首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fertilization or activation by ionophore A 23187 induces a transient acid release in prophase-blocked and in maturing oocytes of Asterias rubens and Marthasterias glacialis. 1-Methyladenine-induced maturation is not accompanied by acid release. There is no significant difference in the kinetic and amount of acid release related to the nature of activation or the stage of oocytes in each species. The amount of acid released per oocyte volume is smaller than total "fertilization acid" of sea urchin eggs but comparable to its Na-insensitive component. Cortical reaction can be initiated without significant acid release in ammonia treated oocytes. A burst of sodium influx occurs at activation or fertilization of oocytes. Kinetic and amount of Na influx are comparable to acid release. Vitelline membrane elevation is impaired upon activation of oocytes in the absence of extracellular sodium but a significant although smaller release of acid occurs. This suggests that starfish oocytes release acid by a mechanism differing from the Na+-H+ exchange of sea urchin eggs.  相似文献   

2.
In embryos of the sea urchin, Hemicentrotus pulcherrimus , as well as in cultured cells derived from isolated micromeres, spicule formation was inhibited by allylisothiocyanate, an inhibitor of H+, K+-ATPase, at above 0.5 μM and was almost completely blocked at above 10 μM. Amiloride, an inhibitor of Na+, H+ antiporter, at above 100 μM exerted only slight inhibitory effect, if any, on spicule formation. Intravesicular acidification, determined using [ dimethylamine -14C]-aminopyrine as a pH probe, was observed in the presence of ATP and 200 mM KCl in microsome fraction obtained from embryos at the post gastrula stage, at which embryos underwent spicule calcification. Intravesicular acidification and K+-dependent ATPase activity were almost completely inhibited by allylisothiocyanate at 10 μM. Allylisothiocyanate-sensitive ATPase activity was found mainly in the mesenchyme cells with spicules isolated from prisms. H+, K+-ATPase, an H+ pump, probably mediates H+ release to accelerate CaCO3 deposition from Ca2+, CO2 and H2O in the primary mesenchyme cells. Intravesicular acidification was stimulated by valinomycin at the late gastrula and the prism stages but not at the pluteus stage. K+ permeability probably increases after the prism stage to activate H+ release.  相似文献   

3.
Immediately after fertilization sea urchin eggs undergo an increase in cytoplasmic pH from 6.8 to 7.2. This pH change occurs by activation of a Na+/H+ antiporter, and is a necessary signal for later steps in metabolic activation of development. Activators of protein kinase C such as phorbol myristate acetate (PMA) and diacylglycerol produce a similar pH increase in eggs. Phosphorylation of the antiporter or a regulatory protein may be a step in activating Na+/H+ exchange. Here we show that treatment of sea urchin eggs ( S. purpuratus ) with PMA results in increased phosphorylation of over a dozen proteins. Of these, three proteins of Mr=240, 92 and 80 kD are located in the egg cortex; under-representation of these bands in isolated cortical granules suggests that they are plasma membrane-associated. Phosphorylation of the 92 kD band is concentration-dependent over a range of 10 to 1000 nM PMA and occurs over a time-course of 1 to 3 min. Phosphoamino acid analysis indicates that phosphorylation is on serine residues. Phosphorylation appeares to be mediated by protein kinase C since the inactive PMA analogue, 4α-phorbol 12, 13-didecanoate, does not induce phosphorylation nor does experimental alkalinization of the egg cytoplasm.  相似文献   

4.
Embryos kept with omeprazole, a specific H+, K+-ATPase inhibitor, in a period of development between the mesenchyme blastula and the pluteus corresponding stage became abnormal plutei having quite small spicules, somewhat poor pluteus arms and apparently normal archenterons. In micro-mere-derived cells, kept with omeprazole at pH 8.2 in a period between 15 and 40 hr of culture at 20°C, omeprazole strongly inhibited spicule formation but did not block the outgrowth of pseudopodial cables, in which spicule rods were to be formed. These indicate that omeprazole probably exerts no obvious inhibitory effects other than spicule rods formation. Omeprazole-sensitive H+, K+-ATPase, an H+pump, seems to be indispensable for CaCO3 deposition (formation of spicule rod) in these spicule forming cells. H+, produced in overall reaction for CaCO3 formation: Ca2++ CO2+H2O°CaCO3+2H+, is probably released from the cells by this H+pump and hence, this reaction tends to go to CaCO3 production to form spicule rods. Omeprazole, known to become effective following its conversion to a specific inhibitor of H+, K+-ATPase at acidic pH, is able to inhibit formation of spicule rod at alkaline pH in sea water. This is probably due to an acidification of sea water near the cell surface by H+ejection in H+, K+-ATPase reaction.  相似文献   

