首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Weak links: 'Rapoport's rule' and large-scale species richness patterns   总被引:4,自引:0,他引:4  
Many hypotheses have been proposed to explain regional species richness patterns. Among these, ‘Rapoport's rule’ has sparked considerable controversy by stating that the latitudinal gradient in species richness can be explained indirectly as a function of narrower geographic ranges for species at low latitudes. Annual climatic variability, or deviation from mean climatic conditions, has been hypothesized to moderate this phenomenon. Furthermore, taxa that avoid much of this seasonality, such as temperate zone insects that enter diapause or species that migrate, were predicted to show reduced latitudinal gradients in richness. I test the suggested link between ‘Rapoport's rule’ and species richness for two higher level insect taxa as well as for the class Mammalia. Although these taxa exhibit the well-known latitudinal gradient in species richness, simple annual climatic variability and deviation from mean annual climatic conditions provide very poor predictions of species richness in each of them. Potential evapotranspiration, a measurement of ambient climatic energy, explains most of the observed variance in regional species richness patterns for all three taxa, consistent with the species richness-energy hypothesis. I find no support for an indirect link between ‘Rapoport's rule’ and terrestrial species richness patterns in North America.  相似文献   

2.
记述中国云南豆芫菁属1新种:隐纹豆芫菁Epicautacryptogramaca,sp.nov.。新种与陈氏豆芫菁E.cheniTan,1958在外形上相似,两者的主要区别是:前者唇基和上唇扁平并有刻点和毛,后者唇基前缘光滑厚实,上唇基部和端部光滑;前者触角被一色的黑短毛,后者基部3节则密生浅色毛;前者前足第1跗节正常,后者则变为宽卵形;前者的足完全黑色,后者的后足胫节棕至棕黄。模式标本保存在河北大学博物馆。  相似文献   

3.
Aim We explore the potential role of the ‘tropical conservatism hypothesis’ in explaining the butterfly species richness gradient in North America. Its applicability can be derived from the tropical origin of butterflies and the presumed difficulties in evolving the cold tolerance required to permit the colonization and permanent occupation of the temperate zone. Location North America. Methods Digitized range maps for butterfly species north of Mexico were used to map richness for all species, species with distributions north of the Tropic of Capricorn (Extratropicals), and species that also occupy the tropics (Tropicals). A phylogeny resolved to subfamily was used to map the geographical pattern of mean root distance, a metric of the evolutionary development of assemblages. Regression models and general linear models examined environmental correlates of overall richness and for Extratropicals vs. Tropicals, patterns in summer vs. winter, and patterns in northern vs. southern North America. Results Species in more basal subfamilies dominate the south, whereas more derived clades occupy the north. There is also a ‘latitudinal’ richness gradient in Canada/Alaska, whereas in the conterminous USA richness primarily varies longitudinally. Overall richness is associated with broad‐ and mesoscale temperature gradients. The richness of Tropicals is strongly associated with temperature and distance from winter population sources. The richness of Extratropicals in the north is most strongly correlated with the pattern of glacial retreat since the more recent Ice Age, whereas in the south, richness is positively associated with the range of temperatures in mountains and the presence of forests but is negatively correlated with the broad‐scale temperature gradient. Main conclusions The tropical conservatism hypothesis provides a possible explanation for the complex structure of the species richness gradient. The Canada/Alaska fauna comprises temperate, boreal and tundra species that are nevertheless constrained by cold climates and limited vegetation, coupled with possible post‐Pleistocene recolonization lags. In the USA tropical species are constrained by temperature in winter as well as recolonization distances in summer, whereas temperate‐zone groups are richer in cooler climates in mountains and forests, where winter conditions are more suitable for diapause. The evolution of cold tolerance is key to both the evolutionary and ecological patterns.  相似文献   

4.
Abstract. 1. Membracid species richness declines with increasing latitude in the Western hemisphere but begins to increase again in temperate regions. In northern latitudes this transition occurs in the highlands of Mexico and is the result of the emergence of a new tribe and greater host specialization.
2. The relationship between number of species per genus and latitude is parabolic.
3. We suggest the low number of species per genus in tropical regions may be due to the lack of host specialization and reduced coordination of life history with host phenology.  相似文献   

