首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weak links: 'Rapoport's rule' and large-scale species richness patterns   总被引:4,自引:0,他引:4  
Many hypotheses have been proposed to explain regional species richness patterns. Among these, ‘Rapoport's rule’ has sparked considerable controversy by stating that the latitudinal gradient in species richness can be explained indirectly as a function of narrower geographic ranges for species at low latitudes. Annual climatic variability, or deviation from mean climatic conditions, has been hypothesized to moderate this phenomenon. Furthermore, taxa that avoid much of this seasonality, such as temperate zone insects that enter diapause or species that migrate, were predicted to show reduced latitudinal gradients in richness. I test the suggested link between ‘Rapoport's rule’ and species richness for two higher level insect taxa as well as for the class Mammalia. Although these taxa exhibit the well-known latitudinal gradient in species richness, simple annual climatic variability and deviation from mean annual climatic conditions provide very poor predictions of species richness in each of them. Potential evapotranspiration, a measurement of ambient climatic energy, explains most of the observed variance in regional species richness patterns for all three taxa, consistent with the species richness-energy hypothesis. I find no support for an indirect link between ‘Rapoport's rule’ and terrestrial species richness patterns in North America.  相似文献   

2.
The ‘mid‐domain effect’ (MDE) has received much attention recently as a candidate explanation for patterns in species richness over large geographic areas. Mid‐domain models generate a central peak in richness when species ranges are randomly placed within a bounded geographic area (i.e. the domain). The most common terrestrial mid‐domain models published to date have been 1‐D latitude or elevation models and 2‐D latitude‐longitude models. Here, we test 1‐D, 2‐D and 3‐D mid‐domain models incorporating latitude, longitude and elevation, and assess independent and concurrent effects of geometric constraints and climatic variables on species richness of North American trees. We use both the traditional ‘global’ regression models as well as geographically weighted regressions (‘local’ models) to examine local variation in the contribution of MDE and climatic variables to species richness across the domain. Our results show that in some dimensions the contribution of MDE to patterns of species richness can be quite substantial, and we show that in most cases a combination of MDE and climate predicted empirical species richness best in both local and global models. For the North American domain, MDE in the elevation dimension is clearly important in describing patterns of empirical species richness. We also show that the assumption of stationarity in global models is not met in the North American domain and that results of these models mask complex patterns in both the effect of MDE on richness and the response of species richness to climate. In particular we show the increased explanatory role of MDE in predicting species richness as domain edges are approached. Our results support the hypothesis that geometric constraints contribute to species richness patterns and we suggest the mid‐domain effect should be considered alongside more traditional environmental correlates in understanding patterns of species diversity.  相似文献   

3.
Many mechanisms have been proposed to explain broad scale spatial patterns in species richness. In this paper, we evaluate five explanations for geographic gradients in species richness, using South American owls as a model. We compared the explanatory power of contemporary climate, landcover diversity, spatial climatic heterogeneity, evolutionary history, and area. An important aspect of our analyses is that very different hypotheses, such as history and area, can be quantified at the same observation scale and, consequently can be incorporated into a single analytical framework. Both area effects and owl phylogenetic history were poorly associated with richness, whereas contemporary climate, climatic heterogeneity at the mesoscale and landcover diversity explained ca. 53% of the variation in species richness. We conclude that both climate and environmental heterogeneity should be retained as plausible explanations for the diversity gradient. Turnover rates and scaling effects, on the other hand, although perhaps useful for detecting faunal changes and beta diversity at local and regional scales, are not strong explanations for the owl diversity gradient.  相似文献   

4.
气候假说对内蒙古草原群落物种多样性格局的解释   总被引:1,自引:0,他引:1  
物种丰富度的地理格局是宏观生态学和生物地理学的中心议题之一。本文基于内蒙古草原192个野外样地的调查数据, 结合各样地年平均气温、年降水量等9个气候因子, 探讨内蒙古草原物种丰富度格局及其主导因素, 以确定气候假说在该区的适用性。结果表明: (1)内蒙古草原物种丰富度经度格局显著, 呈现沿经度升高而增加的趋势, 同时由于经纬度的共线性, 也呈现出沿纬度升高而增加的趋势。(2)方差分解显示, 能量单独解释率为2.7%, 水分单独解释率为11.4%, 水分和能量共同解释率为46.3%, 未解释部分为39.6%, 可见能量与水分的共同作用在物种丰富度格局形成中占主导地位, 支持水热动态假说。这说明水热动态假说适用于解释内蒙古草原物种丰富度 格局。  相似文献   