5.
Shading of maize plants ( Zea mays L. cv. Blizzard) reduced net H+ extrusion by roots and increased K+ release, whereas there was no significant effect on anion efflux in deionized water. With lower light intensity the concentrations of carbohydrates in the roots decreased, but ATP levels and energy charge remained unchanged. Also, shading raised the tissue pH of roots and made the cytoplasmic pH of root cells drop. There was a significant influence of light intensity on H+ uptake by roots from an acidified test solution and CCCP (carbonylcyanide-3-chlorophenylhydrazone)-in-duced H+ uptake was modified by shading.
It is concluded that low light intensity does not limit active H+ release by plasmalemma ATPase activity in the root cells, but that a reduced carbohydrate supply brings about a change in biochemical reactions which alter the membrane permeability for protons. An increased passive reflux of H+ into the cells rather than a reduced H+ ATPase activity explains the decrease of net H+ release by roots of intact maize plants under low light intensity.  相似文献   

6.
The effect of aluminum on dimorphic fungi Yarrowia lipolytica was investigated. High aluminum (0.5–1.0 mM AlK(SO4)2) inhibits yeast–hypha transition. Both vanadate-sensitive H+ transport and ATPase activities were increased in total membranes isolated from aluminum-treated cells, indicating that a plasma membrane H+ pump was stimulated by aluminum. Furthermore, Al-treated cells showed a stronger H+ efflux in solid medium. The present results suggest that alterations in the plasma membrane H+ transport might underline a pH signaling required for yeast/hyphal development. The data point to the cell surface pH as a determinant of morphogenesis of Y. lipolytica and the plasma membrane H+-ATPase as a key factor of this process.  相似文献   

7.
Transport across the plasma membrane is driven by an electrochemical gradient of H+ ions generated by the plasma membrane proton pump (H+-ATPase). Random mutants of Arabidopsis H+-ATPase AHA1 were isolated by phenotypic selection of growth of transformed yeast cells in the absence of endogenous yeast H+-ATPase (PMA1). A Trp-874-Leu substitution as well as a Trp-874 to Lys-935 deletion in the hydrophilic C-terminal domain of AHA1 conferred growth of yeast cells devoid of PMA1. A Trp-874-Phe substitution in AHA1 was produced by site-directed mutagenesis. The modified enzymes hydrolyzed ATP at 200–500% of wild-type level, had a sixfold increase in affinity for ATP (from 1.2 to 0.2 mM; pH 7.0), and had the acidic pH optimum shifted towards neutral pH. AHA1 did not contribute significantly to H+ extrusion by transformed yeast cells. The different species of aha1, however, displayed marked differences in initial rates of net H+ extrusion and in their ability to sustain an electrochemical H+ gradient. These results provide evidence that Trp-874 plays an important role in auto-inhibition of the plant H+-ATPase and may be involved in controlling the degree of coupling between ATP hydrolysis and H+ pumping. Finally, these results demonstrate the usefulness of yeast as a generalized screening tool for isolating regulatory mutants of plants transporters.  相似文献   

8.
The Mg2+ requirement in fertilization was investigated in sea urchins. It was found that when sea urchin eggs were inseminated in sea water free of Mg2+, little fertilization took place. Even when spermatozoa pre-treated with dissolved egg-jelly to induce the acrosome reaction, which needs Ca2+, were used, the fertilization rate remained quite low in the absence of Mg2+. In Strongylo-centrotus intermedius , the lowest concentration of Mg2+ required for 50% fertilization was 0.05 mM in the presence of 10 mM Ca2+, whereas that of calcium was 3 mM in the presence of 49 mM Mg2+. These critical concentrations increased when the concentration of the other ion decreased. Removal of Mg2+ or Ca2+ or both from the suspending medium had little adverse effect on sperm motility. The elevation of the fertilization membrane was also induced by butyric acid independent of the presence or absence of Mg2+ and/or Ca2+. These results indicate that Mg2+ are required at least in some process(es) between acrosome reaction and fertilization membrane elevation, such as sperm penetration or membrane fusion.  相似文献   