5.
Abstract. The spatial heterogeneity hypothesis predicts a positive relationship between habitat complexity and species diversity: the greater the heterogeneity of a habitat, the greater the number of species in that habitat. On a regional scale, this hypothesis has been proposed to explain the increases in species diversity from the poles to the tropics: the tropics are more diverse because they contain more habitats. On the local scale, the spatial heterogeneity hypothesis suggests that the tropics are more diverse because they contain more microhabitats. The positive relationship between habitat heterogeneity and species diversity, on the local scale, is well documented. In this paper, we test whether habitat heterogeneity on the local scale can explain the latitudinal gradient of species diversity on the regional scale. We determined the latitudinal gradient of species diversity of 305 species of North American grasshoppers using published distribution maps. We compared the slope of this multihabitat (regional-scale) gradient with the slope of a within-habitat (local-scale) gradient in the prairie grasslands. Our results show no significant difference between the slopes at the two scales. We tested the generality of our results by comparing multi- and within-habitat latitudinal gradients of species diversity for ants, scorpions and mammals using data from the literature. These results are in accordance with those from grasshoppers. We can therefore reject the local-scale spatial heterogeneity hypothesis as a mechanism explaining the regional-scale latitudinal gradient of species diversity. We discuss alternative mechanisms that produce this gradient.  相似文献   

6.
Aim To examine butterfly species richness gradients in seven regions/countries and to quantify geographic mean root distance (MRD) patterns. My primary goal is to determine the extent to which an explanation for butterfly richness patterns based on tropical niche conservatism and the evolution of cold tolerance, proposed for the fauna of Canada and the USA, applies to other parts of the world. Location USA/Canada, Mexico, Europe/NW Africa, Transbaikal Siberia, Chile, South Africa and Australia. Methods Digitized range maps for butterfly species in each region were used to map richness patterns in summer (for all areas) and winter (for USA/Canada, Europe/NW Africa and Australia). A phylogeny resolved to subfamily was used to map the geographic MRD patterns. Regression trees and general linear models examined climatic and vegetation correlates of species richness and MRD within and among regions. Results Various combinations of climate and vegetation were strong predictors of species richness gradients within regions, but unresolved ‘regional’ factors contributed to the multiregional pattern. Regionally based differences in phylogenetic structure also exist, but MRD is negatively correlated with temperature both within and across areas. MRD patterns consistent with tropical niche conservatism occur in most areas. With a possible partial exception of Mexico, faunas in cold climates and in mountains are more derived than faunas in lowlands and tropical/subtropical climates. In USA/Canada, Europe and Australia, winter faunas are more derived than summer faunas. Main conclusions The phylogenetic pattern previously found in the USA and Canada is widespread in both the Northern and Southern Hemispheres, and niche conservatism and the evolution of cold tolerance is the likely explanation for the development of the global butterfly species richness gradient over evolutionary time. Contemporary climate also influences species richness patterns but is unlikely to be a complete explanation globally. The importance of climate is also manifested in the seasonal loss of more basal butterfly elements outside the tropics in winter.  相似文献   

