testis, efferent ducts, epididymis, and vas deferens in the Azara’s agouti (Dasyprocta azarae). For this purpose, ten adult sexually mature animals were used in histologic and immunohistochemical analyses. The Azara’s agouti rete testis was labyrinthine and lined with simple cubic epithelium. Ciliated and non-ciliated cells were observed in the epithelium of the efferent ducts. The epididymal cellular population was composed of principal, basal, apical, clear, narrow, and halo cells. The epithelium lining of vas deferens was composed of the principal and basal cells. AQPs 1 and 9 were not expressed in the rete testis. Positive reaction to AQP1 was observed at the luminal border of non-ciliated cells of the efferent ducts, and in the peritubular stroma and blood vessels in the epididymis, and vas deferens. AQP9 was immunolocalized in the epithelial cells in the efferent ducts, epididymis and vas deferens. The morphology of Azara’s agouti testis excurrent ducts is similar to that reported for other rodents such as Cuniculus paca. The immunolocalization results of the AQPs suggest that the expression of AQPs is species-specific due to differences in localization and expression when compared to studies in other mammals species. The knowledge about the expression of AQPs in Azara’s agouti testis excurrent ducts is essential to support future reproductive studies on this animal, since previous studies show that AQPs may be biomarkers of male fertility and infertility.  相似文献   

16.
The impact of oestrogens on the male reproductive system remains the subject of intensive research activity and debate. Oestrogen action is mediated via high affinity intracellular receptors expressed in target tissues. Two subtypes of oestrogen receptor known as ERα (NR3A1) and ERß (NR3A2) have been cloned and hERß variant isoforms identified. In target cells these receptors can exist as homoor heterodimers. We have used immunohistochemistry to examine the patterns of expression of ERs in human and non-human primates as a first step in determining the cellular targets for oestrogen action in the male.ERα was detected in the epithelial cells of efferent ductules (ED) occasionally in epithelial and stromal cells within the epididymis but was undetectable in human or primate testes. Using a polyclonal antibody raised against the hinge domain of ERß, immunopositive staining was detected in multiple cell types within the testis and in epithelial and stromal cell nuclei throughout the male reproductive system (ED, epididymis, vas deferens, seminal vesicles, prostate) and in the bladder. We have also used monoclonal antibodies that distinguish between wild type, full-length ERß (ERß1), and a splice variant isoform called ERßcx/ERß2 that does not bind oestrogens. ERß1 and ERß2 proteins were both detected in human testis and have distinct but overlapping patterns of expression. ERß1 was also detected in ED, epididymis and vas.In conclusion, oestrogen receptors are widely expressed in the male urogenital system and with the exception of the ED there are more cells that express ERß than ERα. In the adult human the testicular cells most likely to be targets for oestrogens are round spermatids in which levels of expression of full-length wild type receptor (ERß1) are high.  相似文献   

17.
The impact of oestrogens on the male reproductive system remains the subject of intensive research activity and debate. Oestrogen action is mediated via high affinity intracellular receptors expressed in target tissues. Two subtypes of oestrogen receptor known as REα (NR3A1) and ERß (NR3A2) have been cloned and hERß variant isoforms identified. In target cells these receptors can exist as homo- or heterodimers. We have used immunohistochemistry to examine the patterns of expression of ERs in human and non-human primates as a first step in determining the cellular targets for oestrogen action in the male. REα was detected in the epithelial cells of efferent ductules (ED) occasionally in epithelial and stromal cells within the epididymis but was undetectable in human or primate testes. Using a polyclonal antibody raised against the hinge domain of ERß, immunopositive staining was detected in multiple cell types within the testis and in epithelial and stromal cell nuclei throughout the male reproductive system (ED, epididymis, vas deferens, seminal vesicles, prostate) and in the bladder. We have also used monoclonal antibodies that distinguish between wild type, full-length ERß (ERß1), and a splice variant isoform called ERßcx/ERß2 that does not bind oestrogens. ERß1 and ERß2 proteins were both detected in human testis and have distinct but overlapping patterns of expression. ERß1 was also detected in ED, epididymis and vas. In conclusion, oestrogen receptors are widely expressed in the male urogenital system and with the exception of the ED there are more cells that express ERß than REα. In the adult human the testicular cells most likely to be targets for oestrogens are round spermatids in which levels of expression of full-length wild type receptor (ERß1) are high.  相似文献   

18.
Thirteen mammalian aquaporin (AQP) isoforms have been identified, and they have a unique tissue-specific pattern of expression. AQPs have been found in the reproductive system of both male and female humans, rats, and mice. However, tissue expression and cellular and subcellular localization of AQPs have been poorly investigated in the male reproductive system of birds. The localization of AQP subtypes (AQP1, 2, 3, 4, 5, 7, 8, 9, and 11) in the goose testis and vas deferens has been studied through immunohistochemistry and immunobloting. Interestingly, the testicular and deferential tissues were positive for AQP1, -5, and -7 but not the others. AQP1 immunoreactivity was detected in the capillary endothelial cells of testis and vas deferens. AQP5 was localized in the interstitial tissue of the testis, including Leydig cells, as well as in the basal cells of vas deferens. Double-labeling confocal microscopy revealed coexpression of AQP5 with capillary AQP1 in the testis. AQP7 was expressed in elongated spermatid and spermatozoa tails in the testis, as well as spermatozoa tails in the vas deferens. These results suggest that several subtypes of AQPs are involved in the regulation of water homeostasis in the goose male reproductive system. (J Histochem Cytochem 57:915–922, 2009)  相似文献   

19.
Observations on sperm maturation in the hamster (Mesocricetus auratus) epididymis revealed that the cytoplasmic droplet migrates from the proximal position of the sperm flagellum to the end of the midpiece. This process begins in the testis or vas efferens and ends in the cauda region of the epididymis. A study of different regions of the epididymis and vas deferens demonstrated that the cytoplasmic droplet is not released from the sperm into the luminal fluid. An ultrastructural study of the cytoplasmic droplet demonstrated changes in its morphology as its position moved distally along the midpiece. Membranous components called saccules or vesicles, believed to be remnants of the Golgi apparatus present in the cytoplasmic droplet, changed their morphology during the migration process. Inclusion bodies within vesicles were released to the lumen at the levels of the cauda epididymis and the vas deferens. © 1994 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号