9.
Abstract Washed cells of Rhodopseudomonas sphaeroides forma sp. denitrificans , grown under photodenitrifying conditions, exhibited K+ uptake dependent on the transmembrane proton gradient (Δ pH). These cells also acidified the suspension medium in response to K+ pulses both aerobically and anaerobically in light and in the dark. The results indicate that the photodenitrifier has a reversible K+/H+ exchange activity which reflects its role in regulating the intracellular K+ concentration, as well as intracellular pH. The acidification of the external medium resulting from K+ pulses was inhibited by carbonyl cyanide- m -chlorophenylhydrazone (CCCP) indicating that the antiporter is energy-dependent. Addition of KCl to washed cells depolarized the membrane potential (Δψ) with a concomitant increase in ΔpH, indicating that the K+/H+ antiporter was electrogenic.  相似文献   

10.
Modulation of proton extrusion and ATP-dependent H+ transport through the plasma membrane in relation to the presence of 14-3-3 proteins in this membrane in response to osmotic shock was studied in tomato ( Lycopersicon esculentum Mill. cv. Pera) cell cultures. In vivo H+ extrusion by cells was activated rapidly and significantly after adding 100 m M NaCl, 100 m M KCl, 50 m M Na2SO4, 1.6% sorbitol or 2 µ M fusicoccin to the medium. The increase in H+ extrusion by cells treated with 100 m M NaCl was correlated with an increase of H+ transport by the plasma membrane H+-ATPase (EC 3.6.1.35), but not with changes in ATP hydrolytic activity of this enzyme, suggesting an increased coupling ratio of the enzyme. Immunoblot experiments showed increased amounts of 14-3-3 proteins in plasma membrane fractions isolated from tomato cells treated with 100 m M NaCl as compared to control cells without changing the amount of plasma membrane H+-ATPase. Together, these data indicate that in tomato cells an osmotic shock could enhance coupling between ATP hydrolysis and proton transport at the plasma membrane through the formation of a membrane 14-3-3/H+-ATPase complex.  相似文献   

11.
l -Glutamate transport by the H+-glutamate and Na+-glutamate symport proteins of Escherichia coli K-12 (GltPEc and GltSEc, respectively) and the Na+-H+-glutamate symport proteins of Bacillus stearothermophilus (GltTBs) and Bacillus caldotenax (GltTBc) was studied in membrane vesicles derived from cells in which the proteins were either homologously or heterologously expressed. Substrate and inhibitor specificity studies indicate that GltPEc, GltTBs and GltTBc fall into the same group of transporters, whereas GltSEc is distinctly different from the others. Also, the cation specificity of GltSEc is different; GltSEc transported l -glutamate with (at least) two Na+, whereas GltPEc, GltTBs and GltTBc catalysed an electrogenic symport of l -glutamate with ≥two H+, i.e. when the proteins were expressed in E. coli Surprisingly studies in membrane vesicles of B. stearothermophilus and B. caldotenax indicated a Na+-H+- l -glutamate symport for both GltTBs and GltTBc. The Na+ dependency of the GltT transporters in the Bacillus strains increased with temperature. These observations suggest that the conformation of the transport proteins in the E. coli and the Bacillus membranes differs, which influences the coupling ion selectivity.  相似文献   

12.
A transient increase in intracellular Ca2+ upon maturation in starfish oocyte was revealed by light emission of aequorin microinjected into the cell. One minute application of 1-methyladenine (1-MeAde) to a limited area of the oocyte surface was sufficient to induce the Ca2+ transient over the entire cell though it did not induce the germinal vesicle breakdown (GVBD). Ten minutes application of 1-MeAde induced a similar Ca2+ transient followed by GVBD. Even when the transient increase of Ca2+ was inhibited by injecting EGTA into the oocyte, 1-MeAde treatment for a long period induced GVBD. These facts indicate that the Ca2+ increase is neither necessary nor sufficient for maturation of the starfish oocyte.
When the oocyte, which had been treated with 1-MeAde for 1 min at a limited area around the animal pole, was treated again with 1-MeAde for 10 min starting about 15 min after the first treatment, a Ca2+ transient similar to the first one was induced and was followed by GVBD. By contrast, in the oocyte treated with 1-MeAde at an area around the vegetal pole, neither Ca2+ transient nor GVBD was induced by the second treatment with 1-MeAde. These results indicate a difference in responsiveness to the hormone between the animal hemisphere and the vegetal hemisphere of the oocyte.  相似文献   