5.
Climate and evolutionary factors (e.g. diversification, time‐for‐speciation, niche conservatism) are both thought to be major drivers of species richness in regional assemblages. However, few studies have simultaneously investigated the relative effects of climate and evolutionary factors on species richness across a broad geographical extent. Here, we assess their relative effects on species richness of angiosperm trees across North America. Species richness of angiosperm trees in 1175 regional assemblages were related to climate and phylogenetic structure using a structural equation modeling (SEM) approach. Climate was quantified based on the mean temperature of the coldest month and mean annual precipitation. Evolutionary factors (time‐for‐speciation vs diversification) were inferred from phylogeny‐based measures of mean root distance, phylogenetic species variability, and net relatedness index. We found that at the continental scale, species richness is correlated with temperature and precipitation with approximately similar strength. In the SEM with net relatedness index and phylogenetic species variability and with all the 1175 quadrats, the total direct effect size of phylogenetic structure on species richness is greater than the total direct effect size of climate on species richness by a factor of 3.7. The specific patterns of phylogenetic structure (i.e. greater phylogenetic distances in more species rich regions) are consistent with the idea that time and niche conservatism drive richness patterns in North American angiosperm trees. We conclude that angiosperm tree species richness in regional assemblages in North America is more strongly related to patterns of phylogenetic relatedness than to climatic variation. The results of the present study support the idea that climatic and evolutionary explanations for richness patterns are not in conflict, and that evolutionary processes explain both the relationship between climate and richness and substantial variation in richness that is independent of climate.  相似文献   

6.
Speciation is the process that ultimately generates species richness. However, the time required for speciation to build up diversity in a region is rarely considered as an explanation for patterns of species richness. We explored this "time-for-speciation effect" on patterns of species richness in emydid turtles. Emydids show a striking pattern of high species richness in eastern North America (especially the southeast) and low diversity in other regions. At the continental scale, species richness is positively correlated with the amount of time emydids have been present and speciating in each region, with eastern North America being the ancestral region. Within eastern North America, higher regional species richness in the southeast is associated with smaller geographic range sizes and not greater local species richness in southern communities. We suggest that these patterns of geographic range size variation and local and regional species richness in eastern North America are caused by glaciation, allopatric speciation, and the time-for-speciation effect. We propose that allopatric speciation can simultaneously decrease geographic range size and increase regional diversity without increasing local diversity and that geographic range size can determine the relationship between alpha, beta, and gamma diversity. The time-for-speciation effect may act through a variety of processes at different spatial scales to determine diverse patterns of species richness.  相似文献   

7.
Several hypotheses have been proposed to explain the mechanisms that generate temporal and spatial species richness patterns. We tested four common hypotheses (water, energy, climatic heterogeneity and net primary productivity) to evaluate which factors best explain patterns of Zygoptera species richness. Of these, we predicted that climatic heterogeneity would be the most important predictor for Zygoptera richness patterns. We sampled communities of adult Zygoptera in 100 small Amazonian streams. Based on generalized linear mixed models (GLMM), we found that net primary productivity and climatic heterogeneity comprised the best model of Zygoptera species richness in Amazonian streams, with an pseudo r2 of 39.5%. Results indicate that species richness increases by one species per 1 kg of biomass per square meter in NPP, or with an increase of 2 °C in air temperature variability. Our work corroborates a recent study with other taxa in Brazilian Bioms. This suggests that temporal variation in climate and net primary productivity are important predictors of the macroecological patterns of richness for aquatic organisms in tropical regions.  相似文献   

8.
Aim To evaluate the strength of evidence for hypotheses explaining the relationship between climate and species richness in forest plots. We focused on the effect of energy availability which has been hypothesized to influence species richness: (1) via the effect of productivity on the total number of individuals (the more individuals hypothesis, MIH); (2) through the effect of temperature on metabolic rate (metabolic theory of biodiversity, MTB); or (3) by imposing climatic limits on species distributions. Location Global. Methods We utilized a unique ‘Gentry‐style’ 370 forest plots data set comprising tree counts and individual stem measurements, covering tropical and temperate forests across all six forested continents. We analysed variation in plot species richness and species richness controlled for the number of individuals by using rarefaction. Ordinary least squares (OLS) regression and spatial regressions were used to explore the relative performance of different sets of environmental variables. Results Species richness patterns do not differ whether we use raw number of species or number of species controlled for number of individuals, indicating that number of individuals is not the proximate driver of species richness. Productivity‐related variables (actual evapotranspiration, net primary productivity, normalized difference vegetation index) perform relatively poorly as correlates of tree species richness. The best predictors of species richness consistently include the minimum temperature and precipitation values together with the annual means of these variables. Main conclusion Across the world's forests there is no evidence to support the MIH, and a very limited evidence for a prominent role of productivity as a driver of species richness patterns. The role of temperature is much more important, although this effect is more complex than originally assumed by the MTB. Variation in forest plot diversity appears to be mostly affected by variation in the minimum climatic values. This is consistent with the ‘climatic tolerance hypothesis’ that climatic extremes have acted as a strong constraint on species distribution and diversity.  相似文献   