7.
Correlates of species richness in North American bat families   总被引:2,自引:1,他引:1  
Aim A near universal truth in North America is that species richness increases from the Arctic Circle to the Central American tropics. Latitude is regarded as a major explanatory variable in species density, although it is only a surrogate for underlying ecological variables. I aimed to elucidate those underlying ecological variables that are associated with variation in bat species richness across the entire North American continent, providing a portrait of the macroecology of the order Chiroptera and its familial components. Methods I determined the number of bat species recorded for every state in Mexico and the United States, every province or territory in Canada, and every country in Central America. For each of these entities (n = 99), I also gathered basic data on mean annual precipitation, variation across the year (July vs. January) in mean temperature, mean January temperature, range in elevation (topographic relief), per cent vegetative cover and median latitude. Using a variety of linear regression and model‐fitting techniques, I analysed the strength and direction of the relationship between species richness and environmental variables for the order Chiroptera as a whole and separately for each of four familial groups: Molossidae (free‐tailed bats), Phyllostomidae (New World leaf‐nosed bats), Vespertilionidae (evening bats), and a set of six families (the Desmodontidae, Emballonuridae, Furipteridae, Natalidae, Noctilionidae, and Thyropteridae) represented in North America relatively poorly. Results and main conclusions Save for the Vespertilionidae, species richness of bats increased towards the Panamanian Isthmus. The Phyllostomidae and the set of miscellaneous families are particularly speciose in tropical Central America, with many fewer species occurring through subtropical Mexico into (in some cases) the southernmost United States. The Molossidae extends farther north, sparingly into the middle of the United States. Species density of the Vespertilionidae peaks in central and western Mexico and the southernmost United States, declining south through tropical southern Mexico and Central America and north through the central United States into Canada. Annual precipitation, January temperature, and topography are good predictors of species richness in the Chiroptera and the Molossidae, precipitation, topography, and temperature range in the Phyllostomidae, January temperature and topography in the Vespertilionidae, and precipitation alone in the collection of families. Vegetative cover explained little variation in the Chiroptera as a whole or in any family. After accounting for the effects of the environmental variables, latitude explained an insignificant amount of the residual variation in species richness. Bat families differ in their ecology, so studies of bat biogeography in North America may be misleading if they are examined only at the ordinal level.  相似文献   

8.
Aim Species richness exhibits striking geographical variation, but the processes that drive this variation are unresolved. We investigated the relative importance of two hypothesized evolutionary causes for the variation in palm species richness across the New World: time for diversification and evolutionary (net diversification) rate. Palms have a long history in the region, with the major clades diversifying during the Tertiary (65–2 Ma). Location Tropical and subtropical America (34° N–34° S; 33–120° W). Methods Using range maps, palm species richness was estimated in a 1° × 1° grid. Mean lineage net diversification was estimated by the mean phylogenetic root distance (MRD), the average number of nodes separating a species from the base of the palm phylogeny for the species in each grid cell. If evolutionary rate limits richness, then richness should increase with MRD. If time limits richness, then old, relict species (with low root distance) should predominantly occur in long‐inhabited and therefore species‐rich areas. Hence, richness should decrease with MRD. To determine the influence of net diversification across different time frames, MRD was computed for subtribe, genus and species levels within the phylogeny, and supplemented with the purely tip‐level measure, mean number of species per genus (MS/G). Correlations and regressions, in combination with eigenvector‐based spatial filtering, were used to assess the relationship between species richness, the net diversification measures, and potential environmental and geographical drivers. Results Species richness increased with all net diversification measures. The regression models showed that richness and the net diversification measures increased with decreasing (absolute) latitude and, less strongly, with increasing energy/temperature and water availability. These patterns therefore reflect net diversification at both deep and shallow levels in the phylogeny. Richness also increased with range in elevation, but this was only reflected in the MS/G pattern and therefore reflects recent diversification. Main conclusions The geographical patterns in palm species richness appear to be predominantly the result of elevated net diversification rates towards the equator and in warm, wet climates, sustained throughout most of the Tertiary. Late‐Tertiary orogeny has caused localized increases in net diversification rates that have also made a mark on the richness pattern.  相似文献   