13.
When sperm of the sea urchin, Hemicentrotus pulcherrimus, are diluted into K+-free seawater, the pH of the suspension gradually decreases, whereas a rapid decline in pH is observed following dilution into regular seawater. Sperm motility and respiration are also activated after dilution into K+-free seawater, but levels of activity are less than those observed following dilution into regular seawater. Upon addition of 10 mM K+ to K+-free seawater, rapid acid release occurs and motility and respiratory rate in sperm are reactivated. The effect of K+ on respiration was competitive with respect to the external Na+ concentrations. Harmaline, a potent inhibitor of Na+/K+-ATPase, causes a decrease in movement and respiration of the sperm. Harmaline does not inhibit the rapid decline in pH, although it depresses the release of acid from mitochondria. These results suggest that external K+ plays an important role in intracellular alkalinization of sea urchin sperm.  相似文献   

14.
The preference of paddy rice for NH4+ rather than NO3- is associated with its tolerance to low pH since a rhizosphere acidification occurs during NH4+ absorption. However, the adaptation of rice root to low pH has not been fully elucidated. This study investigated the acclimation of plasma membrane H+-ATPase of rice root to low pH. Rice seedlings were grown either with NH4+ or NO3-. For both nitrogen forms, the pH value of nutrient solutions was gradually adjusted to pH 6.5 or 3.0. After 4 d cultivation, hydrolytic H+-ATPase activity, V max, K m, H+-pumping activity, H+ permeability and pH gradient across the plasma membrane were significantly higher in rice roots grown at pH 3.0 than at 6.5, irrespective of the nitrogen forms supplied. The higher activity of plasma membrane H+-ATPase of adapted rice roots was attributed to the increase in expression of OSA1, OSA3, OSA7, OSA8 and OSA9 genes, which resulted in an increase of H+-ATPase protein concentration. In conclusion, a high regulation of various plasma membrane H+-ATPase genes is responsible for the adaptation of rice roots to low pH. This mechanism may be partly responsible for the preference of rice plants to NH4+ nutrition.  相似文献   

15.
As water and nutrient uptake should be related in the response of plants to salinity, the aim of this paper is to establish whether or not aquaporin functionality is related to H+-ATPase activity in root cells of pepper ( Capsicum annuum L.) plants. Thus, H+-ATPase activity was measured in plasma membrane vesicles isolated from roots and aquaporin functionality was measured using a cell pressure probe in intact roots. Salinity was applied as 60 m M NaCl or 60 m M KCl, to determine which ion (Na+, K+ or Cl) is producing the effects. We also investigated whether the effects of both salts were ameliorated by Ca2+. Similar results were obtained for cell hydraulic conductivity, Lpc, and H+-ATPase activity, large reductions in the presence at NaCl or KCl and an ameliorative effect of Ca2+. However, fusicoccin (an activator of H+-ATPase) did not alter osmotic water permeability of protoplasts isolated from roots. Addition of Hg2+ inhibited both ATPase and aquaporins, but ATPase also contains Hg-binding sites. Therefore, the results indicate that H+-ATPase and aquaporin activities may not be related in pepper plants.  相似文献   

16.
Plasma membrane vesicles were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots in an aqueous polymer two-phase system. The plasma membranes possessed high specific ATPase activity [ca 4 μmol P1 (mg protein)−1 min−1 at 37°C]. Addition of lysophosphatidylcholine (lyso-PC) produced a 2–3 fold activation of the plasma membrane ATPase, an effect due both to exposure of latent ATP binding sites and to a true activation of the enzyme. Lipid activation increased the affinity for ATP and caused a shift of the pH optimum of the H+ -ATPase activity to 6.75 as compared to pH 6.45 for the negative H+-ATPase. Activation was dependent on the chain length of the acyl group of the lyso-PC, with maximal activition obtained by palmitoyl lyso-PC. Free fatty acids also activated the membrane-bound H+-ATPase. This activation was also dependent on chain length and to the degree of unsaturation, with linolenic and arachidonic acid as the most efficient fatty acids. Exogenously added PC was hydrolyzed to lyso-PC and free fatty acids by an enzyme in the plasma membrane preparation, presumably of the phospholipase A type. Both lyso-PC and free fatty acids are products of phospholipase A2 (EC 3.1.1.4) action, and addition of phospholipase A2 from animal sources increased the H+-ATPase activity within seconds. Interaction with lipids and fatty acids could thus be part of the regulatory system for H+-ATPase activity in vivo, and the endogenous phospholipase may be involved in the regulation of the H+-ATPase activity in the plasma membranne.  相似文献   