9.
Paleontological evidence and current patterns of angiosperm species richness suggest that European biota experienced more severe bottlenecks than North American ones during the last glacial maximum. How well this pattern fits other plant species is less clear. Bryophytes offer a unique opportunity to contrast the impact of the last glacial maximum in North America and Europe because about 60% of the European bryoflora is shared with North America. Here, we use population genetic analyses based on approximate Bayesian computation on eight amphi‐Atlantic species to test the hypothesis that North American populations were less impacted by the last glacial maximum, exhibiting higher levels of genetic diversity than European ones and ultimately serving as a refugium for the postglacial recolonization of Europe. In contrast with this hypothesis, the best‐fit demographic model involved similar patterns of population size contractions, comparable levels of genetic diversity and balanced migration rates between European and North American populations. Our results thus suggest that bryophytes have experienced comparable demographic glacial histories on both sides of the Atlantic. Although a weak, but significant genetic structure was systematically recovered between European and North American populations, evidence for migration from and towards both continents suggests that amphi‐Atlantic bryophyte population may function as a metapopulation network. Reconstructing the biogeographic history of either North American or European bryophyte populations therefore requires a large, trans‐Atlantic geographic framework.  相似文献   

10.
We studied frog biodiversity along an elevational gradient in the Hengduan Mountains, China. Endemic and non-endemic elevational diversity patterns were examined individually. Competing hypotheses were also tested for these patterns. Species richness of total frogs, endemics and non-endemics peaked at mid-elevations. The peak in endemic species richness was at higher elevations than the maxima of total species richness. Endemic species richness followed the mid-domain model predictions, and showed a nonlinear relationship with temperature. Water and energy were the most important variables in explaining elevational patterns of non-endemic species richness. A suite of interacting climatic and geometric factors best explained total species richness patterns along the elevational gradient. We suggest that the mid-domain effect was an important factor to explain elevational richness patterns, especially in regions with high endemism.  相似文献   

11.
The variation of passerine species richness in Spain was studied at various spatial scales. Presence-absence data was resampled to construct three species richness maps in lattices of 10×10, 30×30, and 50×50 km UTM cells. The importance of habitat, species-energy, climatic variability, disturbance, history and geometric constraints hypotheses was assessed using geographical data. Stochastic, range-based models were used to simulate neutral colonization events from Europe or from Africa. The importance of small scale processes remained after the inclusion of environmental covariates, indicating a possible role of ecological interactions that was represented in the models by a conditional spatial autoregressive term. Historical effects and energy related measures explained most of the variation in regional species richness. Local and regional habitat structure measures explained the pattern only after large scale trends were considered. The differences when species richness was analyzed at each scale reveal the importance of spatial issues in diversity studies. The possible role of post glacial migration in shaping the observed patterns, and implications for conservation are discussed.  相似文献   

12.
It remains unclear whether the latitudinal diversity gradients of micro- and macro-organisms are driven by the same macro-environmental variables. We used the newly completed species catalog and distribution information of bryophytes in China to explore their spatial species richness patterns, and to investigate the underlying roles of energy availability, climatic seasonality, and environmental heterogeneity in shaping these patterns. We then compared these patterns to those found for woody plants. We found that, unlike woody plants, mosses and liverworts showed only weakly negative latitudinal trends in species richness. The spatial patterns of liverwort richness and moss richness were overwhelmingly explained by contemporary environmental variables, although explained variation was lower than that for woody plants. Similar to woody plants, energy and climatic seasonality hypotheses dominate as explanatory variables but show high redundancy in shaping the distribution of bryophytes. Water variables, that is, the annual availability, intra-annual variability and spatial heterogeneity in precipitation, played a predominant role in explaining spatial variation of species richness of bryophytes, especially for liverworts, whereas woody plant richness was affected most by temperature variables. We suggest that further research on spatial patterns of bryophytes should incorporate the knowledge on their ecophysiology and evolution.  相似文献   

13.
Several hypotheses attempt to explain the latitudinal gradient of species diversity, but some basic aspects of the pattern remain insufficiently explored, including the effect of scales and the role of beta diversity. To explore such components of the latitudinal gradient, we tested the hypothesis of covariation, which states that the gradient of species diversity should show the same pattern regardless of the scale of analysis. The hypothesis implies that there should be no gradients of beta diversity, of regional range size within regions, and of the slope of the species-area curve. For the fauna of North American mammals, we found contrasting results for bats and non-volant species. We could reject the hypothesis of covariation for non-volant mammals, for which the number of species increases towards lower latitudes, but at different rates depending on the scale. Also, for this group, beta diversity is higher at lower latitudes, the regional range size within regions is smaller at lower latitudes, and z, the slope of the species-area relationship is higher at lower latitudes. Contrarily bats did not show significant deviations from the predictions of the hypothesis of covariation: at two different scales, species richness shows similar trends of increase at lower latitudes, and no gradient can be demonstrated for beta diversity, for regional range size, or for the slopes of the species-area curve. Our results show that the higher diversity of non-volant mammals in tropical areas of North America is a consequence of the increase in beta diversity and not of higher diversity at smaller scales. In contrast, the diversity of bats at both scales is higher at lower latitudes. These contrasting patterns suggest different causes for the latitudinal gradient of species diversity in the two groups that are ultimately determined by differences in the patterns of geographic distribution of the species.  相似文献   