9.
【目的】本研究旨在观察扁角豆芫菁Epicauta impressicornis主要触角感器的形态特征,为进一步开展扁角豆芫菁生物学和行为机制研究提供基础参考,也为今后的触角感受器电生理研究提供前提条件。【方法】对扁角豆芫菁E. impressicornis雌雄成虫触角感器进行了扫描电镜观察,并对雌雄成虫触角感器数量、分布及其差异进行了统计和比较分析。【结果】结果表明,其雌雄成虫触角感器存在性二型现象,二者的感器类型、数量及分布既有共性又存在明显差异。雌雄成虫触角共有的感器分为7种,即2种刺形感器(CH1和CH2),2种锥形感器(SB1和SB2),1种Böhm氏鬃毛(BB),1种耳形感器(SA)和1种钟形感器(CA);雄虫触角特有的感器类型包括1种刺形感器(CH3)和1种锥形感器(SB3),而雌性触角特有的感器类型包含2种锥形感器(SB4和SB5)和1种凹槽钉形感器(GP)。【结论】扁角豆芫菁成虫触角感受器类型丰富多样。根据触角感受器的形态、分布以及与之前报道结果的比较分析,推测其功能可能为信息素感器(CH1)、化学感器(CH2和GP)、嗅觉受体(CH3, SB1-SB5, SA和CA)、机械感器(BB)和温度感器(GP和CA)。  相似文献   

10.
Aim To quantify the latitudinal gradient in species richness in the New World Triatominae and to explore the species‐energy and area hypotheses as possible causes. Location The gradient was studied for North and South America, between 43° N and 32° S. Methods A database was constructed containing the geographical distribution of the 118 New World Triatominae species based on data extracted from several published sources. Species richness was recorded as the number of species present within 5° latitudinal bands. We used univariate and multivariate models to analyse the relationship between area within each latitudinal belt, land surface temperature, and potential evapotranspiration as explanatory variables, and species richness. All variables were georeferenced and data were extracted using a GIS. Results Species richness of Triatominae increases significantly from the poles towards the Equator, peaking over the 5°?10 ° S latitudinal band. It increases according to a linear model, both north and south of the Equator, although a quadratic model fits better to southern hemisphere data. Richness correlates with habitable geographical area, when it is analysed through a nonlinear multiple regression factoring out latitude, only in the southern hemisphere. Regarding the species‐energy hypothesis, a multiple regression analysis controlling the effect of latitude shows a significant relationship between temperature and species richness. This effect is more pronounced in the southern hemisphere. Species richness shows a strong longitudinal trend south of the Equator (increasing to the east), but not north of the Equator. This differential pattern is reflected in significant interactions between longitude and both latitude and temperature in models of the species richness of the New World Triatominae. Main conclusions To our knowledge, this is the first time that a latitudinal gradient in species richness has been shown and analysed for obligate haematophagous organisms, and it shows that the species–energy hypothesis can account for this phenomenon. This relationship is stronger in the southern hemisphere.  相似文献   

11.
Aim Geographic variation in species richness is a well‐studied phenomenon. However, the unique response of individual lineages to environmental gradients in the context of general patterns of biodiversity across broad spatial scales has received limited attention. The focus of this research is to examine relationships between species richness and climate, topographic heterogeneity and stream channel characteristics within and among families of North American freshwater fishes. Location The United States and Canada. Methods Distribution maps of 828 native species of freshwater fishes were used to generate species richness estimates across the United States and Canada. Variation in species richness was predicted using spatially explicit models incorporating variation in climate, topography and/or stream channel length and stream channel diversity for all 828 species as well as for the seven largest families of freshwater fishes. Results The overall gradient of species richness in North American freshwater fishes is best predicted by a model incorporating variables describing climate and topography. However, the response of species richness to particular climate or landscape variables differed among families, with models possessing the highest predictive ability incorporating data on climate, topography and/or stream channel characteristics within a region. Main conclusions The correlations between species richness and abiotic variables suggest a strong influence of climate and physical habitat on the structuring of regional assemblages of North American freshwater fishes. However, the relationship between these variables and species richness varies among families, suggesting the importance of phylogenetic constraints on the regulation of geographic distributions of species.  相似文献   