17.
Eggs of the sea urchin, Hemicentrotus pulcherrimus , were stimulated by halothane, known to induce Ca2+ release from sarcosome, to cause fertilization membrane formation in normal and Ca2+ free artificial sea water. In the absence of external Ca2+, halothane-induced formation of fertilization membrane was inhibited by dantrolene, an inhibitor of Ca2+ release from sarcosome, but was not blocked by nifedipine, a Ca2+ antagonist specific to Ca2+ channels in plasma membrane. Ca2+ release from sedimentable fraction isolated from eggs was induced by halothane and was inhibited by dantrolene, but was not blocked by nifedipine. In normal artificial sea water, halothane-caused egg activation was not inhibited either by dantrolene or by nifedipine, but was blocked in the presence of both compounds. 45Ca2+ influx was substantially stimulated by halothane in eggs exposed to 45CaCl2. Halothane-induced 45Ca2+ influx into eggs was inhibited by nifedipine but was not blocked by dantrolene. When Ca2+ release from intracellular organellae is blocked, Ca2+ transport through Ca2+ channels in plasma membrane probably acts as a "fail-safe" system to induce an increase in cytosolic Ca2+ level, resulting in egg activation.  相似文献   

18.
In many cell types cytoplasmic alkalization is an early marker for cell activation. An amiloride-sensitive Na+/H+ exchanger is an important regulator of this process. However, in keratinocytes the existence of a Na+/H+ exchanger nor a proliferation-associated increase in intracellular pH (pHi) has been demonstrated.
The aim of this study was to investigate whether or not keratinocytes, derived from the BALB/MK cell line, contain a Na+/H+ exchanger and whether cytoplasmic alkalization is proliferation-associated in these cells. This mouse keratinocyte cell line can easily be switched between a proliferative and a quiescent state under defined culture conditions. The novel pH-sensitive dye seminaphthorhodafluor (SNARF)-calcein proved to be very suitable for flow cytometric pHi measurements in BALB/MK cells. Initial measurements of the pHi using a cocktail of the established fluorochromes 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) and SNARF-1 failed because of the differential uptake and binding kinetics of these pH-sensitive dyes.
Using SNARF-calcein we were able to show proliferation to be associated with increased pHi. However, culture conditions were critical for these measurements. Our data indicate that the Na+/H+ exchanger is involved in this process, since acid load and pHi-recovery experiments showed the alkalization to be amiloride-sensitive.  相似文献   

19.
In cultured cells derived from micromeres isolated at the 16-cell stage of sea urchin embryos, the activity of H+, K+-ATPase became detectable after 15 hr of culture, when the cells started to form spicules, and then increased reaching a plateau from 25 hr of culture. The Na+, K+-ATPase activity of isolated micromeres increased to a maximum at 20 hr of culture and thereafter decreased gradually. Allylisothiocyanate, an inhibitor of H+, K+-ATPase, caused a decrease in intracellular pH (pHi) accompanied by blockage of 45Ca deposition in spicule rods in spicule-forming cells at 30 hr of culture. Ouabain and amiloride had scarcely any effect on the pHi or 45, deposition. In cultured cells exposed to nifedipine, which blocked 45Ca deposition in spicule rods, allylisothiocyanate did not cause any decrease in pHi. These results show that H+, which is generated in the overall reaction to produce CaCO3 from Ca2+ and HCO3, is probably released from the cells mainly in the reaction catalyzed by H+, K+-ATPase to maintain successive production of CaCO3.  相似文献   

20.
The bee venom, melittin, is an amphipathic polypeptide comprising 26 amino acids with known sequence. It consists of a hydrophobic and a basic hydrophilic segment, possesses lipolytic activity, and stimulates Na+-K+ pump activity. At 1.5 μM melittin induces 98% germinal vesicle breakdown (GVBD) in stage VI (Dumont) oocytes and 96% in stage IV oocytes. Progesterone (30 μM) induced 100% GVBD in stage VI oocytes and none in stage IV oocytes. GVBD occurs earlier with melittin than with progesterone, i.e., 3 h compared to 5 h. An unusual morphologic change observed with melittin is the occurrence of mottling of the animal pole. The inner boundary of the melanin layer appears irregular with projections extending into the cytoplasm.
When stage VI oocytes were microinjected with 60 nl of 3 mM melittin only 48% showed GVBD indicating that the effectiveness of melittin was dependent upon the route of administration. On the other hand, 60% of stage VI oocytes underwent GVBD when microinjected with the cytosol fraction obtained from melittin-treated oocytes. Dissolution of isolated germinal vesicles did not occur when they were incubated in modified Earth's medium containing 3 mM melittin. The present results suggest that melittin induces GVBD by promoting the production of maturation promoting factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号