14.
15.
生物多样性的大尺度空间分布格局及其形成机制一直是生态学和生物地理学的核心内容。黄河流域是我国重要的生态屏障, 明确该区域动植物多样性分布格局及其影响因素, 对我国黄河流域生态保护和高质量发展具有重要意义。本研究通过收集黄河流域被子植物和陆栖脊椎动物分布数据, 结合气候、环境异质性和人类活动等信息, 探讨了黄河流域被子植物和陆栖脊椎动物物种丰富度格局及其主要影响因素。结果表明, 黄河流域被子植物和陆栖脊椎动物物种丰富度在区域尺度具有相似的分布格局: 南部山地动植物物种丰富度最高, 而东部高寒区和北部干旱区物种丰富度最低。回归树模型表明, 冠层高度范围和净初级生产力范围分别是黄河流域被子植物和陆栖脊椎动物物种丰富度最重要的预测因子; 当移除空间自相关影响后, 环境异质性和气候因子依然对区域尺度的动植物物种丰富度具有较高且相似的解释度。表明环境异质性和气候共同决定了黄河流域被子植物和陆栖脊椎动物物种丰富度格局, 而人类使用土地面积并不是影响黄河流域动植物物种丰富度格局的主要因子。因此, 在未来的研究中若针对不同区域筛选出更精准的环境驱动因子或选用更多不同类别的环境异质性因子进行分析, 将有助于更深入理解物种多样性格局的成因。  相似文献   

16.
The relationship between plant diversity and animal diversity on a broadscale and its mechanisms are uncertain. In this study, we explored this relationship and its possible mechanisms using data from 186 nature reserves across China on species richness of vascular plants and terrestrial vertebrates, and climatic and topographical variables. We found significant positive correlations between species richness in almost all taxa of vascular plants and terrestrial vertebrates. Multiple regression analyses indicated that plant richness was a significant predictor of richness patterns for terrestrial vertebrates (except birds), suggesting that a causal association may exist between plant diversity and vertebrate diversity in China. The mechanisms for the relationships between species richness of plants and animals are probably dependent on vertebrate groups. For mammals (endothermic vertebrates), this relationship probably represents the integrated effects of plants on animals through trophic links (i.e. providing foods) and non-trophic interactions (i.e. supplying habitats), whereas for amphibians and reptiles (ectothermic vertebrates), this may be a result of the non-trophic links, such as the effects of plants on the resources that amphibians and reptiles require.  相似文献   

17.
18.
19.
We used geographic ranges of North American shrews and environmental data to better understand spatial distribution of species richness in the Soricidae. Richness was examined as a function of latitude and longitude and was compared with climatic variables at random points (≥90 km apart). Latitudinal trend in richness was parabolic with a maximum near 48°N, consistent with the general hypothesis that diversity is limited by energy to the north and by moisture to the south. Precipitation, snowfall, and July heating degree days were positively related to shrew richness. Richness of North American Soricidae was high in areas where topographic relief allowed for a variety of forested habitats and precipitation was high, such as the Southern Appalachians and Pacific Northwest. This broad, geographic study supports the idea that environmental moisture importantly limits distributions of shrews, which has been  相似文献   

20.
An exploration of factors influencing lotic insect species richness   总被引:3,自引:0,他引:3  
An understanding of factors that influence species richness of lotic insects is generally lacking. We present comparative data on aquatic insect species richness from several North American and other streams. Factors such as large sample numbers and drainage area (species area relationships) are not significant predictors of species richness across the streams we examined. We explore several hypotheses regarding the origins and maintenance of species richness using Upper Three Runs Creek (UTR), South Carolina, USA, as a reference stream. UTR has the highest species richness of any stream in the Western Hemisphere. Hypotheses examined included historical, regional and local processes such as: (1) Evolutionary time, (2) disturbance regime/environmental variability, (3) temperature/evolutionary-speed, (4) productivity, and (5) habitat heterogeneity. Of these hypotheses, we suggest that productivity and habitat heterogeneity appear to contribute most to the high species richness found in UTR. We believe that multidisciplinary analysis of other streams is necessary because without this crucial information our knowledge of, and desire to protect biodiversity in streams will be wanting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号