12.
13.
14.
Aim The magnitude of predicted range shifts during climate change is likely to be different for species living in mountainous environments compared with those living in flatland environments. The southern edges of ranges in mountain species may not shift northwards during warming as populations instead migrate up available elevational gradients; overall latitudinal range appears therefore to expand. In contrast, flatland species should shift range centroids northwards but not expand or contract their latitudinal range extent. These hypotheses were tested utilizing Late Pleistocene and modern occurrence data. Location North America. Methods The location and elevation of modern and Late Pleistocene species occurrences were collected from data bases for 26 species living in mountain or flatland environments. Regressions of elevation change over latitude, and southern and northern range edges were calculated for each species for modern and fossil data sets. A combination of regressions and anova s were used to test whether flatland species shift range edges and latitudinal extents more than mountain species do. Results Flatland species had significantly larger northward shifts at southern range edges than did mountain‐dwelling species from the Late Pleistocene to the present. There was also a significant negative correlation between the amount of change in the latitude of the southern edge of the range and the amount of elevational shifting from the Late Pleistocene to the present. Although significant, only c. 25% of the variance could be explained by this relationship. In addition, there was a weak indication that overall range expansion was less in flatland‐dwelling than in mountain‐dwelling species. Main conclusions The approach used here was to examine past species’ range responses to warming that occurred after the last ice ages as a means to better predict potential future responses to continued warming. The results confirm predictions of differential southern edge and overall range shifts for species occupying mountain and flatland regions in North America. The findings may be broadly applicable in other regions, thus allowing better modelling of future range and distribution related responses.  相似文献   

15.
姜鸣  霍棠  吕淑敏  张雅林 《昆虫学报》2012,55(7):860-868
3-羟甲基戊二酰辅酶A-还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase, HMGR)是甲羟戊酸途径的关键酶。获得芫菁体内HMGR基因信息是确定甲羟戊酸途径与斑蝥素合成相关性的基础。本研究利用RACE技术从细纹豆芫菁Epicauta mannerheimi (Maklin)体内克隆获得HMGR基因全长cDNA序列, 命名为EmHMGR(GenBank登录号为JQ690539)。该基因全长3 118 bp, 其中5′端非翻译区178 bp, 3′端非翻译区414 bp, 开放阅读框2 526 bp, 编码842个氨基酸。推测的蛋白质分子量为92.8 kDa, 理论等电点为6.0, 预测分子式为C4135H6604N1098O1216S50, 不稳定系数为43.37, 总亲水性系数为0.091, 为疏水性不稳定蛋白。序列分析发现该基因编码的蛋白与已报道的其他昆虫HMGR的氨基酸序列一致性达50%以上, 而且包含HMGR_Class I保守功能域、 固醇敏感多肽区及HMGR蛋白的其他保守功能位点。系统进化分析发现该基因与叶甲科昆虫HMGR基因的关系最近。本研究首次从芫菁科昆虫体内克隆获得甲羟戊酸途径的关键酶EmHMGR基因, 为后期芫菁体内斑蝥素生物合成途径的研究奠定了基础。  相似文献   

16.
物种丰富度的大尺度地理格局及其成因是宏观生态学和生物地理学的中心议题之一。本文利用中国陆栖哺乳动物分布数据, 结合高分辨率的气候、地形、植被等环境信息, 探讨了中国陆栖哺乳动物及主要类群的物种丰富度格局及其影响因素。结果显示, 中国陆栖哺乳动物物种丰富度具有显著的纬度梯度格局, 总体上呈现出由低纬度向高纬度逐渐减少的趋势, 并与宏观地形具有良好的对应关系; 其中, 亚热带、热带西部山区的物种丰富度最高, 而东部平原地区、西北干旱区和青藏高原腹地则是丰富度的低值区。各主要类群的物种丰富度格局既有相似性, 又存在差异。最优线性模型的分析结果显示, 由归一化植被指数(NDVI)、生态系统类型数和气温年较差构成的回归模型对哺乳动物物种丰富度格局的解释率最高, 其中NDVI对模型解释率的贡献最大, 这表明中国陆栖哺乳动物物种丰富度的地理分异受多种环境因素的共同影响, 其中植被生产力起主导作用。各主要类群的最优线性模型显示, 影响物种丰富度格局的主要环境因子因类群而异, 这可能反映了各类群进化历史及生理适应的差异。  相似文献   

17.
18.
物种多样性地理格局的能量假说   总被引:5,自引:1,他引:5  
物种多样性地理分布格局及其成因是生物地理学和宏观生态学研究的核心问题之一。为了解释物种多样性的分布格局, 人们提出了多种假说, 其中讨论最多的是能量假说。该假说认为, 物种多样性的变化受能量控制。根据能量的不同形式及其对物种多样性的影响机制, 能量假说包括以下几种形式: 生产力假说(productivity hypothesis)、水分—能量动态假说(water–energy dynamic hypothesis)、环境能量假说(ambient energy hypothesis)、寒冷忍耐假说(freezing tolerance hypothesis)以及生态学代谢假说(metabolic theory of ecology, MTE)。本文系统介绍了每种能量假说的含义、所使用的能量形式及表征变量, 以及对物种多样性的影响机制, 并对不同形式的能量假说进行了比较, 在此基础上, 分析了每种能量假说的优点和缺点以及各自面临的问题。  相似文献   

19.
Aim The aim of this study was to analyse whether, and how, the inclusion of habitat specialists and edge‐preferring species modifies the species–area relationship predictions of the island biogeography theory for an insect group (ground beetles, Coloptera: Carabidae) living in natural fragments. Species–habitat island area relationships applied to terrestrial habitat islands can be distorted by the indiscriminate inclusion of all species occurring in the fragments. Matrices surrounding terrestrial habitat fragments can provide colonists that do not necessarily distinguish the fragment from the matrix and can survive and reproduce there. Edge‐preferring species can further distort the expected relationship, as smaller fragments have larger edge:core ratios. Location Nineteen forest fragments were studied in the Bereg Plain, Hungary, and SW Ukraine. This area contains natural forest patches, mainly of oak and hornbeam, and supports a mountain entomofauna. Methods Ground beetles (Carabidae) present in the 19 forest patches were categorized into generalists, forest specialists and edge‐preferring species. We analysed the relationship between species richness and fragment area using species richness in the different categories. Results The assemblages contained a high share of generalist species (species that occur also in the surrounding matrix). Forest patch size and the number of generalist species showed a marginally significant negative relationship, indicating that generalist species were more important in smaller patches. Forest specialist species richness was correlated positively with patch area. Edge‐preferring species were shown to influence the species–area relationship: the number of edge‐preferring species increased with the edge:area ratio. Main conclusions Both generalist and edge‐preferring species can considerably distort the species–area relationship. Island biogeography theory can be applied to habitat islands only if the habitat islands are defined correctly from the viewpoint of the target species.  相似文献   

20.
The idea that the number of species within an area is limited by a specific capacity of that area to host species is old yet controversial. Here, we show that the concept of carrying capacity for species richness can be as useful as the analogous concept in population biology. Many lines of empirical evidence indicate the existence of limits of species richness, at least at large spatial and phylogenetic scales. However, available evidence does not support the idea of diversity limits based on limited niche space; instead, carrying capacity should be understood as a stable equilibrium of biodiversity dynamics driven by diversity‐dependent processes of extinction, speciation and/or colonization. We argue that such stable equilibria exist even if not all resources are used and if increasing species richness increases the ability of a community to use resources. Evaluating the various theoretical approaches to modelling diversity dynamics, we conclude that a fruitful approach for macroecology and biodiversity science is to develop theory that assumes that the key mechanism leading to stable diversity equilibria is the negative diversity dependence of per‐species extinction rates, driven by the fact that population sizes of species must decrease with an increasing number of species owing to limited energy availability. The recently proposed equilibrium theory of biodiversity dynamics is an example of such a theory, which predicts that equilibrium species richness (i.e., carrying capacity) is determined by the interplay of the total amount of available resources, the ability of communities to use those resources, environmental stability that affects extinction rates, and the factors that affect speciation and colonization rates. We argue that the diversity equilibria resulting from these biodiversity dynamics are first‐order drivers of large‐scale biodiversity patterns, such as the latitudinal diversity gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号